
International Journal of Network Security, Vol.4, No.2, PP.201–211, Mar. 2007 201

Integrity of Mobile Agents: A New Approach

Aneta Zwierko1 and Zbigniew Kotulski1,2

(Corresponding author: Aneta Zwierko)

Warsaw University of Technology, Institute of Telecommunication 1

Warsaw, Poland (Email: azwierko@tele.pw.edu.pl)

Polish Academy of Sciences Institute of Fundamental Technological Research2

Warsaw, Poland (Email: zkotulsk@ippt.gov.pl)

(Received Nov. 9, 2005; revised and accepted Jan. 7, 2006)

Abstract

The recent developments in the mobile technology (mo-
bile phones, middleware) created a need for new methods
of protecting the code transmitted through the network.
The oldest and the simplest mechanisms concentrate more
on integrity of the code itself and on the detection of unau-
thorized manipulation. The newer solutions not only se-
cure the compiled program, but also the data, that can
be gathered during its journey and even the execution
state. Some other approaches base on prevention rather
than detection. This paper describes a new idea of se-
curing mobile agents. The presented method protects all:
the code, the data and the execution state. The proposal
is based on a zero-knowledge proof system and a secure
secret sharing scheme, two powerful cryptographic primi-
tives. The paper also includes security analysis of the new
method and comparison to currently most widespread so-
lutions.

Keywords: Agent systems, cryptographic protocols, in-
tegrity, mobile code

1 Introduction

A software agent is a program that can exercise an indi-
vidual’s or organization’s authority, work autonomously
toward a goal, and meet and interact with other agents
[11]. Agents can interact with each other to negotiate
contracts and services, participate in auctions or barter.
Agents are commonly divided into two types: stationary
agents and mobile agents.

The stationary agent resides at a single platform
(host), the mobile one can move among different plat-
forms (hosts) at different times.

The mobile agent systems offer new possibilities for
the e-commerce applications: creating new types of elec-
tronic ventures from e-shops and e-auctions to virtual en-
terprises and e-marketplaces. Utilizing the agent system
helps to automate many electronic commerce tasks. Be-
yond simple information gathering tasks, mobile agents

can take over all tasks of commercial transactions, namely
price negotiation, contract signing and delivery of (elec-
tronic) goods and services. Such systems are developed
for diverse business areas, e.g., contract negotiations, ser-
vice brokering, stock trading and many others [4, 11, 12].
Mobile agent systems have advantages even over grid com-
puting environments:

• require less network bandwidth,

• increase asynchrony among clients and servers,

• dynamically update server interfaces,

• introduce concurrency.

The benefits from utilizing the mobile agents in various
business areas are great. However, this technology brings
some serious security risks; one of the most important is
the possibility of tampering an agent. In the mobile agent
systems the agent’s code and internal data autonomously
migrate between hosts and could be easily changed during
the transmission or at a malicious host site. The agent
cannot itself prevent this, but different countermeasures
can be utilized in order to detect any manipulation made
by an unauthorized party. They can be integrated directly
into the agent system, or only into the design of an agent
to extend the capabilities of the underlying agent system.

There exist several degrees of agent’s mobility, corre-
sponding to possibilities of relocating code and state in-
formation, including the values of instance variables, the
program counter, execution stack, etc. The mobile agent
technologies can be divided in to two groups:

• weakly mobile: only the code is migrating; no execu-
tion state is sent along with an agent program

• strong mobile: a running program is moving to an-
other execution location (along with its particular
state).

In this paper we discuss the agent system mobile in the
strong sense.

International Journal of Network Security, Vol.4, No.2, PP.201–211, Mar. 2007 202

The system described in our paper is not a standalone
solution for agent security but rather part of a big secu-
rity architecture that would provide agents with such ser-
vices as: confidentiality, accountability, availability, and
authentication.

Organization of this paper: First, we briefly sur-
vey the known techniques for protecting agent’s integrity
(Section 2). In the Sections 3 and 4 we present a new con-
cept for preventing agent’s tampering, based on a zero-
knowledge proof system. The security of proposed solu-
tion is evaluated in Section 5. Section 6 compares dif-
ferent method of protecting agent’s code and data, while
Section 7 deals with scalability aspects of the security.
Conclusions and future work are presented in Section 8.

2 Related Work

Providing security is complex and tough for most exist-
ing services. It is even more problematic in distributed
environment, such as agents’ systems.

The most important security services required in
agents’ systems are [11]:

• Confidentiality: any private data stored on a plat-
form or carried by an agent must remain confiden-
tial. Mobile agents also need to keep their present
location and route confidential.

• Integrity: the agent platform must protect agents
from unauthorized modification of their code, state,
and data and ensure that only authorized agents or
processes carry out any modification of the shared
data.

