
 

ABSTRACT1 
 

This paper presents a method for fast identification of coexistent loads and damages, 
in which the number of sensors is mainly decided by the number of unknown loads. 
The computational efficiency is improved by the Virtual Distortion Method (VDM), 
which allows the repeated estimation of system impulse response to be performed 
efficiently, and by a local interpolation of perturbations of the structural response 
with respect to damage parameters. The proposed methodology is verified by a 
numerical example of a multi-span frame.  

 
 

INTRODUCTION 
 
External loads and structural damages are crucial factors in structural health 

monitoring, as well as in forensic engineering. Identification of either one of them 
has become an interesting topic with several effective methods. However, in a real 
application, unknown damages and unknown loads usually coexist and together 
influence the system response. Identification on either one of them can be interfered 
by the other one. Therefore, simultaneous identification of loads and damages 
seems to be a way to solve this problem. 

It is in general not possible to identify the unknown load independently from the 
unknown damage. The existing load reconstruction methods demand a precalibrated 
model of the monitored structure whose structural parameters are known [1,2]. For 
damage identification methods [3], one can differentiate between model-based and 
pattern matching approaches. A part of them needs the external loads to be known. 
Others do not require exact information about the loads, but they are used in special 
conditions like ambient excitation or free response of the monitored structure. In 
case when both excitation and damage are unknown, the identification of either one 
is coupled to the identification of the other, so that they need to be identified 
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together, which is usually performed in time domain with a large number of surplus 
sensors [4, 5]. 

This paper presents a new approach to simultaneous identification of unknown 
damages and excitations. In general, it only requires the number of sensors to be 
larger than that of the unknown external loads. Moreover, the optimization 
efficiency is improved by approximating the relation between the perturbations of 
the structural responses and the damage extents, and by constructing the relative 
system impulse response using the VDM [3]. 

 
 

SYSTEM IMPULSE RESPONSE VIA THE VDM  
 
The Virtual Distortion Method is a quick reanalysis method. Structural damages 

are modeled by the related response-coupled virtual distortions or virtual forces. 
Then, the responses of the damaged structure can be quickly constructed by the 
linear combination of the intact structural responses to the same external load and to 
the virtual distortions, assuming that the intact system is known. Here, it is assumed 
that the damage affects both stiffness and mass of the involved structure. 
 
Impulse Response of a Damaged Structure  
 

Using the VDM, with the assumption of zero initial conditions, the impulse 
response of the damaged structure at the αth sensor to the ith external load can be 
expressed as the following: 
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where ( )L

ih tα  is the corresponding impulse response of the intact structure, 
( )jD tκ

αβ  or ( )mD tαβ are the impulse responses (dynamic influence matrices in the 
VDM terminology) of the αth sensor in the intact structure with respect to the jth 
distortion of the βth damaged element ( )0

j tβκ  and to the virtual force 
( )0p tβ applied in the βth degree of freedom (DOF) related to mass modifications. 
In Eq.(1), ( )L

ih tα  and the dynamic influence matrices can be computed in 
advance. The virtual distortions ( )0

j tβκ and virtual forces ( )0p tβ , which model the 
damage, can be obtained via the expressions of the related distortion and 
acceleration responses of the damaged structure, which is similar to Eq.(1):   
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where ( )L

ij tκ  and ( )L
ia t are respectively the jth distortion coefficient of the ith 

damaged element and the acceleration of the ith DOF in the intact structure. 



Similarly to ( )jD tκ
αβ  or ( )mD tαβ , parameters ( )ij lD tκκ

β  and ( )m
i lD tκ
β  are the related 

dynamic influence matrices. In the VDM [3], one can prove that ( )0 1ij i ijκ μ κ= −  
and ( ) ( )0

i i ip t m a t= , therefore the unknowns ( )0
j tβκ  and ( )0p tβ  can be found 

by Eq.(2). The parameter iμ is the stiffness-related damage extent of the ith element, 
that is the ratio of the modified stiffness to the original one. 

 In a discrete-time system, impulse responses to the ith external load in all the 
successive time steps of all the employed sensors can be expressed using Eq.(1) as: 
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where all the virtual distortions 0κ  and forces 0p can be obtained from the 
discrete matrix form of Eq.(2), that is from 
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LOAD AND DAMAGE IDENTIFICATION 
 
Via the constructed system impulse response, the measured structural response 

to the ith external load ( )ip t  can be expressed as: 
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In practice, the measured data and the computed impulse response are discrete. 
Hence, by collecting all the loads and all the measured responses (of all the sensors) 
in all considered time steps, Eq (5) can be rewritten in the matrix form as: 
 

M =y Hp                           (6) 

 
Generally, the unknown variables can be identified by minimizing the square 

distance between the estimated responses and the measured responses: 
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In Eq (7), the system impulse responses H  is the function of the parameters μ , 
which collectively define the damage, where 1 , ,

m en nμ μ μ +⎡ ⎤= ⎣ ⎦K★ ★  and 
tr

i i im mμ =★ (if 1, , mi n= K ) or 
mi i nμ μ −=★ (if i=nm+1,K , nm+ ne). Here, nm is the 

number of the mass modifications, ne is the number of damaged element, mi is the 
ith additional mass value and tr

im  is its trial mass value, which may be estimated 
roughly via the measured response assuming the system is intact. 



