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The main objective of the presented study is an evaluation of the effectiveness of various methods for
estimating statistics of rotor-shaft vibration responses. The computational effectiveness as well as the
accuracy of statistical moment estimation are essential for efficient robust design optimization of the
rotor-shaft systems. The compared methods include sampling techniques, the perturbation approach, the
dimension reduction method and the polynomial chaos expansion method. For comparison, two problems
of the rotor-shaft vibration analysis are considered: a typical single-span rotor-shaft of the eight-stage
centrifugal compressor driven by the electric motor and a large multi-bearing rotor-shaft system of the
steam turbo-generator. The most important reason for the observed scatter of the rotor-shaft vibration
responses is the inherently random nature of residual unbalances as well as stiffness and damping properties
of the journal bearings. A proper representation of these uncertain parameters leads to multidimensional
stochastic models. It was found that methods that provide a satisfactory balance between the estimation
accuracy and computational effectiveness are sampling techniques. On the other hand, methods based
on Taylor series expansion in most of the analyzed cases fail to approximate the rotor-shaft response
statistics.

Keywords: stochastic moment estimation, Latin hypercube sampling, polynomial chaos expansion, rotor-
shaft system, lateral vibration analysis.

1. INTRODUCTION

In exploitation of rotating machines some of the observed phenomena are considered to be par-
ticularly undesired from the viewpoint of effectiveness and safety. Excessive stress concentrations
and rubbing effects occurring between stators and rotors attached to flexible shafts subjected to
lateral vibrations can be given as examples of such a detrimental behavior. The modern, responsible
and heavily affected rotating machines must assure possibly high level of reliability, durability and
safety in operation. This is why their designs have to be performed very thoroughly in order to ob-
tain relatively small magnitude of unavoidable dynamic excitation, e.g., due to residual unbalance,
gas-pressure forces or electromagnetic forces.

While aiming at realistic modeling of rotor-shaft systems the actual stochastic nature of impor-
tant model parameters should be taken into account. The main objective of the presented study
is to investigate methods that allow for efficient scatter estimation of the rotor-shaft vibration re-
sponses. The scatter is basically caused by inherently random rotor-shaft residual unbalances and
by uncertain journal bearing parameters. Evaluation of mean values as well as variances of the
responses of interest allows not only to assess a typical performance of the rotating machine, but
also its sensitivity with respect to parameter imperfections. Efficient methods of statistical moments
estimation are a crucial component of robust design optimization (RDO) algorithms. For a compre-
hensive survey of RDO formulations and solution techniques one can reference e.g., [1, 7, 25]. The
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goal of the rotor-shaft robust design optimization is to find the optimal design that is not sensitive
with respect to parameter imperfections even when the rotor-shaft is subjected to considerable
bending or torsional resonant vibrations.
As mentioned, in the presented paper feasibility of various methods to compute statistical mo-

ments of the rotor shaft vibration responses is examined. The investigated methods include sampling
techniques, i.e., the classical Monte Carlo as well as Latin hypercube sampling, the Taylor series
expansion method, the so-called dimension reduction methods proposed by Xu and Rahman [27]
and the polynomial chaos expansion (PCE) method [2, 4]. It must be emphasized that problems
concerning the propagation of uncertainty in numerical analysis of complex systems have already
been addressed by many authors in numerous papers, see, e.g., [5, 6, 11, 20]. However, these is-
sues do not seem to have been investigated for the rotor shaft systems where the stochastic model
is typically represented by a big number of random variables describing residual unbalances and
bearing properties.
The paper consists of four main sections. In Sec. 2 each of the studied scatter analysis techniques

is shortly described. Section 3 introduces the employed hybrid mechanical model of the rotor-shaft
system, which thanks to its high computational efficiency is particularly convenient for stochastic
analyses. Finally, in Secs. 4 and 5 the effectiveness of the selected methods for statistical moment
estimation is compared using two problems of the rotor-shaft vibration analysis. The first example
deals with a typical single-span rotor-shaft of the eight-stage centrifugal compressor driven by an
electric motor. In the second example a model of a large multi-bearing rotor-shaft system of the
steam turbo-generator is considered.

2. STATISTICAL MOMENT ASSESSMENT

It is fairly typical in mechanical and civil engineering that some quantities which describe a struc-
tural system and applied loads should be modeled as random variables, X1,X2, . . . ,Xn. They are
called the basic variables and constitute a random vector X whose samples x = [x1, x2, . . . , xn]

T

belong to the Euclidean space. In the space X the probability measure is defined by the joint
probability density function (PDF) fX(x) of the random vector X. Let a random variable Y , e.g.
a rotor-shaft vibration response, be a scalar-valued function of the basic variables in the form:

Y = h(X). (1)

In the current study we focus on estimating the mean value µY and the variance Var(Y ) = σ2Y of
Y , which are given, respectively, by:

µY = E[Y ] =

∞∫

−∞

h(x)fX(x) dx, (2)

σ2Y = E[(Y − µY )
2] =

∞∫

−∞

[h(x) − µY ]
2fX(x) dx. (3)

The following methods for computing the above moments are investigated:

2.1. Simulation methods

Simulations methods employ samples of basic random variables X to assess the values of µY and
σ2Y defined by (2) and (3). The commonly used unbiased estimators are formulated as follows:

µY ≈ Y =
1

N

N∑

i=1

Y (i) =
1

N

N∑

i=1

h(X(i)), (4)
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σ2Y ≈ s2 =
1

N − 1

N∑

i=1

(Y (i) − Y )2 =
1

N − 1

N∑

i=1

[h(X(i))− Y ]2. (5)

Realizations x(i), i = 1, . . . , N , of the random vector X are drawn from the distribution of X. The
simulation methods differ mainly by the way the samples are obtained. One may distinguish two
major sampling techniques: random sampling (RS) also known as Monte Carlo sampling and de-
scriptive sampling [19]. Under some assumptions, the so-called Latin hypercube sampling (LHS) [14]
can be classified as a descriptive sampling technique. In the performed study the efficiency of RS
as well as LHS are examined.

2.2. Taylor series expansion method

An alternative method of estimating statistical moments of random functions is based on expanding
these functions into Taylor series around the mean values of random variables, see, e.g., [8]. In the
expansion the terms of order higher than two are usually neglected and the stochastic description
of variables is given only by the vector of mean values and the covariance matrix. Contrary to
sampling techniques that reduce to computing the random function values for many realizations of
random variables the major element of the Taylor series expansion method is sensitivity analysis,
i.e., computing gradients and higher order derivatives of the functions of interest.
It can be shown that in the case of first order expansion the expectation and the variance of the

random function h(X) is approximated, respectively, by:

E[h(X)] ≈ h(µX), (6)

Var[h(X)] ≈ ∇hT(x)
∣∣∣
x=µX

CX∇h(x)
∣∣∣
x=µX

, (7)

where ∇h(x)
∣∣
x=µX

is the gradient of function h computed at mean value point µX, and CX is the

covariance matrix of X with elements Ci,j=Cov(Xi,Xj)=ρ(Xi,Xj)σXi
σXj
, i, j = 1, . . . , n, where

ρ(Xi,Xj) is the correlation coefficient.
Keeping the second order terms of the Taylor expansion of h(X) the following expected value

approximation is obtained:

E[h(X)] ≈ h(µX) +
1

2

n∑

i=1

n∑

j=1

∂ 2h(x)

∂xi∂xj

∣∣∣
x=µ

X

ρij σXi
σXj

. (8)

The second order expression for variance requires information on third and fourth order central mo-
ments of random variables. Unfortunately, in design practice such a detailed stochastic description
is often not available; therefore, the first order approximation, Eq. (7), is usually adopted.

