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The aim of this note is to show possible consequences of the principle of stationary
action formulated for dissipative bodies. The material structure with internal state
variables is considered for those bodies. The appropriate action functional is proposed
for a typical dissipative body. Possible variations of fields of dependent state variables
are introduced together with a non-commutative rule between operations of taking
variations of the field and their partial time derivatives. Assuming vanishing of the
first variation of the functional, the balance of linear momentum in differential form
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1. Introduction

Historically, at the beginning, the classical Lagrange and Hamilton’s
formalisms were formulated for the point mechanics problems. Accordingly, if
a dynamical system is described by the vector-valued coordinate q and the La-
grangian L = T − V , where T and V are, respectively, the kinetic and potential
energy, then one formulates the variational principle of the dynamical system by
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requiring that between all curves q = q(t) in a configuration space V , the actual
path (i.e. the solution of the system) is that which makes the action integral
stationary

(1.1) I =

t1
∫

t0

L(q, q̇, t) dt.

Taking the first variation δq subject to the conditions δq(t0) = δq(t1) = 0,
the stationarity of the action requires δI = 0, which is equivalent to the Euler–
Lagrange’s equation

(1.2)
d

dt

∂L

∂q̇
− ∂L

∂q
= 0 .

It is well known that the general equations of continuum mechanics and
dissipative phenomena employed at the present time cannot be derived from
Hamilton’s variational principle. The case of bodies described by hyper-elastic
material structure is exceptional [13]. The interest to derive governing equation
in rational mechanics goes back to Levi-Civita [12]. There are several attempts
to formulate the stationary action principle for dissipative systems, recently. e.g.
Battezzati in [1] proposed to formulate the principle for a system with internal
friction. More general review of other attempts can be found in the Habilitation
Thesis of R. Kotowski [6] and in [7–9].

For many years it was a known fact that the equations of heat transfer could
not be derived from exact variational principle. It was always necessary in de-
scribing the governing equations of a physical process as a variational problem
(e.g. [2, 4, 7–11, 16, 19, 20, 22, 25, 26]). The interest follows not only from the
purely theoretical view-point but also from the practical one: a variational prin-
ciple can help to form a general and systematic approximative procedure for
establishing the solution from direct study of the variational integral. We can
refer here to the well known and widely used numerical method, like FEM of
BIM, where solutions are searched by minimization techniques, in which weak
formulation of governing equations appear with arbitrary variations.

In order to derive the governing equations of irreversible phenomena by the
variational technique, some artificial restrictions must be made, concerning the
basic rules of variational calculus. A good example is served by the variational
principle formulation made in [3,17,19] for the case of heat conduction equation,
in which the action functional contains one physical quantity (temperature), but
this quantity is represented by two different symbols. The first symbol is subject
to variation and the other one is not varied at all. However, by setting the two
symbols, the same after the variation process has been finished, the governing
differential equation of the process in consideration is obtained.
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Different procedure was proposed by Vujanović in [22] and applied to gov-
erning equation of the generalized (hyperbolic) theory of heat conduction with
finite wave speed, in which the new Lagrangian was proposed with an explicit
dependence on time through the exponential term exp t/τ , appearing as a fac-
tor. This term has the power t/τ , where τ is the thermal relaxation time. The
corresponding transition to the classical case, i.e. with infinite speed of thermal
disturbance (parabolic case), is performed by setting the relaxation time equal
to zero.

Extended stationary action principle in modelling heterogeneous media, in
which constitutive equation appears, has been recently proposed by Rych-

lewska [18] in the book dedicated to the memory of the late Professor Margaret
Woźniak.

Here the proposed new method of deriving the class of equations appearing in
some physical irreversible processes, is based on the variational principle which
has a Hamiltonian structure, and in most cases its form does not differ from that
known for conservative systems. However, the crucial assumption of the proposed
method is in non-commutative rule between operations of taking variations of
the field and their partial time and/or spatial derivatives, cf. Eq. (2.2).

