MODELLING OF TEXTURE EVOLUTION IN KOBO EXTRUSION PROCESS

The paper is aimed at modelling of evolution of crystallographic texture in KOBO extrusion which is an unconventional process of extrusion assisted by cyclic torsion. The analysis comprises two steps. In the first step, the kinematics of the KOBO extrusion process is determined using the finite element method. A simplifying assumption is adopted that the material flow is not significantly affected by plastic hardening, and thus a rigid-viscoplastic material model with no hardening is used. In the second step, evolution of crystallographic texture is modelled along the trajectories obtained in the first step. A micromechanical model of texture evolution is used that combines the crystal plasticity model with a self-consistent grain-to-polycrystal scale transition scheme, and the VPSC code is used for that purpose. Since each trajectory corresponds to a different deformation path, the resulting pole figures depend on the position along the radius of the extruded rod.

Keywords: plasticity, microstructure, crystallographic texture, KOBO extrusion

1. Introduction

Metals subjected to large plastic deformations undergo substantial changes of microstructure, and their macroscopic properties are governed by the associated effects such as formation of dislocation structures, grain refinement, texture development, and others. During last decades, there has been a significant progress in characterization and physical understanding of these phenomena. Modelling of microstructural evolution during plastic deformation has also been an area of active research; however, complete models of the related phenomena are still missing.

Modelling of evolution of crystallographic texture is a well-established topic. The corresponding models combine constitutive equations for a single crystal with a grain-to-polycrystal scale transition scheme. The former models are typically developed in the framework of crystal plasticity theory [1, 2] which is particularly suitable for describing plastic deformation at the micro-scale, as it considers activity of individual slip systems in a crystal. Crystal plasticity models of texture evolution proved highly successful in the applications related to metal forming processes [3, 4, 5], considering various effects such as the elongated or flattened grain shape and grain interactions [6, 7, 8, 9], nonuniform evolution of dislocation density [10], twinning [11, 12, 13, 14], and others. It has been concluded that the Taylor model delivers acceptable results for high symmetry crystals and monotonic strain paths, while it fails for low symmetry crystals and processes involving strain path changes. The self-consistent model provides then better predictions, e.g., [15, 16].

Severe plastic deformation (SPD) processes, such as equal channel angular pressing (ECAP) [17], are designed to intentionally impose very large plastic strains with the aim to refine the grain structure to submicron size [18]. The SPD processes lead also to substantial texture changes which have a significant impact on post-processed material behavior including, above all, plastic anisotropy but also strength, work hardening, formability and fracture. These structural properties of interest cannot be fully understood without proper characterization of texture evolution in the considered SPD processes. However, in these processes, the material is subjected to complex strain paths, and the texture evolution models seem less successful in predicting the final textures [16]. The plausible reason is...
that grain refinement and its interaction with texture evolution is still not adequately modelled.

In fact, despite significant research efforts, modelling of grain refinement during plastic deformation is still at an early stage. On one hand, microstructure formation is studied at the single crystal scale using an energy minimization approach [19, 20, 21], and the reasons for inhomogeneity or deformation banding of multi-slip plastic flow are sought, for instance, in a proper formulation of the crystal plasticity model combined with an energy criterion [22, 23]. But these models are still far from being applicable to the actual forming or SPD processes. On the other hand, phenomenological models are developed which provide quantitative description of evolution of selected microstructure parameters without referring to the details of plastic deformation at the micro-scale, e.g., [24]. The latter model has been used to simulate microstructure evolution and grain refinement in several SPD processes [24, 25, 26], as well as in a complex forming process of KOBO extrusion [27].

The KOBO extrusion process, which is studied in this work, is a non-conventional process of extrusion assisted by cyclic rotation of the die [28, 29]. Its technological advantages include substantial reduction of extrusion force, ultra-fine grain structure of the product, and others, cf. [30]. At the same time, only few published results on modelling of this process are available [27, 31, 32]. In reference to the KOBO extrusion process, modelling of texture evolution has only been performed for an idealized process of tension or compression assisted by cyclic torsion [33], in which the strain path is, however, significantly different than in the actual KOBO extrusion process.

