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Abstract. This paper presents numerical modelling and simulation of rock cutting processes. The model considers a 
tool–rock system. The rock is modelled using spherical discrete elements. Formulation of the discrete element 
method has been briefly reviewed. The model has been calibrated by simulation of the UCS and Brazilian tests. 
Simulation of rock cutting with a single point attack pick of a roadheader has been carried out. The 3D analysis al-
lowed us to predict three components of cutting forces. The numerical model of rock cutting has been validated using 
the results of laboratory cutting tests. A good qualitative and quantitative agreement of numerical results with ex-
perimental measurements has been found out. 
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Introduction 

Variety of rock-cutting technologies is used in civil 
as well as in mining engineering. Fig 1 shows a road-
header, a machine used in rock excavation works. 
 

 
Fig 1. Rock excavation with a roadheader 

 
The basic physical phenomenon occurring during 

cutting is rock desintegration under mechanical action of 
a cutting tool. Design of cutting tools and setting parame-
ters of cutting operations requires knowledge about the 
cutting process.  

Cutting force is one of the main factors characteriz-
ing a cutting process. Theoretical evaluation of the cut-

ting force is not an easy task. Simple analytical models, 
like those developed by Evans (1965) or by Nishimatsu 
(1972), can provide a very approximate estimation of 
cutting forces only. Numerical methods based on the 
continuum models, like finite element methods, have 
serious problems in modelling discontinuities of the ma-
terial occuring during rock cutting (Jonak and Podgórski 
2001).  

The present paper presents possibilities of modelling 
rock cutting using a discrete element model. The discrete 
element method takes into account all kinds of disconti-
nuities and material failure characterized with fracture 
and is commonly regarded as a suitable tool to study rock 
cutting (Huang 1999; Stavropoulou 2006; Su et al. 2009). 

Basic assumptions of the rock cutting model 

A numerical model of rock cutting has been devel-
oped within the authors’ own implementation of the dis-
crete element method (Rojek et al. 2001; Oñate and Ro-
jek 2004). The system consisting of a tool and rock 
sample is considered in the model. The rock material is 
represented as a collection of rigid spherical (in 3D) or 
cylindrical (in 2D) particles interacting among them-
selves with contact forces. The tool is treated as a rigid 
body with a surface discretized with triangular facets. The 
tool-rock interaction is modelled assuming Coulomb 
friction model. 
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Discrete element method formulation 

The translational and rotational motion of the i-th 
discrete element is governed by the standard equations of 
the rigid body dynamics: 

 iiim Fu =&&  (1) 

 iiiJ Mω =&  (2) 

where u is the element centroid displacement in a fixed 
(inertial) coordinate frame X, ω– the angular velocity, m– 
the element mass, J– the moment of inertia, F– the resul-
tant force, and M– the resultant moment about the central 
axes. Vectors F and T are sums of all forces and 
moments applied to the i-th element due to external load, 
contact interactions with neighbouring spheres and other 
obstacles, as well as forces resulting from damping in the 
system. The form of the rotational equation (2) is valid 
for spheres and cylinders (in 2D) and is simplified with 
respect to a general form for an arbitrary rigid body. 

Equations of motion (1) and (2) are integrated in 
time using the central difference scheme. The time inte-
gration operator for the translational motion at the n-th 
time step is as follows: 
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The first two steps in the integration scheme for the 
rotational motion are identical to those given by equa-
tions (3) and (4): 
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The vector of incremental rotation 1+
Δ

n
iθ  is calcu-

lated as: 
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If necessary it is also possible to track the total change of 
rotational position of particles. 

Explicit integration in time yields high computa-
tional efficiency of the solution for a single step. The 
disadvantage of the explicit integration scheme is its con-
ditional numerical stability imposing the limitation on the 
time step tΔ . The time step tΔ  must not be larger than a 
critical time step crtΔ  

 crtt Δ≤Δ  (9) 

determined by the highest natural frequency of the system 
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Exact determination of the highest frequency ωmax 
would require solution of the eigenvalue problem defined 
for the whole system of connected rigid particles. In an 
approximate solution procedure adopted, the maximum 
frequency is estimated as the maximum of natural fre-
quencies of the mass–spring systems defined for the con-
tact pairs of particles. 

The overall behaviour of the system is determined 
by the cohesive/frictional contact models assumed for the 
interaction between contacting spheres. The contact force 
between two particles F can be decomposed into the 
normal and tangential components, Fn and FT , respec-
tively 

 TnTn F FnFFF +=+=  (11) 

where n is the unit vector normal to the particle surface at 
the contact point. 

The contact forces Fn and FT are obtained using a 
constitutive model formulated for the contact between 
two rigid spheres. In the present formulation rock materi-
als are modelled using elastic perfectly brittle model of 
contact interaction, in which we assume initial bonding 
for the neighbouring particles. These bonds can be broken 
under load allowing us to simulate initiation and propaga-
tion of material fracture. Contact laws for the normal and 
tangential direction for the elastic perfectly brittle model 
are shown in Figs 2 and 3.  