In the discrete case, dealing with vector-valued generalized coordinate q, we
might try to interpret the non-commutative rule as a kind of discontinuity of
the mixed second derivatives of generalized coordinate q, regarded as a function
of time t and parameter s, responsible for the variation, for all t at s = 0. In
the continuous case, the non-commutative rule means discontinuity of the mixed
second derivatives of some vector–valued field u, regarded as the function of
time t, the space coordinate x and the same parameter s, responsible for the
variation. Unfortunately, the mathematics is not so easy, and this interpretation
rather fails. It is the existence proof made by the Russian mathematician Tol-

stov [21] about the function of two variables, which may possess mixed second
derivatives not equal on the set of positive measure (which we would like to
have). This discontinuity set, however, is a fat Cantor set, which means that it
cannot be formed of intervals. Hence we need a different interpretation.

For dissipative systems, the loss of energy is a crucial effect which is called
irreversibility. In the case of mechanical systems, especially for deformable bod-
ies, dissipation of mechanical energy is described by the second law of thermody-
namics, which restricts all mechanical (or thermo-mechanical) processes to those
which satisfy the internal dissipation inequality [6, 7, 14, 16]. The irreversibility
means that it is impossible to reverse the process, in which dissipation energy
occurs without changing the environment. Irreversibility means that variation
of quantity (e.g. internal state variable in the case of dissipative bodies) δm
and the variation of its time derivative are related by the dissipative mechanism
governing the process considered, not the time differentiation.
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It means that the time derivative ∂
∂tδm on one side must be different from the

variation of the time derivative of the quantity, i.e. δ ∂
∂tm. On the other side, this

variation is the dynamic quantity and it should depend on the irreversible forces
(nonconservative, according to [23])) acting upon the system. We are not going
to tamper with the usual notation of the variation of δm and the velocity of
variation ∂

∂tδm. These two vectors are regarded as purely kinematic in nature.
The vector δm means that we consider the infinitesimal transformation (i.e.
the first variation) replacing m(t, x) by m(t, x) + sh(t, x), where h(t, x) is an
arbitrary differentiable function of t and x, and s is a small parameter passing
through zero. Then, from the definition,

(1.3) δm =
∂

∂s
(m(t, x) + sh(t, x))δs = h(t, x)δs.

Hence in this notation we have

(1.4)
∂

∂t
δm =

∂

∂t
h(t, x)δs.

Since the vector δ ∂
∂tm has a purely dynamic character and its form depends

on the nature of dissipative (nonconservative) phenomena (forces) acting on the
body, the infinitesimal transformation replaces ∂

∂tm(t, x) by ∂
∂tm(t, x)+sk(t, x),

where k(t, x) is not an arbitrary differentiable function of t and x. This function,
however, may differ from ∂

∂th(t, x) by a part that is related to the function h(t, x)
via some relationship depending on the irreversible phenomena of the system.
Hence we can write

(1.5) δ
∂

∂t
m =

∂

∂s

{

∂

∂t
m(t, x) + sk(t, x)

}

δs = k(t, x)δs,

together with

(1.6) k(t, x) =
∂

∂t
h(t, x) + F

(

m(t, x),
∂

∂t
m(t, x), t, x

)

h(t, x).

Notice that dependence of the function F on time t and space variable x may
be through some additional state variable, not written explicitly, here.

Comparing (1.3) and (1.5) with (1.6) we end up with the following noncom-
mutative rule

(1.7)

[

δ,
∂

∂t

]

m = F(m(t, x),
∂

∂t
m(t, x), t, x)δm .

We can see that the case when the function F = 0 corresponds to a commutative
rule. This noncommutative rule will be crucial in developing a new variation
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principle for deformable body made of the dissipative material with internal
state variables.

In the previous paper [5] the variational technique developed here was applied
to a long-line (telegraph) equation, and hyperbolic and parabolic models of heat
conduction. In the next paper we will generalize the present derivation to the
case of thermo-mechanics. Then some thermal initial boundary-value problems
of technical interest will be analyzed to reduce them to ordinary differential
equations, their solutions being often capable of being solved in analytic closed
form.