2.3. Dimension reduction method

The dimension reduction method (DRM), see [17, 27], is a relatively new technique of evaluating
statistical moments of random functions. In recent years a number of papers were published com-
paring DRM with other methods [6, 11] and evaluating its feasibility for robust design optimization
and structural reliability analysis problems [3, 10, 12, 13]. DRM is based on expanding the random
function into Taylor series around mean values of random variables. However, contrary to the ap-
proach described in Subsec. 2.2, DRM does not require computation of partial derivatives. As it
is shown in [27], the method allows for significant reduction of computational cost with respect to
full n-dimensional numerical integration of Eqs. (2) and (3).
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Using the dimension reduction method, the multivariate function h(X) is approximated by a sum
of less dimensional functions depending only on s < n variables with the other variables fixed to
their mean values. From the point of view of computational efficiency the two versions of the method
are particularly attractive. These are the univariate dimension reduction (UDR) and the bivariate
dimension reduction (BDR) methods given, respectively, by the following expressions:

ĥ(1)(X) ≡

n∑

i=1

h(µ1, . . . , µi−1,Xi, µi+1, . . . , µn)− (n− 1)h(µ1, . . . , µn), (9)

ĥ(2)(X) ≡
∑

i1<i2

h(µ1, . . . , µi1−1,Xi1 , µi1+1, . . . , µi2−1,Xi2 , µi2+1, . . . , µn)

− (n − 2)
n∑

i=1

h(µ1, . . . , µi−1,Xi, µi+1, . . . , µn) +

(
n− 1

2

)
h(µ1, . . . , µn), (10)

where µi is the mean value of random variable Xi. It can be shown, see [27], that in the case of
UDR the approximation error is contributed from the interaction effects among variables and in
the case of BDR the error includes only contributions of terms of dimensions ‘three’ and higher.
The l-th moment of the random function h(X) is defined as:

ml = E[hl(X)] =

∫

Rn

hl(x)fX(x) dx. (11)

Introducing the function z(X) = hl(X), Eq. (11) can be expressed in an equivalent form:

ml = E[z(X)] =

∫

Rn

z(x)fX(x) dx. (12)

Assuming statistical independence of the random variables and using formulae (9) and (10) the
univariate and bivariate approximations of the l-th moment are as follows:

ml≈E[ẑ(1)(X)]=

n∑

i=1

∞∫

−∞

z(µ1, . . . , µi−1, xi, µi+1, . . . , µn)fXi
(xi)dxi−(n− 1)z(µ1, . . . , µn), (13)

ml ≈ E[ẑ(2)(X)] =
∑

i1<i2

∞∫

−∞

∞∫

−∞

{
z(µ1, . . . , µi1−1, xi1 , µi1+1, . . . , µi2−1, xi2 , µi2+1, . . . , µn)

×fXi1
(xi1)fXi2

(xi2)
}
dxi1dxi2

− (n− 2)
n∑

i=1

∞∫

−∞

z(µ1, . . . , µi−1, xi, µi+1, . . . , µn)fXi
(xi)dxi

+
(n− 1)(n − 2)

2
z(µ1, . . . , µn), (14)

where fXi
(xi) is PDF of the i-th random variable. If the random variables are stochastically de-

pendent, first they should be transformed into the space of independent standard normal variables
using the Rosenblatt transformation [18] or when only marginal distributions of variables and the
correlation matrix are known by means of an approximate Nataf transformation [15]. Having com-
puted the first moments m1 and m2, the mean value and variance of the random function h(X) are
given by

E[h(X)] = m1, Var[h(X)] = m2 −m
2
1. (15)
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In order to assess the value of a statistical moment ml using equations (13) and (14) it is necessary
to perform numerical integration of the functions at most one- and two-dimensional, respectively.
If the random variables are normally distributed, then Gauss-Hermite quadratures can be used
(integration with the weight function e−x

2

over the unbounded interval) and in case of uniform
distribution Gauss-Legendre quadratures can be directly employed, see [16]. For other probability
distribution functions the most efficient integration approach consists in constructing dedicated
quadrature rule, where the nodal points and the corresponding weights are selected according to
a given PDF taken as the weight function. A description of such a procedure can be found in,
e.g., [11, 17, 27].
The dimension reduction methods compared with standard numerical integration scheme offer

a significant improvement in terms of computational efficiency, especially for problems with many
variables. Assuming r integration points (nodes) for each direction, nr+1 function evaluations are
required to assess the value of an integral using the UDR method and [n(n − 1)/2] r2 + nr + 1
evaluations when using the BDR method. For example, if n = 10 and r = 4, then with respect to
n dimensional numerical integration 1377 and 25575 times less function evaluations are needed to
perform integration by BDR and UDR methods, respectively.
It should be stressed that UDR and BDR methods are not the equivalent of the first and second

order Taylor expansion methods. They include, respectively, all the univariate and bivariate terms
of any order, which is not the case of the methods described in Subsec. 2.2.

2.4. Polynomial chaos expansion method

The presentation of the method closely follows the one given by Blatman and Sudret in [2]. Pro-
vided the variable Y = h(X) has a finite variance, it can be expanded onto the basis of so-called
“polynomial chaos” (PC) as follows, see [4, 21]:

Y = h(X) =
∑

α∈Nn

aαψα(X), (16)

where aα are the unknown deterministic coefficients and ψα are the multivariate polynomials,
orthogonal with respect to the joint PDF fX(x), which reads

E[ψα(X)ψβ(X)] = δα,β , (17)

where δα,β = 1, if α = β and 0 otherwise.
Assuming independence of the random variablesXi, i = 1, . . . , n, the probability density function

of the random vector X can be expressed as a following product of respective PDFs:

fX(x) = fX1
(x1)fX2

(x2) · · · fXn(xn). (18)

In the case of correlated variables, they should be first transformed into the space of independent
standard Gaussian variables. Taking advantage of the form of Eq. (18), the polynomials ψα can be
then constructed as a product of n univariate orthogonal polynomials

ψα(X) = H(1)
α1

(X1)H
(2)
α2

(X2) · · ·H
(n)
αn

(Xn). (19)

It can be seen that elements of vector indices α = {α1, α2, . . . , αn} of the multivariate orthogonal
polynomials ψα correspond to degrees of univariate polynomials constituting the above product.

Denoting by DXi
the support of the random variable Xi, the orthogonal polynomials {H

(i)
k
, k ≥ 0}

satisfying

E[H
(i)
k (Xi)H

(i)
l (Xi)] =

∫

DXi

H
(i)
k (x)H

(i)
l (x)fXi

(x)dx = δk,l, ∀(k, l ∈)N2, (20)
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can be computed using standard algorithms [16]. For standard normal variables the polynomials,
which are orthogonal with respect to this PDF, are the Hermite polynomials expressed as:

H0(x) = 1,

H1(x) = x,

...

Hk+1(x) = xHk(x)− kHk−1(x).

(21)

In practice, for computational efficiency the series in Eq. (16) is truncated after a finite number of
terms. Most often, the polynomials, whose degree |α| is higher than a given degree p, are eliminated
from the series

Y = h(X) ≈
∑

|α|≤p

aαψα(X), (22)

where |α| =
n∑

i=1
αi. The number of aα coefficients that have to be computed is equal to

M =

(
n+ p

p

)
. (23)

It is estimated, see [2], that the PC approximation with p = 2 is usually sufficiently accurate for
assessing the first two statistical moments of functions of random variables.
The unknown coefficients are computed either by the so-called projection approach or regression

approach. Due to the high computational cost of the first approach, especially when dealing with
implicit functions of random variables given by numerical models of structural systems, only the
regression approach is described below.
The method based on the concept of linear regression consists in fitting an a priori assumed

response surface (here it is the truncated PC expansion) to the actual functional relationship given
only by its values in a sample of experimental points. Eq. (22) can be written in an equivalent
matrix form:

h(X) ≈ Hp(X) =
∑

|α|≤p

aαψα(X) = aTψ(X), (24)

where a is the vector of coefficients {aα, 0 ≤ |α| ≤ p} and ψ gathers the basis polynomials
{ψα, 0 ≤ |α| ≤ p}. Based on the results of N numerical experiments {xi, yi}, i = 1, . . . , N , where
yi = h(xi), the coefficients in Eq. (24) are computed by minimizing a norm of residuals yi−Hp(xi)
usually given by:

S(a) =

N∑

i=1

[
h(xi)− aTψ(xi)

]2
. (25)

The solution vector â is expressed by the well-known formula:

â = (ΨTΨ)−1ΨTy, (26)

where y = {y1, . . . , yN} is the vector of computed function values in the experimental points and
the matrix ΨN×M has the form:

Ψ =



ψα1

(x1) · · · ψαM
(x1)

...
. . .

