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Figure 2: Elementary tensegrity cell; a) geometry, struts under
compression - black and tendons under tension - grey b)
stiffening effect of the tensioned cell, load versus displacement

The inherent feature of our model is the design sensitivity
analysis [4, 5]. The displacements and stresses fields are
sensitive to the different design parameters, for example, the
geometrical parameters like lengths of tie actins and

parameters like Young's modulus, relaxation time and shape
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representing the cells and into groups of clusters. This gives
information about the influence of cells, their elements and
groups of cells. In fact, observing the derivatives we obtain an
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where Bf and B[ are the nonlinear and linear operators, N is

the shape functions matrix, AS is Ihe stress increment, T is the
Cauchy stress matrix, A<| is the displacement increment, Af and
At are the body forces and the boundary tractions increments.
The integration is done over the domain Q and its boundary Qn.
The constitutive model is visco-ciastic such as the stress
increment depends on total stress S, the shear modulus (G), the
bulk modulus (K) and the strain increment AE as follows

AS = D(S,G,K)AE; G(t) = C0 +fiGi exp[-H (2)

where t is the time and \, are the relaxation times of the
particular parallel dampers. The equations (2) describe the
generalized Maxwell model.

The design sensinv.U equation obtained by differentiating
of the equation of equilibrium (1) with respect to the design
variable h is of the form

, =^v_^^_, ,3,

<ft <A A* ""

/-.A.S, of (1), AF is the internalwhere AQ is
forces incre

The equations (3) and (4) define the direct differs:n :on
method, DDM,

4. -Numerical aspects

The parallel version of the program includes the solver
MUltifrontal Massively Parallel Solver, MUMPS [2, 3]. We use
the Ncwton-Raphson technique for solving the equation of
equilibrium (1). The sensitivity algorithm creates additional
right hand sides (4). They stand for the right hand sides of the
equation (3). We need to solve so many right hand sides as the
design variables. The design sensitivity equation is solved using
the triangularized form of the last stiffness obtained in the
iteration loop.
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Figure 4: Sensitivity fields, a) ideal system b) bofe i
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Abstract 
 
The design sensitivity algorithm for visco-elastic tensegrity structures is presented. We adopt Updated Lagrangian formulation. We 
have possibility of grouping of the design variables what is particularly useful in the case of hierarchical structures. In our case, the 
structure is the tissue built of elementary cells. The design sensitivity procedure is implemented with parallel solver. 
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1. Introduction 

The cytoskeleton (CSK) can be modelled as a tensegrity 
structure, Ref. [1]. The role of the CSK is continuously 
discovered. The mechanical environment is very important to 
the cells behaviour. We will cite here, Ref. [8] “Change the 
mechanical stresses on cancer cells and they can start to 
behave more like healthy ones”. This is the statement that the 
mechanical actions affect the living organisms from the level of 
entire body to the level of the cell and below. The 
displacements and stresses are changing in the biological 
materials continuously due to the growth, division and death of 
the cells, Ref. [6].  

The cells undergo different kind of signals which “tells” 
them to grow, divide, die and reorganize their internal structure 
(motility phenomenon). The signals can be of electrical, 
mechanical, thermal, chemical or even unknown nature. This 
constitutes the agent based models of the tissue, Ref. [9]. 

The described model, program and the theory will become 
elements of an agent based system, Ref. [7]. However, this is 
beyond the scope of the presentation. 

 

2. Methodology, mechanical model 

iThe elementary cell consists of nucleus, actins, 
microtubules, membrane and collagen. We can see it under the 
laser confocal microscope, Fig. 1. 

We will deal with the mechanical model of the 
cytoskeleton. The cytoskeleton consists of actins and 
microtubules. The actins act as tendons and the microtubules 
act as compressed struts. They build the tensegrity structure of 
the cell. The observed behaviour of the elementary cells is 
viscoelastic. They are pre-stressed and keep approximately their 
volume when deformed and they stiffen when undergo tension. 

These conditions are fulfilled by the elementary icosahedron 
based tensegrity structure, Fig. 2. We deal with the elementary 
cell model with equivalent actins and microtubules. We adopted 
the following data, namely, height of the cell 64 µm, cross-
sectional areas of the tendons (filaments) 10nm2, cross-sectional 
areas of the struts (microtubules)  190 nm2, Young’s moduli of 
the tendons 2.6GPa and the struts 1.2GPa, initial prestressing 
forces 20 nN, maximum loading 0.1N, relaxation time 1.0 sec, 
Gi/Go ratio 0.91 (case A) and 0.1 (case B). We may note certain 
effect of the imperfect position of the nodes and higher 
stiffening effect for higher Gi/Go ratios (case A). 