In other approaches [4,5], optimization of unknown damages and load time 
histories requires often a lot of optimization variables. However, given the damage 
extents, the structural impulse response can be constructed using the VDM. Then 
the corresponding external load ep  can be directly obtained via Eq.(6), possibly in 
a moving time window [4]. Therefore, only the damage extents can be treated as the 
optimization variables, and the number of sensors greater than the number of the 
loads is enough to ensure the uniqueness of the solution. 
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Eq.(9) shows that the main task in each optimization step is to estimate the 

current system response. Hence, an approach of approximating the structural 
responses is used to improve the computational efficiency. The relation between the 
perturbation of the structural response ( )y tΔ  and of the damage extents iμΔ  is 
approximated using a certain function, like quadratic or splines, so that during the 
optimization the impulse-responses and the related reconstructed loads have to be 
calculated only few times to determine the approximation coefficients. 

Here the relation is approximated by a quadratic curve. Based on given initial 
values of the damage extents, assume that the ith damage extent has two 
perturbations ,i jμΔ ★ , 1, 2j = . Denote by ( ),i jy tΔ  the corresponding perturbation of 
the structural response relative to the initial response. Then the coefficients of the 
approximating functions between ( ),i jy tΔ  and ,i jμΔ ★  can be got by: 
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where ( )2

, , , 1
T
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ς ★ ★  is the base vector of quadratic curve. Then, 

given any damage perturbation ,i mμΔ ★ , the corresponding structural response 

perturbation ( ),i my tΔ  can be estimated by ( ) ( ), ,i m i i my t tΔ = A ς .  
In the case of small damages, it can be assumed that the perturbation of each 

damage extent contributes independently to the structural response. Thus, based on 
given initial damage extents, the unknown damage extents can be identified by 
computing the optimal value ,i mμΔ ★ , which minimizes the objective function: 
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where the coefficients in the kth row of the matrix iA  correspond to the 
approximating function at the kth time step, and y  collects all discrete structural 
responses to the initial damage extents at all the sensors. In order to improve the 
accuracy, in each iteration the perturbations are halved.  
 



NUMERICAL EXAMPLE 
 
A numerical multi-span frame model in Figure 1 is used to verify the proposed 

method. Young's modulus is 2.15×1011N/m2, the density is 7800kg/m3, and the 
beam inertia moment is 0.8m 4. The two poles are 20m high with an inertia moment 
of 0.16m4. The beam is evenly divided into 20 elements, along with 2 even 
elements for each of the poles. An additional mass of 61.2×103kg is located on the 
beam 130m away from the left end. Elements No.21 and 23 are damaged with the 
stiffness reduction of μ21=0.4, μ24=0.7. Three sensors are employed: s1 at location 
115.2m, s2 and s3 on the two columns 5.2m away from the neutral axis of the beam. 
A single excitation is applied on the beam 90m away from the left end (Figure 2). 
The sampling frequency is 100Hz, with the total sampling time 1s. Measurement 
errors of the simulated measured data are modeled by independent Gaussian noise 
at 5% rms level, shown in Figure 3. 

Assume that the two poles are damaged with unknown stiffness reductions, 
which are to be identified besides the excitation and the additional mass. Hence, 
there are five damage extents to be identified and the unknown excitation. The 
initial trial value of the additional mass is 143×103kg. The damage extents are taken 
as optimization variables, with the unit initial values. The two perturbations of the 
stiffness-related damage extents are [-0.45, -0.9] in the first iteration, while the 
perturbations of the mass-related damage are [4, 6]. The iterations are performed 6 
times altogether. 

Table I lists the identified damage extents. The results are assessed respectively 
by the relative accuracy (mass) or the absolute accuracy (damage extents). Both the 
damage extents and their locations can be identified well even with 5% rms noise 
pollution. Figure 5 shows the evolution of the values in all iterations, and confirms 
that an accurate result could be obtained in only several iterations. Figure 6 shows 
the final reconstructed external load, which is very close to the actual load. 
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Figure 1. Damaged three-span frame structure 
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Figure 2. Assumed excitation Figure 3. Noisy response of the damaged structure 

 



TABLE I. IDENTIFIED DAMAGE EXTENTS 
 μ21 μ22 μ23 μ24 m 

identified 0.3865 0.9561 0.9759 0.6312 59.16×103kg 
error(%) 1.35 4.39 2.41 6.88 3.33 
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Figure 5. Optimization variables in successive iterations Figure 6. Actual and identified loads 
 
 
 
CONCLUSIONS 
 

An efficient method for identification of coexistent loads and damages has been 
proposed and validated in a numerical experiment of a mutli-span frame. Both 
stiffness-related and mass-related damages have been accurately identified together 
with the unknown load. Multiple damages and loads can be identified with fewer 
sensors.  
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