...

ψα1
(xN ) · · · ψαM

(xN )


 . (27)
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In order to make this problem well-posed the matrix ΨTΨ must be well conditioned. It is then
necessary that the employed design of experiments contains a sufficient number of points, preferably
significantly more than M .
It is easy to verify, see Eq. (23), that the number of coefficients in expansion (22) grows rapidly

with the number of variables n and the polynomial degree p. Therefore, in order to reduce the
computational burden and to improve the approximation quality of the method, Blatman and Su-
dret proposed in [2] an adaptive sparse polynomial chaos expansion. In their approach the iterative
algorithm allows to eliminate these of the expansion coefficients which are not significant in ap-
proximating the function h(X) leading to an optimal polynomial representation. A version of the
sparse PC expansion algorithm, implemented here for the purpose of the current study, was used
for assessing statistical moments of the rotor-shaft vibration response.
Applying the assumption of the stochastic independence of random variables X and the orthog-

onality of base polynomials ψα, see Eqs. (18)–(20), it is easy to show that the mean value and
variance of h(X) are given by:

E[h(X)] ≈ E[Hp(X)] = a0, (28)

Var[h(X)] ≈ Var[Hp(X)] =
∑

0<|α|≤p

a2α, (29)

so they are immediately available after obtaining the expansion coefficients aα.

3. DESCRIPTION OF THE HYBRID MECHANICAL MODEL
OF THE ROTOR-SHAFT SYSTEM

In order to obtain sufficiently reliable results of numerical simulations together with a reasonable
computational efficiency, the vibrating rotor-shaft system of a rotor machine is usually modeled
by means of the one-dimensional finite elements of the beam-type. Nevertheless, such models are
characterized by relatively high number of degrees of freedom in the range between hundreds and
even thousands, which may substantially increase the computational cost of sampling methods.
Thus, for such large finite-element models proper algorithms reducing number of degrees of freedom
have to be employed in order to shorten computer simulation times. One has to remember that such
reductions of degrees of freedom are troublesome and they can lead to computational inaccuracies.
In order to avoid the abovementioned drawbacks of the finite element approach and to maintain
the obvious advantages of this method, in this paper, similarly as in [22–24], the dynamic analysis
of the entire rotating system is performed by means of the one-dimensional hybrid structural
model consisting of continuous visco-elastic macro-elements and discrete oscillators. This model is
employed here for eigenvalue analyses as well as for numerical simulation of lateral vibrations of the
rotor-shaft. In the model successive cylindrical segments of the stepped rotor-shaft are substituted
by flexurally and torsionally deformable cylindrical macro-elements of continuously distributed
inertial-visco-elastic properties. A typical i-th continuous visco-elastic macro-element is presented
in Fig. 1.
In this figure, symbols Ai, Ii and I0i, i = 1, 2, ..., ne, denote respectively the cross-sectional area,

the diametral and polar geometric moment of inertia and ne is the total number of macro-elements
in the considered hybrid model. The transverse and torsional external loads continuously distributed
along the macro-element length li are respectively described by the two-argument functions pi(x, t)
and qi(x, t), where x is the spatial coordinate and t denotes time. With an accuracy that is sufficient
for practical purposes, in the proposed hybrid model of the rotor-shaft system, some heavy rotors
or coupling disks can be represented by rigid bodies attached to the macro-element extreme cross-
sections, as shown in Fig. 1. Here, symbols mi, Ji and J0i denote respectively the mass and the
diametral and polar mass-moments of inertia of this rigid body. Each journal bearing is represented
by a dynamic oscillator of two degrees of freedom, where apart from the oil-film interaction also
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Fig. 1. Flexurally and torsionally deformable continuous visco-elastic macro-element.

the visco-elastic properties of the bearing housing and foundation are taken into consideration.
This bearing model makes possible to represent with a relatively high accuracy kinetostatic and
dynamic anisotropic and anti-symmetric properties of the oil-film in the form of constant or variable
stiffness and damping coefficients. An example of such a hybrid model of the centrifugal compressor
rotor-shaft is presented in Fig. 2. The rotor-shaft is supported on two journal bearings, where the
additional support in its mid-span caused by the aero-dynamic cross-coupling effect is also taken
into consideration. The complete mathematical formulation and solutions for such hybrid models
of the rotor-shaft systems can be found in [22–24].

Fig. 2. Hybrid mechanical model of the compressor rotor-shaft.

For relatively small magnitude of the rotor-shaft system unbalance, e.g., due to residual static
and dynamic unbalance of the shaft segments and of the rotor-disks, the coupling effect between
the torsional and bending vibrations is usually negligible, which has been demonstrated in [22]
and in other publications written by numerous authors. Moreover, since in majority of fluid-flow
rotating machinery operating in steady-state conditions the fluctuating components of dynamic
torques transmitted by their rotor-shaft systems are very small, in the carried out considerations
only flexural excitation causing bending vibrations due to unbalances is going to be taken into
account. Thus, simulations of torsional forced vibrations will not be performed.
In the hybrid model flexural motion of cross-sections of each visco-elastic macro-element of the

length li is governed by the partial differential equations derived using the Timoshenko and Rayleigh
rotating beam theory. The motion equation for the visco-elastically supported rotating Rayleigh
beam with a circular cross-section has the following form:

EIi

[
1 + e

(
∂

∂t
− jΩ(t)

)]
∂ 4vi(x, t)

∂ x4
− ρIi

∂ 4vi(x, t)

∂ x2∂ t2
+ jΩ(t)I0i

∂ 3vi(x, t)

∂ x2∂ t

+ ρAi

∂ 2vi(x, t)

∂ t2
+ csi

∂vi(x, t)

∂t
+ ksivi(x, t) = pi(x, t), (30)

where vi(x, t) = ui(x, t) + jwi(x, t), ui(x, t) is the lateral displacement in the vertical direction and
wi(x, t) the lateral displacement in the horizontal direction, j denotes the imaginary number, Ω(t)
is the current average rotational speed of the shaft, i.e., corresponding to its rigid body motion,
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csi and ksi denote respectively damping and stiffness coefficients of the shaft uniform support, e
denotes the retardation time for beam flexural deformation, ρ is the material density and the index
i goes from 1 to ne denoting the total number of macro-elements in the hybrid model. It is to
remark that in the case of the rotating shaft with a circular cross-section the gyroscopic forces
mutually couple in (30) bending vibrations in two perpendicular planes, e.g., in the vertical and
the horizontal one. The same coupling effect is caused by the material damping term dependent on
the rotational speed Ω(t).
Similarly as in [22–24], mutual connections of the successive macro-elements creating the stepped

shaft as well as their interactions with the supports and rigid bodies representing the heavy rotors
are described by equations of boundary conditions. These equations contain geometrical conditions
of conformity for translational and rotational displacements of extreme cross-sections x = Li =
l1 + l2 + . . . + li−1 of the adjacent (i− 1)-th and the i-th elastic macro-elements:

vi−1(x, t) = vi(x, t),
∂vi−1(x, t)

∂x
=
∂vi(x, t)

∂x
. (31)

The second group of boundary conditions are dynamic ones, which in general contain linear,
nonlinear and parametric equations of equilibrium for concentrated external forces, static and
dynamic unbalance forces and moments, inertial, elastic and external damping forces, support
reactions and gyroscopic moments. For example, the dynamic boundary conditions formulated for
the rotating Rayleigh beam and describing a simple connection of the mentioned adjacent (i−1)-th
and the i-th elastic macro-elements have the following form:

Pi(t)−mi

∂ 2vi
∂ t2

+ EIi
∂ 3vi
∂ x3

− ρIi
∂ 3vi
∂ x∂ t2

− EIi−1
∂ 3vi−1
∂ x3

+ ρIi−1
∂ 3vi−1
∂ x∂ t2

+ jΩ(t)ρI0i
∂ 2vi
∂ x∂ t

− jΩρI0,i−1
∂ 2vi−1
∂ x∂ t

= 0,

− Ji
∂ 3vi
∂ x∂ t2

+EIi
∂ 2vi
∂ x2

− EIi−1
∂ 2vi−1
∂ x2

+ jΩ(t)ρJ0i
∂ 2vi
∂ x∂ t

= 0,

(32)

where the arguments of functions vi(x, t) have been omitted for convenience and Pi(t) denotes the
transverse external excitation (if any) imposed in this cross-section in the concentrated form.
Shaft interactions with discrete oscillators representing the shaft supports in journal bearings

are also described by means of the dynamic boundary conditions. Here, similarly as in [23, 24], such
boundary conditions contain anti-symmetrical terms with cross-coupling oil-film stiffness compo-
nents, which couple shaft bending vibrations in two mutually perpendicular planes. In these equa-
tions the stiffness and damping coefficients can be constant or variable, when non-linear properties
of the oil-film are taken into consideration.
In order to perform the analysis of natural elastic vibrations, all the forcing and damping terms

in the equations of motion (30) and in the boundary conditions have been omitted. Then, upon
an application of the variable separation approach to (30) one obtains the following characteristic
equation for the considered eigenvalue problem:

A(ω)B = 0, (33)

where A(ω) is the complex characteristic matrix and B denotes the vector of unknown constant
coefficients in the analytical local eigenfuctions defined in [22] for each macro-element in the hybrid
model. Thus, the determination of natural frequencies reduces to the search for values of ω, for
which the characteristic determinant of matrix A is equal to zero. The bending global eigenmode
functions are then obtained by solving Eq. (33).
The solution for the forced bending vibration analysis has been obtained using the analytical

– computational approach demonstrated in detail in [22–24]. Solving the differential eigenvalue
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problem (33) for the linearized orthogonal system for each i-th macro-element there is applied the
local Fourier solution in the form of following series in orthogonal eigenfunction

vi(x, t) =
∞∑

m=1

Vim(x)ξm(t), (34)

where Vim(x) = Uim(x) + jWim(x), Uim(x) is the lateral eigenfunction component in the vertical
direction and Wim(x) the lateral eigenfunction component in the horizontal direction, j denotes
the imaginary number and ξm(t) are the unknown scalar time functions which play a role of modal
co-ordinates, where m = 1, 2, . . .. According to [22–24], upon a transformation of all excitations
acting on the considered system into the orthogonal base of eigenfunctions Vim(x), this approach
leads to the following set of coupled ordinary differential equations in the modal coordinates ξm(t)
contained in vector r(t)

M0r̈(t) +D(Ω(t))ṙ(t) +K(Ω(t))r(t) = F(Ω2(t),Θ(t)), (35)

where

D(Ω(t)) = D0 +Dg(Ω(t)), K(Ω(t)) = K0 +Kb +Kd(Ω(t)), Θ(t) =

t∫

0

Ω(τ)dτ.

The symbols M0, K0 denote, respectively, the constant diagonal modal mass and stiffness matri-
ces, D0 is the constant symmetrical damping matrix and Dg(Ω(t)) denotes the skew-symmetrical
matrix of gyroscopic effects. Anti-symmetric elastic properties of the journal bearings are described
by the skew-symmetrical matrix Kb. Anti-symmetric effects due to Kelvin-Voigt material damping
model of the rotating shaft are expressed by the skew-symmetrical matrix Kd(Ω(t)) and the sym-
bol F(Ω2(t),Θ(t)) denotes the external excitation vector due to the unbalance and gravitational
forces. The number of equations (35) corresponds to the number of bending eigenmodes taken into
consideration in the range of frequency of interest. These equations are mutually coupled by the
out-of-diagonal terms in matricesD andK regarded as the response-dependent external excitations
expanded in series in the base of orthogonal analytical eigenfunctions. A fast convergence of the
applied Fourier solution enables us to reduce the appropriate number of the modal equations to
solve in order to obtain a sufficient accuracy of results in the given range of frequency. Here, it is
necessary to solve only 10–20 coupled modal equations (35), even in cases of complex mechanical
systems, contrary to the classical one-dimensional beam finite element formulation usually leading
to large numbers of motion equations corresponding each to more than one hundred or many hun-
dreds degrees of freedom (if the artificial and often error-prone model reduction algorithms are not
applied). However, due to the natural, continuous distribution of inertial-visco-elastic properties of
the beam macro-elements the hybrid modeling assures at least the same or even better represen-
tation of real objects. Its mathematical description is formally strict and demonstrates clearly the
qualitative system properties. Thus, the proposed approach is much more convenient for stable and
efficient numerical simulations.
In a general case, i.e., for the variable in time shaft average rotational speed Ω(t) during system

start-ups or run-downs, in order to obtain the system’s dynamic response equations (35) can be
solved by means of a direct integration. However, for the constant shaft rotational speed Ω and for
constant stiffness and damping coefficients of the bearing supports equations (35) become a system
of linear ordinary differential equations with constant coefficients and harmonic external excitation
due to the residual unbalances. Such excitation can be expressed as:

F(Ω2,Ωt) = Q+P(Ω2) cos(Ωt) +R(Ω2) sin(Ωt), (36)

where vectors P(Ω2), R(Ω2) contain the modal components of unbalance amplitudes and vector
Q contains the modal components of the rotor-shaft static gravitational load. Then, in order to
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obtain the system’s steady-state dynamic response, an analytical solution of equations (35) is very
convenient. For the mentioned above harmonic excitation (36) the induced steady-state vibrations
are also harmonic with the same synchronous circular frequency Ω. Thus, the analytical solutions
for the successive modal functions ξm(t) contained in vector r(t) in (35) can be assumed in the
following form:

r(t) = G+C cos(Ωt) + S sin(Ωt), (37)

where vectors C, S contain respectively the modal cosine- and sine-components of forced vibration
amplitudes and vector G contains the modal components of the rotor-shaft static deflection due
to the gravitational load. Then, by intoducing (36) and (37) into (35) simplified for Ω = const.
and mutually grouping together the static terms as well as the dynamic sine and cosine terms, one
obtains the following systems of linear algebraic equations:

K(Ω)G = Q,

(
K(Ω)−Ω2M0

)
C+ΩD(Ω)S = P(Ω2),

(
K(Ω)−Ω2M0

)
S−ΩD(Ω)C = R(Ω2).

(38)

These equations are very easy to solve with respect of the unknown components of vectors C, S
and G. Then, using (37) the modal co-ordinates ξm(t) are determined and by means of the Fourier
solution (34) the steady- state system dynamic lateral response is finally obtained.