• Accountability: each agent on a given platform must
be held accountable for its actions: must be uniquely
identified, authenticated, and audited.

• Availability: every agent (local, remote) should be
able to access data and services on an agent platform,
which responsible to provide them.

• Anonymity: agents’ actions and data should be
anonymous for hosts and other agents; still account-
ability should be enabled.

Threats to security generally fall into three main
classes: disclosure of information, denial of service, and
corruption of information [11].

Threats in agent system can be categorized into four
groups:

• an agent attacking an agent platform,

• an agent platform attacking an agent,

• an agent attacking another agent on the agent plat-
form,

• other attacks.

The last category covers cases of an agent attacking an
agent on another agent platform, and of an agent plat-
form attacking another platform, and also more conven-
tional attacks against the underlying operating system of
the agent platform. Other category of attacks are those
connected with traffic analysis [13]. In this paper we will
focus on the threats from an agent’s perspective.

There are two main concepts for protecting mobile
agent’s integrity:

• detection or prevention of tampering,

• providing trusted environment for agent’s execution.

The second group of methods is more concentrated on
the whole agent system than on an agent in particular.
These seem to be easier to design and implement but,
as presented in [14], mostly lead to some problems. The
idea that agent works only with a group of trusted hosts
makes the agent less mobile than it was previously as-
sumed. Also an agent may need different levels of trust
(some information should be revealed to host while in an-
other situation it should be kept secret). Sometimes, it is
not clear in advance that current host can be considered
as trusted.

A method to provide such an environment is special
tamper-resistant hardware, but the cost of such a solution
is usually very high.

In this paper we concentrate on the ”built-in” solutions
because they enable agent to stay mobile in a strong sense
(as it is presented in Section 5.1) and, moreover, provide
the agent with mechanisms to detect or prevent tamper-
ing.

Detection means that the technique is aimed at dis-
covering unauthorized modification of the code or the
state information. Prevention means that the technique
is aimed at preventing change of the code and the state
information in any way. To be effective, detection tech-
niques are more likely than prevention techniques to de-
pend on a legal or other social framework. The distinction
between detection and prevention can be arbitrary some-
times, since prevention often involves detection (see [10]).

2.1 Time Limited Black-box Security and

Obfuscated Code

These methods are based on a the black-box approach.
The main idea of the black-box is to generate executable
code from a given agent’s specification that cannot be at-
tacked by read (disclosure) or modification attacks. An
agent is considered to be black-box if at any time the
agent code cannot be attacked in the above sense, and
if only its input and output can be observed by the at-
tacker. Since it is not possible to implement it today, the
relaxation of this notion was introduced [14]: it is not
assumed that the black-box protection holds forever, but
only for a certain known time. According to this defi-
nition, an agent has the time-limited black-box property

International Journal of Network Security, Vol.4, No.2, PP.201–211, Mar. 2007 203

if for a certain known time it cannot be attacked in the
above-mentioned sense.

The central idea of this approach is to generate an exe-
cutable agent from a given agent specification, which can-
not be attacked by read or manipulation attacks (see [6]).
The time limited blackbox fulfills two black-box properties
for this limited time:

• code and data of the agent specification cannot be
read,

• code and data of the agent specification cannot be
modified.

This scheme will not protect any data that is added later,
although the currently existing variables will be change-
able.

In order to achieve the black-box property, several con-
version algorithms were proposed. They are also called
obfuscating or mess-up algorithms. These algorithms gen-
erate a new agent out of an original agent, which differs
in code but produces the same results.

The code obfuscation methods make it more compli-
cated to obtain the meaning from the code. To change a
program code into a less easy ”readable” form, they have
to work in an automatic and parametric manner. The ad-
ditional parameters should make possible that the same
original program is transformed into different obfuscated
programs. The difficulty is to transform the program in a
way that the original (or a similar, easily understandable)
program cannot be re-engineered automatically. Another
problem is that it is quite difficult to measure the qual-
ity of obfuscation, as this not only depends on the used
algorithm, but on the ability of the re-engineering as well.

Since an agent can become invalid before completing
its computation, the obfuscated code is suitable for ap-
plications that do not convey information intended for
long-lived concealment. Also it is still possible for an at-
tacker to read and manipulate data and code but as the
role of these elements cannot be determined, the results
of this attack are random and have no meaning for the
attacker.

2.2 Encrypted Functions

The Encrypted Functions (EF) is one step forward in
implementing the perfect black-box security. It has been
proposed initially in [16]. Since then other similar so-
lutions were introduced [1, 3, 7, 17] and the method is
believed to be a one of canonical solutions for preserving
agent’s integrity [10, 14].