 (a) 

 (b) 
 

Figure 1: Human dermal fibroplasts; a) group of cells with 
nuclei b) cross-section with enhanced actins 
 

The inherent feature of our model is the design sensitivity 
analysis, Ref. [4, 6]. The displacements and stresses fields are 
sensitive to the different design parameters, for example, the 
geometrical parameters like lengths of the actins and 
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microtubules, their cross-sectional areas, constitutive 
parameters like Young’s modulus, relaxation time and shape 
parameters.  The design parameters can be grouped into clusters 
representing the cells and into groups of clusters. This gives 
information about the influence of cells, their elements and 
groups of cells. In fact, observing the derivatives we obtain an 
additional tool to evaluate the effects of the 
mechanotransduction. Therefore, we postulate that the design 
sensitivity analysis should be the inherent feature of the analysis 
of cell assemblies.  

 (a) 

(b) 
Figure 2: Elementary tensegrity cell; a) geometry, struts under 
compression – blue and tendons under tension – yellow b) 
stiffening effect of the tensioned cell, load versus displacement. 

3. Mathematical formulation 

We adopt the incremental formulation in the Updated 
Lagrangian frame. The influence of initial stress is exposed via 
including of the geometrical stiffness matrix.  

 
 

Figure 3: Configurations of the considered body motion. 

The general idea of the direct differentiation method is 
shown in Fig. 3. There are given the initial, intermediate and the 
predicted configurations. The design parameters of the structure 
are perturbed at the beginning of its motion and the path of 
motion of the perturbed structure differs from the ideal one.  

The performance functional valid on the body Ω and its 

boundary σΩ∂ depending on displacements q, stresses S and 

design parameter h is of the form 
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Our goal is to find the derivative of the functional with 
respect to the design variable h at time t+∆t. 

The total potential energy of the nonlinear viscous-elastic 
system is of the form  
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where S and E are the II Piola-Kirchhof stress tensor and Green 
Lagrange strain tensor, f, t and u={u,v,w} are body forces, 
boundary tractions and displacements. All of the values are 
determined at time t+∆t in the initial configuration o. In the 
spirit of the UL approach we need to transform the equation to 
the configuration t. Taking the variation of the Eqn. (1) we get 
the virtual work equation of the form 
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Exploiting the following relations, Ref [5] 
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we transform the virtual work equation, Eqn. (2), from the 
reference configuration at time 0 to the reference configuration 
at time t. The equation reads 

( )∫

∫∫

Ω∂

∆+∆+

Ω

∆+∆+∆+

Ω

∆+

Ω∂+

Ω=Ω⋅

t

tt

ttttt

tttttttt
t

tt
t

d

dd

σ

σδ

δδ

ut

ufES

             (5) 

The goal becomes one to obtain the final incremental form of 
the virtual work equation before discretization. Firstly, it is 
employed the incremental decomposition 
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secondly, the following relations for stress increments  

SτSτS ∆+== ∆+ t
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where τtt is the Cauchy stress tensor and finally the strain 
decomposition into its linear and nonlinear parts 
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where ∆u’ is the vector of the increment of the displacements 
derivatives with respect to Cartesian coordinates and AA, are 
the linear and nonlinear operators as follows 
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When substituting the relations, Eqns. (6, 7, 8) into the virtual 
work equation, Eqn. (5) we obtain 
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The equation above should be solved iteratively, however, we 
assume that the equation is fulfilled precisely at time t and all 
iterations are already done. We obtain the following form of the 
incremental virtual work equation 
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We employ the finite element approximation  

qBuq*u ∆=∆∆=∆ '', L                                                      (12) 

where * is the set of shape functions and ∆q is the increment of 
nodal displacements. Let’s consider the following set of 
equalities 
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where τtt is the Cauchy matrix and '
LB  and LB  are the 

nonlinear and linear operators. 
 

















=

τ

τ

τ

τ
t

t

t

t

t

t

,    

















=

zz
t
t

yz
t
tyy

t
t

xz
t
txy

t
txx

t
t

t

t

σ
τσ
ττσ

τ                (14) 

We obtain the following discretized form of the virtual work 
equation 
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Now, our goal is to calculate the design derivatives of the 
performance functional, Eqn. 1. 

Let’s assume that the stresses and the displacements depend 
on the design variable h. Therefore, we can differentiate the 
equation of equilibrium with respect to the design variable h as 
follows 
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The stress increment depends on the total stress at time t, strain 
increment and the design variable, therefore, the definition of 
the constitutive tangent is as follows 
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Differentiating the stress increment we obtain 
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Employing the definition of the constitutive tensor and the finite 
element discretization we obtain the form of the stress 
increment derivative 
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Substituting the stress derivative increment into the Eqn. (16)  
the equation for displacement design derivatives is obtained 
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In short, the design sensitivity equation takes the form 
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On the right hand side of the Eqn. (21) we have the derivative 
of the loading increment with respect to the design parameter 
and the derivative of internal force increment with respect to the 
design parameter. To complete the algorithm, we need to make 
two steps, firstly, accumulate the displacement and the stress 
design derivative  
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and secondly, calculate the derivative of the performance 
functional 
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The constitutive model is visco-elastic such as the stress 
increment depends on total stress S, the shear modulus (G), the 
bulk modulus (K) and the strain increment ∆E as follows 
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where t is the time and λi are the relaxation times of the 
particular parallel dampers. The Eqns. (24) describe the 
generalized Maxwell model.  