4. NUMERICAL EXAMPLE: THE CENTRIFUGAL COMPRESSOR ROTOR-SHAFT

4.1. Model description

The hybrid mechanical model of the considered eight-stage centrifugal compressor rotor-shaft is
shown in Fig. 2. In order to create an adequate geometrical and mechanical representation, the
stepped-rotor shaft of this compressor of the total length 2.8 m and total weight 485 kg has been
modeled by means of ne = 27 continuous macro-elements. All geometrical parameters of the succes-
sive real rotor-shaft segments together with their material constants as well as the average stiffness
and damping coefficients of the oil-film in the bearings of this compressor have been taken from [26].
In the first step of dynamic analysis the eigenvalue problem must be solved in order to obtain

fundamental natural frequencies and the corresponding eigenfunctions of bending and torsional
vibrations. As it follows from the comparison performed for the constant nominal rotational speed
5626 rpm, the shear effect taken into consideration in the case of Timoshenko’s beam theory results
in a little bit smaller natural frequency values than these determined by means of Rayleigh’s beam
model. Here, in the frequency range 0–400 Hz containing the first 10 bending eigenforms, which is
the most important from the engineering viewpoint, the respective differences do not exceed 2%.
The eigenfunctions corresponding to these natural frequencies and determined using both beam
theories respectively overlay each other. According to the above, one can conclude that in this
frequency range an application of Rayleigh’s rotating beam theory seems to be sufficiently accurate
for further simulations of forced vibrations. For the considered compressor rotor-shaft regarded
here as dynamically isolated from the driving motor by means of the low-stiffness elastic coupling
the torsional eigenvalue problem has been solved using the analogous hybrid (discrete-continuous)
model described e.g. in [22]. The obtained in this way the lowest torsional natural frequency values
597.8 and 1212.4 Hz are far away above the fundamental first 10 bending natural frequencies.
Since the dynamic analysis will be carried out not only for steady-state, nominal, out-of-

resonance operating conditions, but also for resonances excited during start-ups and run-downs
of the compressor, the proper numerical simulation for such operation patterns has to be per-
formed. In order to demonstrate this transient dynamic behavior, an exemplary simulation of the
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system switch-on to switch-off operation cycle is briefly described. The cycle consists of the rotor-
shaft start-up from its standstill to the nominal over-critical steady-state operation and of the
rotor-shaft run-down, i.e., back to the standstill. It is assumed that the considered compressor
is driven by an asynchronous motor by means of an elastic coupling, which dynamically isolates
the compressor and the motor rotor-shaft from each other. Thus, the carried out study can be
focused on vibrations of the compressor rotor-shaft only. Since the first torsional natural frequency
of this rotor-shaft is by far higher than its fundamental 10 bending natural frequencies, during the
investigated entire dynamic process flexural deformations of the shaft are predominant and the
shaft torsional dynamic deformations seem to be negligible. According to the above, the rotor-shaft
can be regarded as a torsionally rigid body rotating with a rotational speed gradually varying in
time during start-ups and run-downs. However, the shaft bending vibrations induced by the sys-
tem residual unbalance are taken into consideration. For the assumed residual static unbalances
uniformly distributed along each cylindrical rotor-shaft segment the variable external excitation
pi(x, t) in (30) is expressed by means of the following forcing terms:

pi(x, t) = εiρAiΩ
2(t) sin(Θ(t) + ψi) for 0 < x < li, i = 1, 2, . . . , ne. (39)

For the concentrated static unbalances of each rigid body representing rotor-disks the variable
external excitation Pi(t) in (32) is described in the analogous way:

Pk(t) = εkmkΩ
2(t) sin(Θ(t) + ψk) for x = 0, k = 1, 2, . . . ,K. (40)

In the above formulae εi, εk denote the proper eccentricities caused by admissible manufacturing
errors, ψi, ψk are the respective phase shift angles of the unbalance circumferential location with
respect to the shaft rotation axis, K denotes the total number of rigid disks in the model and the
remaining symbols have been already defined in Fig. 1 and in (35). For the assumed hybrid model
of the investigated compressor rotor-shaft in the frequency range 0–1000 Hz 14 bending eigenmodes
have been considered to solve equations (35) with sufficiently high computational accuracy of the
obtained results.
In Fig. 3 there is presented the time history of the average rotational speed Ω(t) of the rigid-

body motion of the compressor rotor-shaft during start-up, steady-state nominal operation and
run-down. This time history has been obtained by means of simulation of rigid-body rotational
motion of the compressor entire drive system of mass moment of inertia Iz and excited by the
asynchronous motor electro-magnetic torque Te(Ω(t), t) expressed using proper formulae from [9].
Moreover, the drive system is loaded by the retarding torque Tr(Ω

2(t)) caused by aero-dynamic
forces in the compressor stages. Temporary values of these retarding torques are assumed to be
proportional to the square of the current shaft average rotational speed Ω2(t). Thus, the simulation
reduces to numerical integration of the following equation of the system rotational motion:

Iz
dΩ(t)

dt
= Te(Ω(t), t) − Tr(Ω

2(t)) (41)

Fig. 3. Time history of the rotor-shaft average rotational speed during start-up, nominal operation
and run-down.
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performed simultaneously with the numerical simulation of lateral vibrations of the compressor
rotor-shaft system. From Fig. 3 it follows that the duration of start-up from the system rest till
the nominal operation with the rotational speed 5626 rpm is about 10 s, the nominal operation
takes next 5 s and the duration of the run-down is about 13 s. During the start-up and run-down
the compressor rotor-shaft passed through the bending vibration resonance zones corresponding to
the first two eigenmodes of frequencies respectively equal to 59.4 and 62.6 Hz. These eigenmodes
are induced to severe transient resonances by the synchronous excitation due to the unbalances
when the rotor-shaft passes the average rotational speed range between 3500 and 3800 rpm, see
Fig. 3. The resonances result in a significant increase of bending vibration magnitude, which follows
from Fig. 4 demonstrating the system lateral dynamic response corresponding to the variation of
the shaft rotational speed during start-up, steady-state nominal operation and run-down shown
in Fig. 3. Here, the time history of the lateral displacement at the compressor shaft mid-span is
depicted in Fig. 4a and the analogous time history of the transverse force in bearing #2 is shown in
Fig. 4b. Here, the lateral displacement has been finally determined using the Fourier solution (34)
for the proper cross-section x in the i-th macro-element corresponding to the mentioned compressor
rotor-shaft mid-span, where the modal co-ordinates ξi(t) are the result of numerical integration of
equations (35). The bearing transverse force has been determined in the analogous way in the form
of the sum of products of vertical components of the stiffness and damping coefficients multiplied
respectively by differences of vertical displacements and velocities between the shaft cross-section
corresponding to bearing #2 and the vertical displacement and velocity of the bearing housing,
see Fig. 2.

a)

b)

Fig. 4. Time histories of the rotor-shaft response during start-up, nominal operation and run-down:
a) the lateral displacement of the shaft mid-span, b) the transverse force in bearing #2.

As it follows from Figs. 4a and 4b, the passages through these resonances result in very significant
increase of dynamic loading of the compressor rotor-shaft in comparison with the steady-state
response for the nominal operating conditions at the rotational speed 5626 rpm. Each passage
through the resonances causes about 3.6 times greater shaft lateral displacement amplitudes and
about 3 times greater amplitudes of the bearing transverse forces. Such an increase of bending
vibration magnitude must be associated with a probability of rubbing and with an analogous



108 R. Stocki, R. Lasota, P. Tauzowski, T. Szolc

increase of the rotor-shaft material stresses, which can cause dangerous material fatigue upon a
given number of routine successive switch-on to switch-off cycles. This obvious fact substantiates
a necessity of analyzing the rotor-shaft vibrations not only for nominal operating conditions, but
first of all, for the transient operation, i.e., for the resonant states. According to the above, apart
from the nominal, steady-state operation at 5626 rpm, which corresponds to synchronous excitation
frequency 93.8 Hz, the dynamical analysis is carried out for resonant working conditions. Then,
the most severe bending vibrations are induced at the synchronous excitation frequency 58.8 Hz
corresponding to the rotor-shaft rotational speed 3525 rpm.