The goal of Encrypted Functions [10] is to determine a
method which will enable the mobile code to safely com-
pute cryptographic primitives, such as digital signature,
even though the code is executed in non-trusted comput-
ing environments and operates autonomously without in-
teractions with the home platform. The approach is to
enable the agent platform to execute a program assimi-
lating an encrypted function without being able to extract

the original form. This approach requires differentiation
between a function and a program that implements the
function.

The EF system is described as follows [14]:

A has an algorithm to compute function f .
B has an input x and is willing to compute f(x)
for A, but A wants B to learn nothing substan-
tial about f . Moreover, B should not need to
interact with A during the computation of f(x).

The function f can be, e.g., a signature algorithm with
an embedded key or an encryption algorithm containing
the one. This would enable the agent to sign or encrypt
data at the host without revealing its secret key.

Although the idea is straightforward, it is hard to find
the appropriate encryption schemes that can transform
arbitrary functions as showed. The techniques to en-
crypt rationale functions and polynomials were proposed.
Also the solution based on the RSA cryptosystem was
described (see [3]).

2.3 Cryptographic Traces

Giovanni Vigna introduced cryptographic traces (also
called execution traces) to provide a way to verify the
correctness of the execution of an agent [18, 19]. The
method is based on traces of the execution of an agent,
which can be requested by the originator after the agent
termination, and used as a basis for execution verification.
The technique requires each platform involved to create
and retain a non-repudiation log or trace of the opera-
tions performed by the agent while resident there, and to
submit a cryptographic hash of the trace upon conclusion
as a trace summary or fingerprint. The trace is composed
of a sequence of statement identifiers and the platform
signature information. The signature of the platform is
needed only for those instructions that depend on inter-
actions with the computational environment maintained
by the platform. For instructions that rely only on the
values of internal variables, a signature is not required
and, therefore, is omitted.

This mechanism allows detecting attacks against code,
state and control flow of mobile agents. This way, in a
case of tampering, the agent’s owner can prove that the
claimed operations could never been performed by the
agent.

The technique also defines a secure protocol to convey
agents and associated security related information among
the various parties involved, which may include a trusted
third party to retain the sequence of trace summaries for
the agent’s entire itinerary.

The approach has a number of drawbacks, the most
obvious being the size and number of logs to be retained,
and the fact that the detection process is triggered sporad-
ically, based on suspicious results’ observations or other
factors.

International Journal of Network Security, Vol.4, No.2, PP.201–211, Mar. 2007 204

Figure 1: Example of watermarking

2.4 Watermarking and Fingerprinting

Watermarking is mainly used to protect the copyrights
for digital contents. A distributor or owner of the content
embeds a mark into a digital object, so its ownership can
be proved. This mark is usually secret. Most methods
exploit information redundancy. Some of them can also
be used to protect the mobile agent data and code.

One of methods of watermarking is proposed in [5]. A
mark is embedded into the mobile agent by using software
watermarking techniques. This mark is transferred to the
agents’ results during the execution. For the executing
hosts the mark is a normal part of results and is invisi-
ble. If the owner of agent detects that the mark has been
changed (it is different from expected) then he has a proof
that the malicious host was manipulating the agent’s data
or code. Figure 1 illustrates how the mark is appended to
data during the mobile agent’s computations on various
hosts.

The paper [5] presents three ways of embedding the
watermark into the agent: marking the code, marking
the input data, and marking the obfuscated code.

The mark or marks are validated after the agent re-
turns to its originator.

Fingerprinting, contrary to the watermarking meth-
ods presented previously, generate the different embedded
mark for each host. When the agent returns to the owner,
all results are validated. So the malicious host is directly
traced.

The paper [5] presents two ways of embedding the fin-
gerprint into the agent:

• marking the code: in this case, malicious hosts have
the possibility of comparing their different codes in
order to locate their marks.

• marking the input data: the data are usually different
for each host, so it is harder to identify the mark.

The difference between mobile agent watermarking and
fingerprinting is the fact that in the second case it is pos-
sible to detect collusion attacks performed by a group of
dishonest hosts. The procedure is similar to the mobile
agent watermarking approach.

3 A New Concept of Integrity

Protection

In the proposed system we assume that there exist at least
three parties: a manager, an agent, and a host.

The manager can be an originator of the agent. It plays
a role of a verification instance in the scheme and creates
initial countermeasures for the agent. The manager also
plays a role of a Trusted Third Party.

3.1 Basic Idea

The zero-knowledge proof systems (see Section 4.1.1) en-
able verifier to check validity of the assumption that the
prover knows a secret. In our system the verifier would
be the manager or owner of agents and, obviously, agents
would be the provers. In the initial phase, the manager
computes a set of secrets. The secrets are then composed
into the agent, so that if the manager asks the agent to
make some computations (denote them as a function f),
the result of this would be a valid secret. This function
should have the following property:

• if we have x1 and f(x1) then it is computationally
infeasible to find such x2 that

f(x2) = f(x1).