2. Variational principle

Irreversibility in time means that the energy of the system is not conserved,
hence we face a nonconservative case. B. Vujanović, from Novi Sad, proposed
in 1974–75 [23, 24] to describe the irreversible phenomena by Hamilton’s prin-
ciple with neglecting the commutative rule

(2.1)

[

δ,
d

dt

]

q = 0 or

[

δ,
∂

∂t

]

u := δ
∂

∂t
u − ∂

∂t
δu = 0

for discrete or continuous cases, respectively. Here, in the discrete case, by the
variation of q we understand the value of the partial differential of q(s, t) re-
garded as a function of two variables s and t calculated at s,

δq(t) =
∂

∂s
(q(t) + sξ(t))δs = ξ(t)δs,

where s is from some interval (s0, s1) ∋ 0, and ξ(t) is an arbitrary differentiable
function of t. For the variation of q̇(t) we put extra field ζ(t)

(2.2) δq̇(t) =
∂

∂s
(q̇(t) + sζ(t))δs = ζ(t)δs and

d

dt
δq = ξ̇(t)δs .

Similarly we define the variation of the field u. Here we can repeat our arguments
used in the Introduction and related to the internal state variable vector m for
a dissipative body described by ISV’s approach. Namely, two vectors δq(t) and
d
dtδq are regarded as purely kinematic in nature, while the vector δ ∂

∂tq has
a purely dynamic character and its form depends on the nature of dissipative
nonconservative forces acting on the dynamical system. Hence we can expect that
there is a difference between the time derivative of δq(t) and this last vector, i.e.
the variation of the time derivative of q̇. This difference, due to the dimensional
analysis and our assumption, is proportional to δq, where its proportionality
coefficient may depend on the state of the system as well, i.e.

(2.3) δ
∂

∂t
q(t) =

d

dt
δq(t) + G(q(t), q̇(t), t)δq(t) .
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Here the function G plays a similar role to that of the function F in (1.6), and
its non-vanishing value manifests the non-commutativity of the both operations
δ and d/dt.

B. Vujanović assumes

(2.4)

[

δ,
d

dt

]

q 6= 0 or

[

δ,
∂

∂t

]

u 6= 0 ,

in discrete and continuous cases, if q = q(t) and u = u(x, t), respectively.

2.1. Derivation of non-conservative differential equations

Let a governing equation of a physical system, described by a vector field u,
be

(2.5) FL

(

u,
∂u

∂t
,
∂u

∂xi
, xi, t

)

+ FD

(

u,
∂u

∂t
,
∂u

∂xi
, xi, t

)

= 0 ,

where i = 1, . . . , n and the part FL is the Lagrange part which is derivable from
a Hamilton principle:

(2.6) δCI = 0 if FL

(

u,
∂u

∂t
,
∂u

∂xi
, xi, t

)

= 0,

with the commutative rule (2.1) (hence the notation δC), with suitable initial
and boundary conditions, especially δu(t0) = δu(t1) = 0, and with the action I
and the Lagrangian density L

(2.7) I =

t1
∫

t0

∫

Ω

L

(

u,
∂u

∂t
,
∂u

∂xi
, xi, t

)

dωdt.

The nonconservative (dissipative) part FD of (2.5) cannot be derived from
variational principle of Hamilton’s type and is related to dissipative phenomena
of the physical system under consideration. We will introduce the dissipative
characteristics of our system through noncommutative rules of variation and
partial differentiation, in order to be able to derive Eq. (2.5) using the action
functional (2.7). Now we pass to a non-commutative case and assume the fol-
lowing noncommutative rules: for temporal

(2.8)

[

δ,
∂

∂t

]

u = H

(

u,
∂u

∂t
,
∂u

∂xi
, xi, t

)

δu
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and for spatial commutator

(2.9)

[

δ,
∂

∂xj

]

u = Gj

(

u,
∂u

∂t
,
∂u

∂xi
, xi, t

)

δu ,

where H and Gj are suitably chosen functions, and j = 1, . . . , n. Then perform-
ing the variation δI, with suitable initial and boundary conditions, we end up
with

(2.10) δI =

t1
∫

t0

∫

Ω

{

{L}E−L +
∂L

∂(∂u
∂t )

H +
∂L

∂( ∂u
∂xj

)
Gj

}

δu dω dt,

where the summing convention is applied, and

(2.11) {L}E−L :=
∂L

∂u
− ∂

∂xj

∂L

∂( ∂u
∂xj

)
− ∂

∂t

∂L

∂(∂u
∂t )

.