In the example presented below, which is dedicated to estimation of the statistical moments of
the maximal bending vibration amplitude, the vibration response of the rotor shaft system has to
be evaluated for thousands of realizations of the rotor-shaft parameters: unbalance amplitudes and
their phase shift angles, bearing stiffness and damping coefficients etc. For each set of parameters
the analysis is performed for constant values of the shaft rotational speeds respectively 5626 and
3525 rpm. Thus, the computer simulations of forced bending vibrations are reduced solving equa-
tions (35) for Ω = const. Here, in order to determine system steady-state dynamic responses direct
integration of (35) can be substituted by introducing the analytical solution, which leads to the
straightforward and very effective to solve sets of algebraic equations (38). Similarly, as in the case
of transient bending vibrations excited during start-up and run-down of the compressor, in order to
obtain sufficiently high computational accuracy for steady-state lateral responses the above men-
tioned frequency range 0–1000 Hz containing 14 bending eigenmodes is taken into consideration
for solving equations (38). Here, determination of the rotor-shaft lateral displacements and bearing
vertical force is performed in an identical way as described above for the case of analogous results
obtained by means of integration of equations (35) and depicted in Fig. 4.

4.2. Assessment of statistical moments

The stochastic model of the compressor rotor-shaft contains 64 random variablesX={X1, . . . ,X64},
cf. Sec. 2, representing uncertain nature of residual unbalances and bearing parameters. The stiffness
as well as damping coefficients of the two journal bearings is represented by 16 normally distributed
variables with the coefficients of variation equal to 10% for the stiffness and 15% for the damping
coefficients. It was assumed that the distribution of residual unbalances of the rotor-shaft segments
(εi in Eq. (40)) can be represented by a weighted sum of four principal eigenmodes with the
most probable contribution from the first eigenmode, with the value of the corresponding weight
coefficient up to 0.8, and the contributions from subsequent modes controlled by the maximal values
of their weight coefficients equal to 0.1, 0.08 and 0.02, respectively. Therefore, the weight coefficients
are modeled by uniformly distributed random variables in the ranges (0, 0.8], (0, 0.1], (0, 0.08] and
(0, 0.02]. The random magnitude of the unbalances is obtained by setting the maximal value of such
constructed distribution function to be equal to a realization of log-normal random variable with
the expectation 0.15 mm and the standard deviation 0.02 mm. The remaining random parameters
are: 27 uniformly distributed phase shift angles (ψi in Eq. (40)) in the range 0–2 π, eight uniformly
distributed rotor-disk unbalances (εk in Eq. (40)) in the range 0–1 mm and finally eight uniformly
distributed rotor disk phase shift angles (ψk in Eq. (40)) in the range 0–2 π.

The selected method of modeling the unbalances can be justified by a technological process of
the rotor-shaft manufacturing. The predominant unbalance amplitude distribution of the successive
stepped shaft segments according to the first lateral eigenvibration mode is substantiated by the
machining processes typical for the considered rotor-shaft type. Namely, the rotor-shaft usually
clamped at both ends can be forced to bending vibrations by the cutting tool, when an excitation
of the first eigenmode is the most probable and an excitation of the next eigenmodes seems to
be of a secondary importance. The assumed uniform distribution of phase shift angles of these
unbalances follows from the shaft segment-to-segment machining steps usually set as mutually
independent during the entire cutting process. However, the uniform distribution of the gravity
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center eccentricities together with their phase shift angles of the rotor-disks can be substantiated by
their commonly applied shrink-fit connections with the shaft, which usually requires final balancing
of the entire rotor-shaft system upon its ’on-site’ assembly.

The rotor-shaft vibrational response Y (X), which mean value and standard deviation are to be
estimated, is the maximal vibration amplitude. For the majority of the realizations of the vector
X this maximal lateral rotor-shaft displacement occurs in the mid-span of the rotor-shaft.

In order to establish reference values of the estimated statistics a random sampling with N =
100 000 sample points was performed. The obtained values are Y = 0.4808 mm and s = 0.2616 mm
for the mean and standard deviation, respectively, see Eqs. (4) and (5).

In Fig. 5 there is shown a scatter plot prepared for a 5000 point random subset of the 100 000
point sample. As can be observed, the majority of realizations of uncertain rotor-shaft parameters
lead to moderate displacement magnitudes, however some extreme outlier results may correspond
to displacements as high as 1.7mm. The corresponding histogram presented in Fig. 6 gives some

Fig. 5. The compressor rotor shaft example. Scatter of maximal rotor-shaft lateral vibration amplitude.

Fig. 6. The compressor rotor shaft example. Histogram of maximal rotor-shaft lateral vibration amplitude.
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indication of the kind of probability distribution, the maximal vibration amplitude obeys. The
positively skewed histogram can be well approximated by the Weibull probability density func-
tions.
The correlation coefficients between the maximal vibration amplitude and the random variables

are illustrated in the form of a bar chart in Fig. 7. By examining their values it could be concluded
that there are no random variables significantly correlated with the rotor-shaft response. Lacking
statistically dominating relations it is not a straightforward task to eliminate some of the variables
from the stochastic model. On the other hand, several random variables seem to influence the
output more than the other. These are the maximal rotor-shaft residual unbalance and the direct
vertical stiffness and damping coefficients of the journal bearings. Nevertheless, in the performed
comparative study the complete set of 64 random variables is taken into account.

Fig. 7. The compressor rotor shaft example. Correlation coefficients between random variables
and the rotor-shaft response.

The methods based on the Taylor series expansion, described in Subsecs. 2.2 and 2.3, entirely
failed to estimate the mean and standard deviation of the vibration amplitude. For example, the
first order estimation of the mean, see Eq. (6), leads to Y = 2.78 mm, i.e., to the value many times
larger than the reference one. Neither the second order expansion nor the univariate or bivariate
reduction approaches provide a substantial improvement of the first order results.
A reason for this unsatisfactory performance may be the way the residual unbalances of the rotor-

shaft are modeled. It was assumed that the phase shift angles of the unbalanced circumferential
location with respect to the shaft rotation axis are modeled by independent uniformly distributed
random variables. Therefore, accounting for the number of rotor-shaft segments, it is extremely
unlikely that all the phase shift angles of the rotor-shaft unbalances as well as rotor-disk unbalances
take the same values. This, however, is the case for the first order Taylor series expansion approach.
All the unbalances are in phase with the phase shift angles equal to the same expected value π. Since
the first symmetrical eigenmode determines distribution of residual unbalances, harmonized phase
shift angles are the source of significant excitation leading to excessive lateral vibrations. Below,



Scatter assessment of rotating system vibrations. . . 111

only the results of sampling methods, see Subsec. 2.1, and sparse PCE technique, see Subsec. 2.4,
are presented.

In order to assess the estimation error of the methods employing random sampling and Latin
hypercube sampling, the mean value and standard deviation of the rotor-shaft response were com-
puted by RS and LHS for different sample sizes ranging from N = 120 to N = 2400. For both
sampling method and for each N the estimation was performed 300 times using independently gen-
erated samples. This allowed to obtain the estimation error statistics, i.e., the mean and standard
deviation. The results are shown in Figs. 8 and 9. As it can be seen, in the considered example
there is no qualitative difference between RS and LHS and neither of them is visibly superior
with respect to the other. It is interesting to observe that even for relatively small samples, i.e.
N = 340 < 6n, the mean percentage estimation error is less than 3.5%, which seems to be accept-
able for the purpose of robust design optimization. According to Eq. (23) assuming the degree of
polynomials p = 2 and for n = 64 random variables, there are 2145 unknown coefficients in the
truncated polynomial chaos equation (24). The coefficients have to be determined by the linear
regression approach described in Subsec. 2.4. Obviously, the solution (26) depends on the design
of experiments used to fit the PC response surface. In the performed study LH based designs of
experiments were used for this purpose. In consequence, due to the random nature of such a design,
by repeating the analysis for various Latin hypercubes it was possible to obtain estimation error
statistics. Two cases were considered: The first one adopting the LH design with N = 2150 experi-
mental points, which is slightly more than the number given by Eq. (23), and the second case with
N = 2400. The employed sparse PCE algorithm, cf. [2], allowed to reduce the number of PC ex-
pansion terms to about 690. The reduction leads to an improvement of the linear regression results
since a smaller number of coefficients is determined using the same number of experiments. The
mean estimation error of the sparse PCE method is compared in Figs. 8 and 9 with the sampling
techniques.