If the secret is kept within an agent, then also the host
can use the zero-knowledge protocol to verify it. Every
authorized change of agent’s state results in such a change
of the secret that the secret remains valid. On the other

International Journal of Network Security, Vol.4, No.2, PP.201–211, Mar. 2007 205

Figure 2: Distributing ID and shares to hosts

hand, every unauthorized change leads to loosing the se-
cret, so at the moment of verification by host or manager,
the agent is not able to prove possession of a valid secret.
In our system the host can tamper the agent and try to
make such changes that he will be still able to obtain the
proper secret, but the characteristics of function f will
not allow doing this. Some possible candidates for the
function f can be a hash function. Our approach is a
detection rather than prevention.

4 The Protocol

4.1 Cryptographic Primitives

We utilized two cryptographic primitives in the proposed
scheme:

• a zero-knowledge proof (in the form of an identifica-
tion protocol)

• a secure secret sharing scheme.

Below is a short description of the protocols utilized.

4.1.1 Zero-Knowledge Proof

Zero knowledge proof system [15] is a protocol which en-
ables one party to prove the possession or knowledge of
a ”secret” to the other party, without revealing anything
about it in the information-theoretical sense. Such a pro-
tocol is also known as minimum disclosure proof. Zero
knowledge proof involves two parties: the prover, who
possesses a secret and wishes to convince the verifier (the
second party), that he indeed has a secret. The proto-
col is realized as an interaction between the parties. At
the end of the protocol, the verifier should be convinced
only if the prover really knows the secret. However, if the
prover does not know it, the verifier will be sure of it with
an overwhelming probability.

The zero-knowledge proof systems are ideal for con-
structing identification schemes. A direct use of a zero-
knowledge proof system allows unilateral authentication
of P (Peggy) by V (Victor) and requires a large number
of iterations, so that verifier is convinced, with an initially
assumed probability, that the prover knows the secret (or
has the claimed identity). This can be expressed as the re-
quirement that the probability of false acceptance is 2−n

where n is the number of iterations. The zero knowledge
identification protocol reveals no information about the
secret held by the prover, under some reasonable compu-
tational assumptions.

4.1.2 Secure Secret Sharing Scheme

A (t, n) threshold secret sharing scheme [2, 15] distributes
a secret among n participants in such a way, that any t

of them can recreate the secret, but any t − 1 or fewer
members gain no information about it. The piece held
by a single participant is called a share or shadow of the
secret. Secret sharing schemes are set up by a trusted
authority, called a dealer, who computes all shares and
distributes them to participants via secure channels. The
participants hold their shares until some of them decide
to combine shares and recreate the secret. The recovery
of the secret is done by the so-called combiner who on
behalf of the co-operating group computes the secret. The
combiner is successful only if the reconstruction group has
at least t members.

4.2 A Host Validating an Agent

Our protocol is not directly based on the complete zero-
knowledge proof, but on the particular identification sys-
tem based on zero-knowledge proof. We choose the
Guillou-Quisquater (GQ) scheme [8] as the most conve-
nient for our purposes. In this scheme the manager has a
pair of RSA-like keys: a public KP and a private one kp.

International Journal of Network Security, Vol.4, No.2, PP.201–211, Mar. 2007 206

Figure 3: Mobile agent as a FSM

The manager also computes the public modulus N = p ·q,
where p, q are RSA-like primes. The following equation
has to be true:

KP × kp ≡ 1 (mod ϕ(N)),

where ϕ(N) is the value of Euler function of N . The pair
(KP , N) is made public.

4.2.1 The Initial Phase

The initial phase has three steps:

1) The manager computes set of so-called identities, de-
noted as IDp, and their equivalences denoted as Jp.
It does not matter how Jp is obtained if it is obvi-
ous for all participants how to obtain Jp from IDp.
The pairs (IDp, Jp) are public and can be distributed
among hosts. The manager computes a secret value

for each IDp: σp ≡ J
−kp

p (mod N). The σp is a secret
that will be ”hidden” in an agent.

2) To compose the σp into an agent, the Asmuth and
Bloom secure secret sharing scheme [2] is used. The
manager randomly chooses m prime or co-prime
numbers (called public moduli):

pj (j = 1, . . . , m, p0 < pj < . . . < pm).

They are publicly known. Then, the manager (play-
ing the role of a dealer in the secret sharing scheme)
instead of selecting at random an integer s, such that

t−1∏

j=1

pj < s <

t∏

j=1

pj ,

he computes it, preserving moreover following condi-
tions:

s ≡ σp (mod p0)

and

pm < s <

t∏

j=1

pj.