Assume now the functions H and Gj in (2.8) and (2.9) as

(2.12)
∂L

∂(∂u
∂t )

H +
∂L

∂( ∂u
∂xj

)
Gj = FD

and identifying {L}E−L = FL, we obtain from the variational equation

(2.13) δI =

t1
∫

t0

∫

Ω

{

{L}E−L +
∂L

∂(∂u
∂t )

H +
∂L

∂( ∂u
∂xj

)
Gj

}

δu dω dt = 0,

the Euler–Lagrange’s equation for dissipative system as FL + FD = 0, in view of
(2.6), (2.10)–(2.13).

3. Application to deformable dissipative bodies

In this section we will apply the presented method for deriving the govern-
ing equations of a deformable body with internal state variable (ISV) material
structure [14, 15]. For a dissipative material of the body B we have to assume
the Lagrangian as follows

L = T − V +D

where D denotes the dissipative energy.
Let us assume that state σ ∈ Σ of the body, identified with a regular domain

B ⊂ E3, is described by the regular function of motion φ : B× [t0, t1] → E3, the
vector field of internal state variable m ∈ Rm. The material properties of B are
described by the mass density ρ0 and two constitutive functions: the density of
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stored energy Ψ , which – in this mechanical case – is identical with the density
of free energy function, and the evolution function R(σ). Now we define the
next fields: particle velocity v = φt = ∂φ/∂t, displacement gradient F = ∇φ,
density of body force b, density of surface force s. Moreover, we assume that the
boundary S of B can be divided into 2 parts S = Sd ∪ Ss, and on Sd we have
displacement boundary condition φ |Sd

= φ̄, while on Ss we have the surface force
s given. Assume the initial distributions for the velocity v0 through the body as
well as for the ISV m0 given. We will use the notation mt for the partial time
derivative ∂m/∂t.

Now the densities of kinetic energy T and of dissipative energy D of the body
are defined as

T = ρ0(v)2/2, D = a · mt,

where a is a dimensional constant vector: energy · time/[m], where [m] means
the dimension of m. Notice, that additional to the kinetic energy of the body
motion, we have the dissipative energy D = a · mt generated by the intrinsic
structure described by the rate of internal state variable vector mt, To be in
agreement with the classical transformation rule for the energy the variable m

should be invariant under Euclidean transformations. It results in the possible
choice of the ISV.

To define the Lagrangian density of our deformable body we need the po-
tential energy V . It cannot be written as a density with respect to the volume
measure, since on the boundary of B acts the surface force s. The potential en-
ergy V has two contributions and they can be written as a sum of the integrals
with respect to the volumetric and surface measure. Hence we pass to the action
functional immediately:

I =

t1
∫

t0

∫

B

((

1

2
ρ0(φt)

2 +
m
∑

j=1

aj mjt

)

− (Ψ(∇φ,m) − ρ0b · φ)

)

dω dt(3.1)

+

t1
∫

t0

∫

Ss

s · φ ds dt+

∫

B

ρ0v0 · φ(t0) dv −
∫

B

a · m(t1) dω.

Hence we admit any variation of φ and of m such that

(3.2) δφ(t1) = 0 and δφ |Sd
= 0 and δm(t0) = 0.