4. *umerical aspects 

The parallel version of the program includes the solver 
MUltifrontal Massively Parallel Solver, MUMPS [2, 3]. We use 
the Newton-Raphson technique for solving the equation of 
equilibrium, Eqn. (15). The sensitivity algorithm creates 
additional right hand sides, Eqn. (21). We need to solve so 
many right hand sides as the design variables. The design 
sensitivity equation is solved using the triangularized form of 
the last stiffness obtained in the last iteration loop. 

5. *umerical examples 

5.1. Scratch appearance 

We consider a honeycomb pattern of the single layer cell 
matrix, Fig. 4. 
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(a) 

 (b) 
Figure 4: Matrix of elementary cells: a) top view b) axonometry 
and a corner detail. 
 

We are assuming the same data for each single cell as in the 
Section 2. The layer of cells can slide and is fixed on its right 
side preventing rigid body motions, Fig. 4. It is loaded with the 
concentrated forces on the left side, each concentrate force is 
100.0d-04N. We will assume that the tissue is scratched after 
0.1 sec of the loading process. We will observe the sensitivity 
fields of the displacements with respect to the design variables 
such as: we have 3 cells in which all microtubules can change 
simultaneously their lengths. The displacement field and the 
design sensitivity field are shown in Fig. 5. The displacement 
sensitivity field is shown in Fig. 6. 

 
Figure 5: Beginning of the process, displacements field. 

 
 
Figure 6: Beginning of the process, design sensitivity field 
 

We may note that the most sensitive places in the layer are 
in the neighbourhood of the supposed to be perturbed cells. The 
sensitivities of the system are shown at the beginning of the 
scratch appearance, Fig. 7(a) and at the end of its development, 
Fig. 7(b). 

(a) 

 (b) 
Figure 7: Process development; a) beginning of scratch 
appearance, b) end of the process 

 
We observe that at the beginning of the scratch appearance 

the most sensitive places are again in the neighbourhood of the 
chosen cells. However, the picture becomes different at the end 
of the process. The DSA gradients are becoming regularly 



CMM-2011 – Computer Methods in Mechanics 9–12 May 2011, Warsaw, Poland 

distributed on left side of the scratch. It means that the chosen 
cells have stopped to be the most important. The perturbation of 
the design parameters in the chosen cells makes similar effects 
in entire structure on left side and the gradients are of range 
higher. This means that the structure approaches failure. 

5.2. Holes and slits 

Let us consider a tissue made of 10000 elementary cells. We 
will observe the sensitivities and we will demonstrate that the 
model can catch the effect of the stress concentrations.  

The boundary conditions and the loading are the same as in 
the structure presented above. We will consider the tissue with a 
punched hole and a slit. The displacement fields are shown in 
Fig. 6. 

(a) 

(b) 

(c) 
 
Figure 6: Displacement fields; a) ideal tissue, b) hole, c) slit 
 

We observe that the displacement fields are perturbed 
around the openings what demonstrates the applicability of the 

model and the reticular medium to describe the continuous 
tissue. 

 

 (a) 
 

 (b) 
 

Figure 7: Stress concentrations a) hole b) slit 
 

 
 
Figure 8: Design sensitivity field, ideal system  
 

The stress concentrations in the hole and the slit are shown 
in Fig. 7. The stresses are significantly higher at the tip of the 
slit than around the hole. 

The considered design sensitivity fields are shown in Fig. 8. 
The design variables are defined as the sum of the lengths of the 
microtubules in 4 cells. The cells are easily visible in Fig. 8. 

When comparing the maximum sensitivities we note that 
the less sensitive to the defined set of the design parameters is 
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the ideal system (Fig. 8) and the most sensitive is the system 
with the slit (Fig. 10). The system with the slit is moderately 
sensitive, Fig. 9. 
 

 
Figure 9: Design sensitivity field, hole  
 

 
Figure 10: Design sensitivity field, slit 

6. Final remarks 

We have presented the implemented design sensitivity 
algorithm valid for nonlinear path dependent systems. The 
application of it is the computational systems biology. We have 
described numerical aspects of the implementation with parallel 

multifrontal solver. We have shown a numerical example and 
possible scenarios of application of the presented theory. The 
resulting computer program will serve as a physical solver of an 
agent based system, Ref [7]. 
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