After computing s, the manager creates appropriate
shares:

si ≡ s (mod pi).

Then, the t−1 shares are composed into an agent and
the rest are distributed among the hosts via secure
channels (this is illustrated in Figure 2).

3) The manager now needs to glue the shares into an
agent in such a way, that when the agent is in a
proper execution state, he is able to obtain from
his code/state variables the correct shares. Since
the agent is nothing more than a computer pro-
gram, it can be described as a Finite State Ma-
chine (FSM). Assume, we have the agent of the form
< Σ, S, SI , SF , δ >, where

• Σ is the input alphabet,

• S = {f0, . . . , fn} is a set of all possible states,

• SI is a subset of S with all initial states,

• SF is a subset of S with all finishing states, pos-
sibly empty,

• δ : Σ × S → S is a state transition function.

The Figure 3 shows an example of agent’s FSM. It is
obvious that only some execution states should be ob-
served during the computation at the host platform (e.g.,
the ones connected with gathering and storing the data).
If the state fj is the first state of agent’s computations
at the host platform, then it is natural that the shares
should be generated only from this state. Additionally,
some internal variables that differ for each host, should
be utilized to obtain different secrets for each host. Thus,
to create agent’s shares, fj , ci ∈ Σ, and the code should
be used. The idea of generating shares from variables and
selected states of agents execution is illustrated in the Ta-
ble 1.

In other cases, where the pair fj and ci is not unique
for each host, the previous states or other data should be
used. It should be possible to obtain the proper shares
for current host basing on appropriate execution state and
internal variables. If there are more than one unique com-
bination of (fj , ci) for one host, then for each of them the
host should obtain an ID and a share. The agent’s code
(in a certain form) should be a part of the data that is
required to recreate the secret to enable detection of every
unauthorized manipulation, which could be performed by
previous host.

International Journal of Network Security, Vol.4, No.2, PP.201–211, Mar. 2007 207

Table 1: Agent’s shares

State Variable Obtained shares
f0 . . . no proper shares can be generated
.
fj c1

i h(fi, c
1

i , code) → {s1

1
, . . . , s1

t−1
}, (shares for the 1st host)

fj c2

i h(fi, c
2

i , code) → {s2

1
, . . . , s2

t−1
}, (shares for the 2nd host)

.
fj cl

i h(fi, c
l
i, code) → {sl

1
, . . . , sl

t−1
}, (shares for the lth host)

.
fn−1 . . . no proper shares can be generated
fn . . . no proper shares can be generated

To create the shares from the mentioned data, the hash
function or an encryption function with the manager’s
public key can be used.

4.2.2 The Validation Phase

The Figure 4 shows the general steps of the protocol of
deciding by the host if the migrated agent is valid.

1) The host, which wants to verify an agent’s integrity,
sends him his share sh.

2) The agent creates the rest of the shares from his
code and the execution state. He recreates the se-
cret (playing a role of a combiner for the Asmuth
and Bloom secure secret sharing scheme) by solving
the following system of equations:

s ≡ si1 (mod pi1)

· · ·

s ≡ sit
(mod pi1)

This system has an unique solution according to the
Chinese Reminder Theorem. The agent computes
the secret σ and uses it for the rest of the scheme,
which is a zero-knowledge proof identification proto-
col.

3) The agent sends the host a challenge: a num-
ber u computed basing on a random value r, r ∈
{1, . . . , N − 1},

u = rKP (mod N).

4) After receiving the challenge the host chooses a ran-
dom value b ∈ {1, . . . , N} and sends it to the agent.

5) The agent computes next value (v) basing on the
number b obtained from the host and on agent’s se-
cret value σ:

v ≡ r × σb (mod N).

6) The host uses information received from the man-
ager, IDp to obtain Jp and verifies if v is a proper
value. To validate the response received from the
agent, the host checks if

Jb
p × vKP ≡ u (mod N).

If the equation is true, then the agent proved that he
knows the proper secret and, what follows, neither
his code, nor execution state were changed.

The manager can compute many identities, which may
be used with different execution states. In that situation
the agent should first inform host which identity should
be used, or the host can try to validate the received value
v for all possible identities. The second part of this pro-
tocol, starting from the agent sending a challenge to the
host, can be repeated to minimize the probability of not
detecting prohibited manipulations in the agent’s code.

4.3 Securing the Data Obtained by an

Agent

A similar scenario can be used to provide integrity to
the data obtained by the agent from different hosts. A
malicious host could try to manipulate the data delivered
to agent by the previously visited hosts. To ensure that
this is not possible, the agent can use the zero-knowledge
protocol to protect the data. For each stored data d,
the agent can choose at random r ∈ {1, . . . , N − 1} and
compute

v ≡ r × σd (mod N).