Take the 1st variation of I under the non-commutativity rules:

(3.3)

δ

(

∂

∂t
φ

)

=
∂

∂t
δφ and δ(∇φ) = ∇(δφ),

ajδ

(

∂

∂t
mj

)

= aj
∂

∂t
δmj +

aj

cj
(Rjδmj −mjtδmj) for j = 1, 2, . . . ,m,



Consequences of the principle of stationary action. . . 103

where cj , j = 1, 2, . . . ,m, form a constant vector c of dimension [m], numerically
equal to 1. Hence

δI =

t1
∫

t0

∫

B

(ρ0φtδφt + a · δmt + ρ0b · δφ) dω dt

+

t1
∫

t0

∫

Ss

s · δφ ds dt+

∫

B

ρ0v0 · δφ(t0) dω

−
t1
∫

t0

∫

B

(∂∇φΨ(∇φ,m) · δ∇φ+ ∂mΨ(∇φ,m) · δm) dω dt

−
∫

B

a · δm(t1) dω.

Notice that a · mt =
∑m

j=1 aj mjt and we are grouping terms that stand in
front of the variations δmj and δmjt, j = 1, 2, . . . ,m. Then applying the rule
(3.3), performing the integrations of terms that are the partially differentiated
with respect to time and the space, respectively, using the unit normal N to S,
we end up with

δI =

t1
∫

t0

∫

B

[∇ · (∂∇φΨ(∇φ,m)) − ∂

∂t
ρ0φt + ρ0b] · δφ dω dt

−
t1
∫

t0

∫

S

∂∇φΨ(∇φ,m))N · δφ ds dt+

t1
∫

t0

∫

Ss

s · δφ ds dt

−
t1
∫

t0

∫

B

m
∑

j=1

(

∂mj
Ψ(∇φ,m) − aj

cj
(Rj −mjt)

)

δmj dω dt

+

∫

B

[ρ0φt · δφ |t1t0 −a · δm |t1t0 −a · δm(t1) + ρ0v0 · δφ(t0)] dω.

In view of the constraint (3.2), the first surface integral reduces to the integral
over Ss and the last integral to −

∫

B
[ρ0(φt(t0)− v0) · δφ(t0)] dv. Now due to the

arbitrariness of the variations we obtain from the condition δI = 0 four local
equations: two PDE’s and two function equations, namely

∇ · τ(F,m) − ∂

∂t
ρ0v + ρ0b = 0 in B,(3.4)
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cj
aj
∂mj

Ψ(F,m) −Rj +
∂

∂t
mj = 0 for j = 1, 2, . . . ,m, in B,(3.5)

τ · N = s on Ss and v(t0) = v0,(3.6)

where we put

F := ∇φ, v := φt, τ(F,m) := ∂ ∇φΨ(∇φ,m).

We can see that the first equation is the balance of linear momentum, the second
one is the system of evolution equations for internal state variables, while the
last two are: the stress boundary condition and the velocity initial condition,
respectively.

4. Conclusions

We have presented a new method of deriving the governing field equations
for a dissipative deformable body described by the internal state variable model
and based on a variational principle of stationary action. The main idea is based
on the observation that for dissipative systems, the variation of time derivatives
of a field is different from the time derivative of the variation of the field, i.e.
noncommutative rules exist. Similar observation can be made in referring to
spatial differentiation. The present approach deals with smooth fields and the
case of discontinuous fields needs an extra elaboration.

The existence of a variation principle for given field equations has several ad-
vantages. The main one refers to availability of analytical or approximate solu-
tion of the equations (cf. [23]). In many cases the variational solution constitutes
good approximation of the true one. This justifies the use of variational methods
in treating complicated problems, like those involving irreversible phenomena,
which cannot be solved directly.

The choice of the selected variational principle is, to a certain extent, of
sentimental nature. Besides, several principles maybe used together to test the
accuracy of the solution obtained. Indeed, if two or more principles give approx-
imately the same result, it is reasonable to think that it is reliable. However,
for certain classes of problems, some principles lead to more complex numerical
calculations than others. It must also be kept in mind that some earlier formu-
lations like those of Biot [2] and Vujanović [22], are less general than those of
Glansdorff–Prigogine [16] and Lambermont–Lebon [10,11]. The former
papers are more adapted to describe heat transfer and related situations, the
latter embrace a larger field of macroscopic physics including chemical reactions,
diffusion processes and fluid flows. In our opinion, the method presented here is
less restrictive and more natural than others.
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