Fig. 8. The compressor rotor shaft example. Mean relative percentage error of the mean value estimation of
the maximal rotor-shaft vibration amplitude obtained using RS, LHS and sparse PCE. The graph point labels

stand for standard deviations of the errors.
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Fig. 9. The compressor rotor shaft example. Mean relative percentage error of the standard deviation esti-
mation of the maximal rotor-shaft vibration amplitude obtained using RS, LHS and sparse PCE. The graph

point labels stand for standard deviations of the errors.

In the case of the mean value estimation the error of the PCE method is comparable with MCS
and LHS results. On the other hand, the corresponding error of the standard deviation estimation is
significantly higher than the one for sampling techniques. Taking into account the reduced number
of terms in the PC expansion, the similar results can be obtained for smaller LH design, say for
N ≈ 700. This, however, requires an a priori knowledge of the functional relationship between the
random variables and the rotor-shaft response, which is usually not available.

5. NUMERICAL EXAMPLE: THE STEAM TURBO-GENERATOR ROTOR-SHAFT

5.1. Model description

The presented methodology of vibration analysis is applied here in the second numerical example
of a rotor-shaft system of the typical 200 MW steam turbo-generator consisting of the single
high- (HP), intermediate- (IP) and low-pressure (LP) turbines as well as of the generator-rotor
(GEN). The rotor-shaft system is supported by seven journal bearings, as shown in Fig. 10. For the
purpose of this study it seems to be sufficient to model the considered stepped-rotor shaft of the
total length 25.9 m by means of ne = 49 continuous macro-elements, as an initial approximation

Fig. 10. Hybrid mechanical model of the steam turbo-generator rotor-shaft system.
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of its geometry. All geometrical parameters of the successive real rotor-shaft segments as well as
their material constants have been determined using the detailed technical documentation of this
turbo-generator. The average stiffness and damping coefficients of the oil film in the bearings as
well as the equivalent masses and stiffness and damping coefficients of the bearing housings are
obtained by means of measurements and identification performed on the real object.

As in the previous numerical example, first the eigenvibration analyses have been performed for
the nominal rotational speed of 3000 rpm, using the two abovementioned rotating beam theories.
The shear effect taken into consideration in the case of Timoshenko’s beam also results in a little bit
smaller natural frequency values than these determined by means of Rayleigh’s beam model. Here,
in the frequency range 0–150 Hz, which is the most important from the engineering viewpoint,
the respective differences slightly exceed 3%. The eigenfunctions corresponding to these natural
frequencies and determined using both beam theories also respectively overlay each other. Therefore,
similarly as in the first example, one can conclude that in this frequency range an application
of Rayleigh’s rotating beam theory for simulations of forced vibrations seems to be sufficiently
accurate, too.

Since a typical high-power turbogenerator is usually put into operation at most few times a year,
its start-ups and run-downs are not so frequent exploitation phases as in the case of the above
mentioned industrial compressor which can experience successive turn-ons and turn-offs even every
day. Moreover, such turbogenerator start-ups and run-downs are always performed satisfying all
possible means of security in order to minimize a probability of negative consequences caused by
transient vibrations excited during passages through the resonance zones. Therefore, the dynamic
and stochastic analyses of the steam turbo-generator rotor-shaft system are going to be carried out
only for the steady-state, out-of-resonance operation with the constant nominal rotational speed
3000 rpm corresponding to the excitation of bending vibrations by means of residual unbalances
with the synchronous frequency equal to 50 Hz. According to the above, similarly as in the previous
“compressor numerical example”, computer simulations of forced bending vibrations of the turbo-
generator rotor-shaft system are reduced to solving the algebraic equations (38). Here, for the
assumed hybrid model of this object in the frequency range of a practical interest 0–500 Hz,
22 bending eigenmodes have been considered to solve (38) with sufficiently high computational
accuracy of the obtained results.

5.2. Assessment of statistical moments

The uncertain parameters of the rotor-shaft system are represented by 59 random variables. As
in the first numerical example, the stiffness and damping coefficients of seven journal bearings are
modeled by normal random variables. However, here the common coefficient of variation is taken
equal to 5%. Thus, there are 56 random variables that correspond to the journal bearings, i.e.,
7×(4 stiffness coefficients + 4 damping coefficients). The remaining three variables account for
random values of the residual unbalances.

The rotor-shaft system of the considered turbo-generator consists of the three units described in
5.1, which are independently manufactured and then mutually connected during on-site assembly
process of the entire device. Each of them is characterized by a combined cross-sectional structure
consisting of the load carrying shaft core and of the strip created by the turbine blade rims or
generator windings, respectively, attached along this core by means of a shrink-fit connection.
Thus, the residual unbalance distributions of the HP-IP and LP turbines as well as of the generator
rotor are in principle not related to the machining process applied as in the case of the centrifugal
compressor rotor-shaft, but it is more complicated in character. Taking this into account, it seems
to be reasonable to assume that for each given rotor-shaft unit its unbalance is proportional to the
successive shaft segment diameters with the common proportionality factor for all segments in the
entire unit. For the three rotor-shaft units, this assumption results in three variables that model
the uncertainty of residual unbalances. The three proportionality factors are given by realizations
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of log-normally distributed random variables. Based on the technical data for the considered turbo-
generator rotor-shaft system, the mean values of the 3 uncertain factors were estimated as: 5.6·10−5

for the HP and IP turbines, 2.0 ·10−5 for the LP turbine and 3.2 ·10−6 for the generator rotor. The
coefficient of variation of these variables was assumed equal to 10%. According to this assumption,
each rotor-shaft unit is characterized by the common phase shift angle for all unbalance amplitudes
corresponding to successive shaft cylindrical segments. The obtained in this way three phase shift
angles for each abovementioned rotor-shaft units are not random, but they are determined from
respective identification measurements performed for the real object and assumed equal to zero for
the HP-IP turbine, 2.79 rad for the LP turbine and zero for the generator rotor unit.

To get reference values for the mean and standard deviation of maximal rotor-shaft lateral
displacement a thorough random sampling with the sample size N = 100 000 was performed. The
obtained estimations are Y = 0.0972 mm and s = 0.0091 mm. These values are many times smaller
than the corresponding ones from the compressor rotor-shaft example.

When analyzing the simulation results it is interesting to check correlations between the random
variables and the considered vibrational response. The values of correlation coefficients are graph-
ically presented in Fig. 11. Contrary to the previous numerical example, here one can easily select
variables that strongly influence the value of the vibration amplitude. A random scatter of the
values of these variables directly translates into the scatter of the rotor-shaft response. In particu-
lar, variable X57, which represents the random factor of residual unbalance magnitude for the HP
and IP turbines, is strongly positively correlated with the response. The corresponding correlation
coefficient ρ = 0.84 indicates that this variable is the major source of the response variance, what
can also be observed on the scatter plot in Fig. 12. Thus, a natural choice is to reduce the stochastic
description of the rotor shaft by keeping only the variables significantly correlated with the vibra-
tional response. If considering only the three variables marked in Fig. 11, the estimated moments
are equal to 0.0975 mm and 0.00838 mm for the mean and standard deviation, respectively. The
obtained values provide a very accurate assessment of the moments computed for the full model

Fig. 11. The turbo-generator rotor shaft example. Correlation coefficients between random variables and
the rotor-shaft response.
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Fig. 12. The turbo-generator rotor shaft example. Scatter of maximal rotor-shaft lateral vibration
amplitude.

consisting of 59 variables. If adding two more variables into the reduced model, i.e., variables X9

and X19 corresponding to stiffness coefficients of journal bearings #3 and #5, the estimations of the
mean value and standard deviation change to 0.0974 mm and 0.00870 mm, respectively. Since the
variance of the reduced model is more than 90% of the variance of the full model, the performance
of statistical moment estimation methods was examined for two cases: the full model characterized
by 59 variables and the reduced one characterized by 5 variables.

