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1. Introduction
The paper concerns nine-node quadrilateral shell elements derived for the Reissner’s kinemat-

ics. They are based on the Green strain and the potential energy, and are applicable to large (unre-
stricted) rotations. Drilling rotation is included via the drill rotation constraint (RC) imposed by the
penalty method. Hence, the elements have 6 dofs per node, i.e. 3 displacements and 3 rotational
parameters, including the drilling rotation.

The basic nine-node isoparametric Lagrangian shell element suffers from locking in unidirec-
tional bending, caused by approximations of the transverse shear strains and of the membrane strains.
The too stiff response of the element becomes more visible when the shell thickness decreases.

Several methods of avoiding locking were proposed in the literature. The Uniform Reduced In-
tegration (URI) results in a rank-deficient stiffness matrix, requiring a stabilization. Another method
is the Selective Reduced Integration (SRI), where different integration rules are applied to the mem-
brane, bending and transverse shear strain energies. Successful is also the technique based on two-
level approximations of strains called the Assumed Strain (AS) method; our nine-node element based
on it is described in [1].

2. Formulation of nine-node shell element
In the present work, we consider an extended configuration space, defined in terms of the de-

formation function χ and rotations Q ∈ SO(3). The rotations are constrained by the Rotation
Constraint (RC) equation,

skew(QTF) = 0,(1)

where F .
= ∇χ. The two-field 3D functional with rotations is defined as follows:

F2(χ,Q)
.
=

∫
B
W(FTF) dV + FRC + Fext,(2)

where the RC term has the penalty form,

FRC
.
=

∫
B

γ

2
skew(QT

0 F0) · skew(QT
0 F0) dV,(3)

and γ ∈ (0,∞) is the regularization parameter. For shells, only the drilling rotation part is left in
the RC, and then FRC = Fdrill.

The initial (reference) configuration of the shell is parameterized in terms of ξ = {ξα, 2ζ/h},
α = 1, 2, where ξα ∈ [−1,+1] are the natural coordinates parameterizing the reference (middle)
surface, and ζ ∈ [−h/2,+h/2] is the coordinate used in the direction normal to this surface. h
denotes the initial shell thickness.

In the current configuration, the position vector is expressed by the Reissner kinematical hy-
pothesis,

x(ξα, ζ) = x0(ξ
α) + ζ Q0(ξ

α) t3(ξα),(4)

where x0 is the position of the reference surface, t3 is the shell director, and Q0 ∈ SO(3) is a
rotation tensor, which is constant over ζ . For the rotations, we assume that Q(ξα, ζ) ≈ Q0(ξ

α),
where Q0(ξ

α) is the rotation at the reference surface, for details see [2].



For the Reissner’s kinematics of Equation (4), the Green strain E .
= 1

2
(FTF − I) can be

approximated linearly over the thickness, i.e. E(ζ) ≈ ε + ζ κ, and the analytical integration of the
strain energy over the thickness, yields the shell strain energy density (per unit area of the reference
surface) in the additive form, Wsh = W0 +W1, where

W0 = h
[
1
2
λ (trε)2 +G trε2

]
,(5)

W1 =
h3

12

[
1
2
λ (trκ)2 +G trκ2

]
.(6)

Note that W0 consists of the membrane and transverse shear energy, while W1 of the bending and
twisting energy.

3. Numerical tests
We will present a behavior of various our nine-node shell elements for a set of benchmark tests

involving very thin structures. One of these tests is the analysis of an initially twisted beam shown in
Fig.1. Our results will be compared with the results obtained by the MITC9 element of ADINA and
the S9R5 element of ABAQUS.
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Figure 1. Twisted beam. Nonlinear solution for very thin beam h = 0.0032.
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