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Abstract

The paper concerns modeling of intersections of shell structures using our 9-node quadrilateral shell element with 6 dofs/node, i.e
including the drilling rotation, of [1]. The element is derived for the Reissner’s kinematics from the potential energy functional
extended by the Rotation Constraint applied by the penalty method. To avoid the membrane and transverse shear locking, the Assumed
Strain method is used in the form described in detail in [1]. The formulation is based on the Green strain and is applicable to large
strains and rotations. Two nonlinear numerical benchmarks are described: one with shell intersections (C-beam) and the other with
drilling moment loading (L-shaped plate). They prove very good accuracy of our element, comparing to several reference elements.
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1. Introduction

In computational mechanics of plates and shells, it is impor-
tant that rotational and translational degrees of freedom of inter-
secting elements were properly coupled. Theoretically, the shell
elements with 6 dofs per node fulfill this requirement, but a lot
depends also on a formulation and implementation of a finite el-
ement, in particular, of the part related to the drilling rotation.
In this paper, we verify this feature of our element using some
selected benchmarks.

2. Extended shell equations

We use a two-field extended functional including rotations,

F2(χ,Q)
.
=

∫
B

W(FT F) dV + FRC + Fext, (1)

where W is the strain energy density. The Rotation Constraint
(RC) skew(QT

0 F0) = 0 is applied as the penalty term,

FRC
.
=

∫
B

γ

2
skew(QT

0 F0) · skew(QT
0 F0) dV, (2)

where γ ∈ (0,∞) is the regularization parameter, see [2]. For
shells, only the drilling rotation part of the RC is retained.

The position vector of an arbitrary point of a shell is defined
by the Reissner hypothesis,

x(ζ) = x0 + ζ Q0t3, (3)

where x0 is the position of the reference surface and Q0 is a
rotation tensor constant over ζ. Besides, t3 is the shell director
and h is the initial shell thickness. In the initial configuration,
Q0 = I.

Denote by ψ the canonical rotation pseudovector. Then,
the rotation tensor Q0 ∈ SO(3) is parameterized as follows

Q0(ψ)
.
= I + sinω

ω
ψ̃ +

1− cosω

ω2
ψ̃2, (4)

where ω = ∥ψ∥ =
√
ψ ·ψ ≥ 0 and ψ̃ .

= ψ × I.

The Green strain tensor in the local Cartesian basis at the el-
ement’s center {tck} is obtained on use of

E .
=

1

2
(RT

0c FT F R0c − I), (5)

where R0c ∈ SO(3) is generated of the vectors tck, see [1].
For the Reissner’s kinematics, the Green strain can be approxi-
mated linearly over the thickness, i.e. E(ζ) ≈ ε + ζκ. An-
alytical integration over the thickness splits the shell strain en-
ergy density (per unit area of the reference surface) as follows:
Wsh = W0 +W1, where

W0 = h
[
1
2
λ (trε)2 +G tr(ε2)

]
, (6)

W1 =
h3

12

[
1
2
λ (trκ)2 +G tr(κ2)

]
. (7)

Note that W0 consists of the membrane and transverse shear
energy while W1 of the bending and twisting energy.
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Figure 1: Sampling points of 9-node shell element: a) ε11, ε13
b) ε22, ε23 c) ε12, κ12

3. Formulation of our 9-node shell element

To avoid the membrane and transverse shear locking, we use
the two-level strain approximations, which consist of sampling
strain components at certain points and extrapolating these val-
ues over the element. This technique is called the Assumed Strain
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(AS) method, and the variants of it described in the literature dif-
fer in the components which are sampled, the location of sam-
pling points, and the extrapolation functions. In our 9-node shell
element with drilling rotation of [1], designated as 9-AS, we use
three sets of sampling points shown in Fig.1, where a =

√
1/3

and b =
√

3/5. The element is analytically integrated over the
thickness while the 3× 3 Gauss rule is used in the lamina.

4. Numerical benchmarks

In this section, we present numerical results for our 9-node
element with drilling rotation designated as 9-AS. For compar-
ison, we use the following 9-node elements: MITC9 of Adina,
S9R5 of Abaqus and CAMe9 of [3].

4.1. Channel section cantilever

A C-beam is fully clamped at one end and loaded by a verti-
cal force P at the other, see Fig.2. A web and flanges of the beam
intersect at 90 degrees so the shell elements with 5 dofs/node
cannot be used. The data is as follows: E = 107, ν = 0.333.
Results of calculations are shown in Fig.3 and we see that the
curves by our 9-AS element and the MITC9 element are close.
For reference, the solution by the 16-node CAMe16 element of
[4] also is included. The solution by the S9R5 element is too soft.
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Figure 2: C-beam. Geometry and deformed configuration
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Figure 3: C-beam. Nonlinear solutions

4.2. L-shaped plate loaded by drilling moment

The L-shaped plate is clamped at one end and the drilling
moment M is applied at the other, see Fig.4. The data is as fol-
lows: E = 71240, ν = 0.31, h = 0.6. The drilling moment is
applied using a layer of ’stiff’ elements obtained by multiplying
the Young’s modulus by 105.

The nonlinear solutions are shown in Fig.5 and we see that
our 9-AS element gives very accurate results comparing to 3-
node Timoshenko beam. The MITC9 and S9R5 elements fail

in this test. For reference, the solution by the 9-node CAMe9
element of [3] is also included.
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Figure 4: L-shaped plate. Initial and deformed shapes
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Figure 5: L-shaped plate. Nonlinear solutions up to 4π

5. Conclusions

The nonlinear benchmarks prove that the rotational and trans-
lational degrees of freedom of the 9-AS element are properly
coupled. Hence, our 9-node Assumed Strain shell element with
drilling rotation is a reliable tool which can be applied to a
broader range of shell problems.
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