Below, for the complete stochastic model, in Figs. 13 and 14 there are shown the mean per-
centage estimation errors for moments computed by MCS, LHS and PC expansion methods. The
error statistics are based on 300 repetitions of a given method for each value of N . As it can be
seen, contrary to the previous numerical example, the Latin hypercube sampling provides the best
estimation quality for each sample size.

Even though a very precise estimation of the mean value of the maximal rotor-shaft vibration
amplitude can be obtained for relatively small samples, i.e., N = 120 ≈ 2n, a proper estimation of
the standard deviation of this rotor-shaft response requires an application of more sample points,
where N = 360 ÷ 600 yields the error of approximately 2%.

The results of the PCE method are very accurate, especially in the case of mean value estimation.
Unfortunately for a big number of random variables this approach is rather inefficient due to a size
of the necessary design of experiments. When post-processing the sparse PCE results, it turned
out that the reduction algorithm allowed to eliminate more than 1000 out of 1830 coefficients from
the expansion (24). However, there are still more experimental points than required for sampling
methods in order to guarantee an estimation that is accurate enough for the purpose of robust
design optimization.

Again, as in the case of the compressor rotor-shaft, the methods based on the Taylor series
expansion performed poorly when compared to other techniques. The dimension reduction methods,
which have been described in Subsec. 2.3, completely failed to produce results of any relevance to
the values of actual statistics. However, contrary to the previous numerical example, here the major
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Fig. 13. The turbo-generator rotor shaft example - full model. Mean relative percentage error of the mean
value estimation of the maximal rotor-shaft vibration amplitude obtained using RS, LHS and sparse PCE.
The graph point labels stand for standard deviations of the errors. The corresponding results for Taylor series
expansion methods (Subsec. 2.2): first order – for N = 61 the error is 2.4%, second order – for N = 1830 the

error is 2.3%.

Fig. 14. The turbo-generator rotor shaft example - full model. Mean relative percentage error of the standard
deviation estimation of the maximal rotor-shaft vibration amplitude obtained using RS, LHS and sparse PCE.
The graph point labels stand for standard deviations of the errors. The corresponding result for Taylor series

expansion methods (Subsec. 2.2): first order – for N = 61 the error is 12.16%.
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Fig. 15. The turbo-generator rotor shaft example - reduced model. Mean relative percentage error of the
mean value estimation of the maximal rotor-shaft vibration amplitude obtained using RS, LHS and sparse
PCE. The graph point labels stand for standard deviations of the errors. The corresponding results for Taylor
series expansion methods (Subsec. 2.2): first order – for N = 6 the error is 2.71%, second order – for N = 15

the error is 2.69%. Estimation by UDR (Subsec. 2.3): for N = 25 the error is 2.61%.

Fig. 16. The turbo-generator rotor shaft example - reduced model. Mean relative percentage error of the
standard deviation estimation of the maximal rotor-shaft vibration amplitude obtained using RS, LHS and
sparse PCE. The graph point labels stand for standard deviations of the errors.The corresponding result for
Taylor series expansion methods (Subsec. 2.2): first order – for N = 6 the error is 12.98%. Estimation by UDR

(Subsec. 2.3): for N = 25 the error is 21.52%.
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reason for the observed discrepancies is not connected with the artificial excitation of the rotor-
shaft vibrations due to the alignment of unbalance phase shift angles, which has been described
in Subsec. 4.2. It seems that for problems with a big number of random variables the values of
statistical moments given by Eqs. (13) and (14) may be strongly affected by numerical integration
errors, unavoidable when integrating non-polynomial functions using quadrature formulas. The
“standard” Taylor series expansion methods described in Subsec. 2.2 yield much better estimations
but still they are inferior when compared to simulation methods. The respective results are given
in captions of Figs. 13 and 14. In fact, only the first order mean value estimation can be considered
as a satisfactory compromise between the estimation accuracy and the computational cost.

The same tests were performed for the reduced stochastic model consisting of 5 random variables.
The results are shown in Figs. 15 and 16. They can be examined from two different perspectives.
The first one is a comparison of estimation accuracy of the investigated methods for a given sample
size. The other perspective is a selection of the sample size that provides sufficient estimation
quality in order not to introduce an extensive numerical noise into the objective and constraint
functions of the robust design optimization problem.

If we compare the error values computed by RS and LHS techniques obtained for N = 120
using the complete and the reduced model, we may notice that the respective values match quite
closely. This can be considered as a proof that the adopted reduced model is representative for the
complete model and the eliminated variables do not bring much to the response scatter. Therefore,
if such a reduction is possible, the non-sampling techniques, such as PCE, which are inefficient
for multidimensional problems, may turn out to be competitive with respect to LHS. Especially
in estimating the standard deviation, independently of the model used, in order to get a precise
estimation, e.g., with the error of about 2%, samples of more than 300 point are necessary for
Latin hypercube sampling. On the other hand, if the second order or the third order PCE method
is employed, such an estimation accuracy is possible in the case of the reduced model even for
N = 100.

The results of the Taylor series expansion approach as well as univariate dimension reduction
method are given in captions of Figs. 15 and 16. Also in this case they are visibly worse than the
estimations provided by other methods.

6. CONCLUSIONS

The objective of this study was to examine feasibility of various statistical moment estimation
methods for their use in robust design optimization (RDO) of vibrating rotor-shaft systems. The
observed scatter of the rotor-shaft vibrational responses is mainly due to the uncertainty of residual
unbalances as well as random characteristics of stiffness and damping coefficients of the journal
bearings. Since in popular RDO formulations the objective function and design constrains are
defined in terms of mean values and variances of selected structural performance functions, the
efficiency of statistical moment estimation is crucial for numerical complexity and convergence of
the RDO process.

The following methods were compared: the sampling methods (classical Monte Carlo and Latin
hypercube sampling), the Taylor series expansion approach, the dimension reduction method and
the polynomial chaos expansion method. To evaluate usefulness of a particular method, the mean
and standard deviation of the maximal lateral vibration amplitude were estimated for two rotor
shafts: the centrifugal compressor rotor-shaft and the turbo-generator rotor-shaft. The vibration
analysis was carried out by means of the hybrid structural model consisting of one-dimensional
beam-like continuous visco-elastic macro-elements and discrete oscillators. Such a hybrid model
proved to be very computationally efficient and reliable, which is of a major importance in the
context of stochastic analysis.

A proper representation of uncertain parameters of the rotor-shaft systems may lead to large
stochastic models. In the analyzed examples they consisted of 64 and 59 random variables for the
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compressor rotor-shaft and the turbo-generator rotor-shaft, respectively. In the second case it was
shown that the original model could be reduced to five variables, which are the main sources of the
response scatter observed using the full model.
The methods based on the Taylor series expansion performed poorly in both considered cases. For

multidimensional problems the dimension reduction technique seems to suffer from using inaccurate
numerical integration scheme. On the other hand, the classical Taylor series expansion approach
produced acceptable results only for the mean value estimation of the turbo-generator vibrational
response. Better estimations were obtained when the reduced stochastic model was employed. Still,
they were inferior with respect to the other investigated techniques.
The polynomial chaos expansion method provided stochastic moment assessment of comparable

accuracy with the simulation techniques. However, even using the algorithm of eliminating insignifi-
cant expansion terms, i.e., sparse PCE, it may be of little practical use for problems involving many
(tens, hundreds) random variables. On the other hand, if a reduced stochastic model is available,
these methods may turn out to be more efficient than methods based on Latin hypercube sampling.
However, for RDO of the rotor-shaft systems, when the design changes during the optimization

process and it is not possible to determine in advance the random variables influencing the response
scatter, a “safe” solution seems to be the Latin hypercube sampling. Even for relatively small
samples it gives the statistical moment estimation that is sufficient for the purpose of the response
surface based RDO.
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