In this work, the general approach proposed in [27] in the context of modelling of grain refinement is applied to modelling of texture evolution in KOBO extrusion. Following the approach of [27], the analysis comprises two steps. In the first step, the kinematics of the KOBO extrusion process is determined for a non-hardening material using the finite element method. This part is briefly described in Section 2. In the second step of analysis, evolution of crystallographic texture is predicted along the deformation paths determined in the first step. The micromechanical model [15] used for that purpose is presented in Section 3. The model combines the rate-dependent crystal plasticity model and the self-consistent grain-to-polycrystal transition scheme. The VPSC code [15] is employed in the actual computations. The results are presented and discussed in Section 4. For completeness, the predictions of the classical Taylor model are also included.

2. Kinematics of KOBO extrusion process

The principle of the KOBO extrusion process [28, 29] is illustrated in Fig. 1. The complex kinematics of the KOBO extrusion process is determined here using the approach proposed in [27]. The effect of material hardening on the kinematics of the process is neglected at this stage. Under this assumption, the solution of the problem of axisymmetric extrusion with cyclic torsion can be constructed in terms of the solution of steady-state extrusion with torsion, as described below.

In the steady-state axisymmetric extrusion with torsion, the billet is extruded with a constant axial velocity \(V_0 \), and the die rotates with a constant angular velocity \(\Omega_0 \). Variation of the billet height is neglected. The velocity field is specified by three unknown fields, namely the radial velocity \(v_r(r, z) \), the axial velocity \(v_z(r, z) \), and the angular velocity \(\omega(r, z) \) such that \(\nu_0 = 2 \nu_0 \) is the circumferential velocity. As the unknown fields depend only on the cylindrical coordinates \(r \) and \(z \), the problem is two-dimensional.

Constitutive equations are specified by the rigid-viscoplastic Norton-Hoff model that relates \(\sigma^* \), the deviatoric part of the Cauchy stress tensor \(\sigma \), and \(\mathbf{d} \), the Eulerian strain-rate tensor,

\[
\sigma^* = \frac{2}{3} \sigma_{ij} \left(\frac{d_{ij}}{d_{ij}^0} \right)^{m-1} \mathbf{d}, \quad d_{ij} = \sqrt{\frac{2}{3} \mathbf{d} : \mathbf{d}}.
\]

Here, \(\sigma_{ij} \) is the reference yield stress, \(d_{ij}^0 \) is the reference strain-rate, and \(0 < m < 1 \) is the strain-rate sensitivity coefficient. In view of incompressibility, we have \(\mathbf{d} : \mathbf{d} = 0 \).

The problem of steady-state extrusion with torsion is solved using the finite element method. The simplified geometry shown in Fig. 1 is adopted with the following boundary conditions. Constant velocity is prescribed at the top surface \((v_t = V_0, v_r = 0, \omega = 0) \), and sticking contact is assumed along the rotating die at the bottom of the container \((v_t = v_r = 0, \omega = \Omega_0) \). Bilateral contact \((v_r = 0) \) is enforced along the container wall \((r = d_0/2) \) and die exit \((r = d/2) \), and friction is assumed along the container wall in the form of the Tresca model with viscous regularization similar to that in the Norton-Hoff model (1). The standard details of finite-element formulation and implementation are omitted here. The computations have been carried out using the AceGen/AceFEM system (http://www.fgg.uni-lj.si/symech/).

Having the solution for the steady-state extrusion problem with torsion, the time-dependent solution for the extrusion problem with cyclic torsion is constructed by simply changing the sign of the angular velocity in a cyclic manner, \(\omega^*(r, z, t) = \pm \omega(r, z) \), while the radial and axial velocities are constant in time, \(v_r^*(r, z, t) = v_r(r, z) \) and \(v_z^*(r, z, t) = v_z(r, z) \).
This scheme is exact for a piecewise constant angular velocity of the die Ω_0. In the case of the Norton-Hoff model, the flow stress is not sensitive to prior history, so that all the governing equations are satisfied at each time instant. For a harmonic oscillation of the die, the above solution scheme can be directly applied for the case of constant extrusion force with an approximation due minor viscous effects being neglected.