Then, the manager can verify the data by computing and
comparing:

Jd
p × vKP ≡ u (mod N).

That way for every received data d the agent would
have an unique ”proof” that the data was not manipu-
lated.

International Journal of Network Security, Vol.4, No.2, PP.201–211, Mar. 2007 208

Figure 4: The verification of an agent’s integrity

5 Security Analysis

5.1 Definitions and Notions

This section presents basic notions concerning agent’s in-
tegrity that will be later used in description of the selected
solutions (most of the definitions come from [6]).

The integrity of an agent means that neither its code
nor execution state can be changed by an unauthorized
party or such changes should be detectable (by an owner,
a host or an agent platform, which want to interact with
the agent).

The authorized changes occur only when the agent
have to migrate from one host to another. Below is a
more formal definition:

Definition 1 (integrity of an agent). An agent’s in-
tegrity is not compromised if no unauthorized modification
can be made without the agent’s owner noticing this mod-
ification.

The concept of forward integrity is also used for eval-
uation of many methods. This notion is used in a system
where agent’s data can be represented as a chain of par-
tial results (a sequence of static pieces of data). Forward
integrity can be divided into two types, which differ in
their possibility to resist cooperating malicious hosts. The
general goal is to protect the results within the chain of
partial results from being modified. Given a sequence of
partial results, the forward integrity is defined as follows:

Definition 2 (weak forward integrity). If in is the
first malicious agent place on the itinerary, the integrity
of each partial result m0, ..., mn−1 is provided.

Weak forward integrity is conceptually not resistant
to cooperating malicious hosts and agent places that are
visited twice. To really protect the integrity of partial
result, we need a definition without constraints.

Definition 3 (strong forward integrity). None of the
encapsulated messages mk, with k < n, can be modified
with out notifying the manager.

In this paper we refer to forward integrity as to strong
forward integrity (when applicable). To make notion of
forward integrity more useful, we define also publicly ver-
ifiable forward integrity, which enables any host to detect
compromised agents:

Definition 4 (publicly verifiable forward integrity).
Any host in can verify that the chain of partial results
mi0 , . . . , min

has not been compromised.

The other important notion concerning agent’s in-
tegrity, a concept of black-box security (see [9, 14]) was
introduced in Section 2.1.

5.2 Analysis

The proposed scheme should be used with more that one
identity (IDp). This would make very hard to manipulate
the code and the data. The best approach is to use one
secret for each host.

We assume that the malicious host is able to read and
manipulate an agent’s data and code. He can try to obtain
from an agent’s execution state the proper shares. He
can also try to obtain a proper secret and manipulate the
agent’s state and variables in a way that the obtained
secret would stay the same. But he does not know other
secrets that are composed into the agents; also he does
not know more shares to recreate those secrets, so, any
manipulation would be detected by the next hosts.

Also even when host is able to recreate the current
secret, he is not able to manipulate the data that was
obtained by the agent earlier from other hosts. Since he
cannot produce a valid secret σ for the given data d, he
is not able to forge the v, the way that using a zero-
knowledge proof would not reveal the changes.

International Journal of Network Security, Vol.4, No.2, PP.201–211, Mar. 2007 209

The protocol is not able to prevent any attacks that
are aimed at destroying the agent’s data or code, meaning
that a malicious host can ”invalidate” any agent’s data.
But this is always a risk, since the host can simply delete
an agent.

Weak forward integrity: The proposed method
posses the weak forward integrity property: the mali-
cious host cannot efficiently modify previously generated
results.

Strong forward integrity: The protocol provides
agent also with strong forward integrity, because host can-
not change previously stored results (without knowledge
of secrets created for other hosts). He cannot also modify
the agent in a way that could be undetectable by the next
host on the itinerary or by the owner.

Publicly verifiable forward integrity: Each host
can only verify if the agent’s code or the execution state
has not been changed. They cannot check wherever the
data obtained on other platforms has not been modified.
This can be only done by the agent’s owner, who created
all secrets.

Black-box security: The proposed system is not resis-
tant to read attacks. The code or data can be modified
by a malicious host, but it is detectable by agent’s owner,
so it is resistant to manipulation attack. The system does
not have full black-box property.

6 Comparison with Other Meth-

ods

It is a difficult task to compare systems based on such
different approaches as presented here. We decided to
split comparison into two categories:

• practical evaluation (Table 2): if the method is hard
or easy to implement:

– hard: no practical implementation exists at the
moment;

– medium: the method has been implemented,
with much effort;

– easy: the method is widely used and has been
implemented for different purposes;

and what elements of agent it protects,

• theoretical evaluation (Table 3): if the method satis-
fies the security definitions from Section 5.1.