 

 
Fig 2. Force–displacement relationship for the elastic 
perfectly brittle model in the normal direction 

 

 

 

 
Fig 3. Force–displacement relationship for the elastic 
perfectly brittle model in the tangential direction 
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When two particles are bonded the contact forces in 
both normal and tangential directions are calculated from 
the linear constitutive relationships: 

 nnn ukF =  (12) 

 TTT k uF =  (13) 

where kn and kT are the interface stiffness in the normal 
and tangential directions, and un and uT– the normal and 
tangential relative displacements, respectively.  

The tensile and shear contact forces are limited by 
the tensile and shear interface strengths, Rn and RT, re-
spectively: 

 nn RF ≤  (14) 

 TT R≤F  (15) 

Cohesive bonds are broken instantaneously when the 
interface strength is exceeded either by the tangential 
contact force or by the tensile contact force. After 
debonding the elements can interact according to the 
frictional contact conditions without cohesion. Similarly 
the fricitional contact is assumed for the tool-rock inter-
action 

Determination of rock model parameters 

Determination of the model parameters is the first 
step in the discrete element simulation of rock cutting 
process. A set of micromechanical parameters yielding 
required macroscopic rock properties has been deter-
mined using the methodology developed by Huang 
(1999) based on the combination of the dimensional 
analysis with numerical simulation of the standard labora-
tory tests for rocks, unconfined compression test (Fig 4) 
and Brazilian test (Fig 5). The stress-strain relationship 
obtained in the numerical simulation of the unconfined 
compression test is shown in Fig 6. It is similar to the 
stress-strain curves obtained in laboratory. The force–
time curve obtained in the simulation of the Brazilian test 
is plotted in Fig 7. These curves allow us to determine 
macroscopic properties of the material modelled with the 
discrete element method. 

 
 

 
Fig 4. Results of the numerical simulation of the un-
confined compression test 

 

 
Fig 5. Results of the numerical simulation of the Bra-
zilian test 

 

 
Fig 6. Simulation of the unconfined compression test: 
stress–strain curve 

 

 
Fig 7. Simulation of the Brazilian test: force–time 
curve 

Simulation of rock cutting with a roadheader pick 

Validation of the rock cutting model has been car-
ried using experimental results obtained in a laboratory 
test performed in the laboratory of Sandvik Mining and 
Construction (Fig 8). The tests consisted in cutting of a 
sandstone block with a rotating roadheader pick. Me-
chanical properties of the rock have been determined 
experimentally and are the following: Young modulus 
E = 18690 MPa, Poisson ratio ν = 0.23, compressive 
strength σc = 127 MPa and tensile strength σt = 12 MPa. 
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The test has been analysed using a three dimensional 
discrete element model. Rock sample has been discre-
tized using 71,200 spherical particles. For the rock con-
sidered the following set of micromechanical parameters 
has been found for the DEM model: contact stiffness in 
the normal direction kn = 5.4·106 N/m, contact stiffness in 
the tangential direction kT = 2.16·106 N/m, cohesive bond 
strengths in the normal and tangential direction, Rn = RT = 
86 N. The results of numerical simulation are shown in 
Fig 9. Splitting of chips typical for brittle rock cutting can 
be seen. 

 

 

Fig 8. Laboratory rock cutting test (courtesy of Sand-
vik Mining and Construction GmbH, Zeltweg, Aus-
tria) 

 

 

Fig 9. Numerical simulation of the rock cutting test 

 
The three components of cutting forces obtained in 

simulation are plotted in Fig 10. Numerical forces are 
compared with experimental average measurements. 
Quite a good agreement can be observed. 
 
 

 

Fig 10. Rock cutting forces– comparison of numerical 
results with experimental average values 

 

Simulation of rock cutting with a TBM disc cutter 

Tunnel Boring Machine (TBM) is used in tunnel ex-
cavation. TBMs perform rock cutting with disc cutters 
mounted on a cutterhead. The linear cutting test has been 
established to predict TBM performance. The linear cut-
ting test has been simulated. Fig 11 shows the simulation 
results. The granite properties are assumed in the simula-
tion, appropriate DEM parameters being evaluated. 
Fig 12 shows the normal cutting force history. Numerical 
results have been compared with experimental ones pro-
vided by Herrenknecht AG. A good agreement between 
the numerical and average experimental values is clearly 
seen. 
 

 
Fig 11. Simulation of rock cutting with a TBM disc 
cutter  
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Fig 12. Simulation of rock cutting with a TBM disc cutter– comparison of numerical  

cutting forces with experimental average values 

 

 

Concluding remarks 

The three-dimensional discrete element model of 
rock cutting is capable to represent correctly complexity 
of a rock cutting process. A good qualitative and quanti-
tative agreement of numerical results with experimental 
measurements has been found out in the validation of the 
model developed in the present work. The 3D model 
developed can be employed in the design of rock cutting 
tools and processes.  
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