The theoretical evaluation is quite hard, because some
methods that have the black-box property, does not ”fit”
to other definitions. If the code or data cannot be read or
manipulated (the ideal case), then how we can discuss if
it can be verifiable, or, if it fulfills the forward integrity.

As for evaluation of the black-box property, it is very
hard to provide the code that cannot be read. In all cases,
marked by ∗, the adversary can modify the agent but not
in a way that owner or other host would not notice. This
means that no efficient manipulation attack can be made,
so one part of the black-box property is satisfied.

In # case the publicly verifiable forward integrity is
satisfied only partially, because the agent’s code can be
verified but the data cannot.

7 Scalability

Our solution has two main phases: the initialization phase
and the operating phase.

The initialization phase. The first phase is similar
to the bootstrap phase of the system. The hosts and
the manager create a static network. It is typical for
agents systems that all hosts are known to the manager
or the owner of an agent, so distribution of all IDs and
shares is efficient. We can compare this to sending a single
routing update for entire network as in OSPF protocol
(the flooding). Whenever a new agent is added to the
system, the same amount of information to all hosts have
to be sent. Since the messages are not long (a single share
and few IDs) and are generated only during creating a
new agent, that amount of information should not be a
problem. The sizes of parameters (keys lengths, number
of puzzles, number of shares) are appropriate adjusted to
the agents’ network size.

The operating phase. During the validation phase no
additional communication between the manager and the
hosts is required.

8 Concluding Remarks

One area for development is to find the most appropri-
ate function for composing secrets into hosts: the pro-
posed solution fulfills the requirements, but some addi-
tional evaluation should be done.

The next possibility for the future work would be to
integrate the proposed solution to some agents’ security
architecture, possibly the one that would also provide an
agent with strong authentication methods and anonymity
[20]. Then, such a complex system should be evalu-
ated and implemented. At the moment the agent system
equipped with the anonymous authentication and the pro-
posed integrity mechanisms is under development: it is an
electronic elections system for mobile devices.

This paper provides description of various protocols
and methods for preserving the agent’s integrity. The ba-
sic definitions and notions were introduced. The most
important mechanisms are introduced and discussed. We
also proposed a new concept for detection of the temper-
ing an agent, based on a zero-knowledge proof system.

International Journal of Network Security, Vol.4, No.2, PP.201–211, Mar. 2007 210

Table 2: Practical comparison of integrity protection methods

Method Implementation Protects Protects Protects
code data execution state

Encryption functions Hard Yes Yes No
Obfuscated code Medium Yes No No

Cryptographic traces Hard Yes No Yes
Watermarking Easy Yes Yes No
Fingerprinting Easy Yes Yes No

Zero-knowledge proof Easy Yes Yes Yes
method (this paper)

Table 3: Theoretical comparison of integrity protection methods

Method Weak forward Strong forward Publicly verifiable Black-box
integrity integrity forward integrity property

Encryption functions No No No Yes
Obfuscated code Yes Yes No partially∗

Cryptographic traces Yes Yes Yes? No
Watermarking Yes No No partially∗
Fingerprinting Yes Yes No partially∗

Zero-knowledge proof Yes Yes No# partially∗
method (this paper)

The proposed scheme secures, both, an agent’s execution
state and the internal data. The system requires some
additional research and development work, but it seems
to be a promising solution to the problem of providing
agent with effective countermeasures against attacks on
its integrity.

References

[1] J. Algesheimer, C. Cachin, J. Camenisch, and G.
Karjoth, Cryptographic Security for Mobile Code,
IBM Security Resaerch, 2000.

[2] C. Asmuth, and J. Bloom, “A modular approach to
key safeguarding,” IEEE Transactions on Informa-
tion Theory, IT-29, no. 2, pp. 208-211, 1983.

[3] M. Burmester, V. Chrissikopoulos, and P. Kotzaniko-
laou, “Secure transactions with mobile agents in hos-
tile environments,” in Information Security and Pri-
vacy, Proceedings of the 5th Australasian Conference
ACISP, LNCS 1841, pp. 289-297, Springer-Verlag,
2000.

[4] A. Corradi, M. Cremonini, R. Montanari, and C. Ste-
fanelli, “Mobile agents integrity for electronic com-
merce applicatons,” Informations Systems, vol. 24,
no. 6, pp. 519-533, 1999.

[5] O. Esparza, M. Fernandez, M. Soriano, J. L. Munoz,
and J. Forne, “Mobile agents watermarking and fin-
gerprinting: Tracing malicious hosts,” DEXA 2003,
LNCS 2736, pp. 927-936, Springer-Verlag, 2003.

[6] L. Fischer, Protecting Integrity and Secrecy of Mobile
Agents on Trusted and Non-Trusted Agent Places,
Diplomarbeit, Universitat Bremen, Fachbereich In-
formatik, 2003.

[7] J. A. Foss, S. S. Harrison, and L. Hyungjick, “The
use of encrypted functions for mobile agent security,”
in Proceedings of the 37th Hawaii International Con-
ference on System Sciences, pp. 297-306, 2004.

[8] L. C. Guillou and J. J. Quisquater, “A practical zero-
knowledge protocol fitted to security microproces-
sor minimizing both transmission and memory,” Ad-
vances in Cryptology-EUROCRYPT’88, LNCS 0330,
pp. 123-128, Springer-Verlag, 1988.

[9] F. Hohl, “Time limited blackbox security: Protect-
ing mobile agents from malicious hosts,” in Mo-
bile Agents and Security, LNCS 1419, pp. 90-111,
Springer-Verlag, 1998.

[10] W. A. Jansen, Countermeasures for Mobile Agent Se-
curity, NIST publication.

[11] W. A. Jansen, and T. Karygiannis, NIST Special
Publication 800-19 - Mobile Agents Security.

[12] K. Kulesza and Z. Kotulski, “Decision systems
in distributed environments: Mobile agents and
their role in modern e-commerce,” INFORMATION
IN XXI CENTURY SOCIETY, w: A. Lapinska,
[ed.], Warmia-Mazury University Publishing, Olsz-
tyn 2003, ISBN 83-89112-60-4.

[13] K. Kulesza, Z. Kotulski, and K. Kulesza, “On mo-
bile agents resistant to traffic analysis,” Electronic
Notes in Theoretical Computer Science, vol. 142, pp.

International Journal of Network Security, Vol.4, No.2, PP.201–211, Mar. 2007 211

1-254, 3 Jan. 2006, Proceedings of the First Interna-
tional Workshop on Views on Designing Complex Ar-
chitectures (VODCA 2004), Bertinoro, Italy, 11-12,
Edited by M. ter Beek and F. Gadducci, pp.181-193,
Elsevier, ISSN: 1571-0661. Sep. 2004.

[14] R. Oppliger, Security technologies for the World
Wide Web, the Computer Security Series, Artech
House Publishers, 2000.

[15] J. Pieprzyk, T. Hardjono, and J. Seberry, Fundamen-
tals of Computer Security, Springer-Verlag, Berlin
2003.

[16] T. Sander and C. F. Tschudin, “Towards mobile
cryptography,” in Proceedings of the IEEE Sympo-
sium on Security and Privacy, pp. 215-224, 1998.

[17] T. Sander and C. F. Tschudin, “Protecting mobile
agents against malicious hosts,” in Mobile Agents
and Security, LNCS 1419, pp. 44-60, Springer-Verlag,
1998.

[18] G. Vigna, “Protecting mobile agents through trac-
ing,” in Proceedings of the 3rd ECOOP Workshop on
Mobile Object Systems, pp. 1-14, Jyvlskyl, Finland,
Jun. 1997.

[19] G. Vigna, “Cryptographic traces for mobile agents,”
in Mobile Agents and Security, LNCS 1419, pp. 137-
153, Springer-Verlag, 1998.

[20] A. Zwierko and Z. Kotulski, “Mobile agents: Pre-
serving privacy and anonymity,” in Proceedings of
IMTCI2004, International Workshop on Intelligent
Media Technology for Communicative Intelligence in
Warsaw, Poland, pp. 189-192, Sep. 13-14, 2004,
ISBN 83-89244-30-6, extended version published in
LNAI 3490, pp. 246-258, Springer, Heidelberg 2005,
ISBN 3-540-290-35-4.

Aneta Zwierko is presently doing
her PhD on application of crypto-
graphic protocols in mobile environ-
ment at Warsaw University of Tech-
nology, Institute of Telecommunica-
tions. Her current interest include
zero-knowledge proofs and its appli-
cation, identification and authentica-

tion protocols, anonymity and privacy, security issues of
the agent systems, E/M-voting protocols, electronic pay-
ments, AI and its application in security. She holds MSc
in telecommunications from Warsaw University of Tech-
nology, Poland.

Zbigniew Kotulski received his
M.Sc. in applied mathematics from
Warsaw University of Technology and
Ph.D. and D.Sc. Degrees from Insti-
tute of Fundamental Technological Re-
search of the Polish Academy of Sci-
ences. He is currently a professor at
IFTR PAS and professor and head of

Security Research Group at Department of Electronics
and Information Technology of Warsaw University of
Technology, Poland.