It has been shown in [27] that the effect of cyclic rotation of the die on the flow pattern observed in experiments [29] is correctly reproduced by the proposed computational scheme. The characteristic radial flow with superimposed cyclic changes of the trajectory is illustrated in Fig. 2 which shows three-dimensional trajectories of the material points initially located at $r_0 = 2, 6, 10, 14, 18$ mm. It is seen that the actual deformation zone is confined to the vicinity of the die. The trajectories in Fig. 2a are computed for the KOBO extrusion process analyzed in Section 4. In Fig. 2b, the torsion angle has been increased and the frequency has been reduced by the factor of four so that the zigzag motion along the radial path is seen more clearly, while the reference problem of steady-state extrusion with torsion is the same.

3. Crystal-plasticity model of texture evolution

The texture evolution model used in this work combines the crystal plasticity model with the self-consistent grain-to-polycrystal scale transition scheme. The two ingredients are briefly introduced in this section, and the details can be found in [3, 15].

The large strain formulation of the crystal plasticity theory is applied [3]. The assumption is made that the elastic stretches are negligible compared to the plastic strains so that the elastic part is restricted to a rigid rotation. Consequently, the additive decomposition of the total velocity gradient \mathbf{L} into the elastic spin Ω^* and the plastic part \mathbf{L}^p is obtained,

$$\mathbf{L} = \Omega^* + \mathbf{L}^p. \quad (2)$$

It is common for crystal plasticity models to assume that during the elastic regime the crystallographic lattice and the material undergo the same deformation while the plastic flow does not induce any lattice rotation. The evolution of the lattice orientation, described by rotation \mathbf{R}, is thus governed by the following relation:

$$\mathbf{R} = \Omega^* \mathbf{R} = (\Omega - \Omega^p) \mathbf{R}, \quad (3)$$

where Ω and Ω^p are skew-symmetric parts of \mathbf{L} and \mathbf{L}^p, respectively.

Plastic deformation occurs by slip in a crystallographic direction \mathbf{m}' on a crystallographic plane with a unit normal \mathbf{n}', $r = 1, \ldots, M$, where M is the number of slip systems. The plastic part of the velocity gradient is then specified as follows:

$$\mathbf{L}^p = \sum_{r=1}^{M} \gamma' \mathbf{m}' \otimes \mathbf{n}' \quad (4)$$

In this work, the slip systems relevant for the fcc materials are considered, i.e. there are twelve slip systems of the $\{111\}/\{110\}$ type.

The constitutive equation relates the resolved shear stress $\tau' = \mathbf{n}' \cdot \sigma' \cdot \mathbf{m}'$, where σ' is the Cauchy stress tensor, with the slip rate γ' according to the viscoplastic power law [3],

$$\dot{\gamma}' = \dot{\gamma}_0 \text{sign}(\tau') \left| \frac{\tau'}{\tau_{sat}} \right|. \quad (5)$$

It is assumed that the critical shear stress τ'_{c} evolves according to the following hardening law [34],

$$\dot{\tau}'_{c} = \dot{h}_0 \left(1 - \frac{\tau'_{c}}{\tau_{sat}} \right)^{\beta} \sum_{q=1}^{M} h_{rq} |\gamma'^q|, \quad h_{rq} = q + (1 - q) |\mathbf{n}' \cdot \mathbf{n}^q|. \quad (6)$$

The above form of the hardening matrix h_{rq} accounts for the difference between the latent hardening for coplanar and non-coplanar slip systems. The material parameters take values applicable to copper [35], i.e. $\tau^0 = 14$ MPa, $h_0 = 232.75$ MPa, $\tau_{sat} = 138.6$ MPa, $\beta = 2.5$, $q = 1.6$, $n = 20$, $\dot{\gamma}_0 = 10^{-3}$ s$^{-1}$.

The response of a polycrystalline aggregate is obtained by averaging the responses of individual grains in the representative volume element (RVE), the local response being governed by the constitutive equations described above. As mentioned in the Introduction, the visco-plastic self-consistent (VPSC) scheme [15] is known to deliver reliable results, and this scheme is used in the present work. As a reference, the results corresponding to the simple Taylor scheme are also provided.

A grain aggregate composed of $N = 500$ grains of equal volume fractions is considered as a RVE. Initially, the grains within the aggregate have the same equiaxed shape and random distribution of lattice orientations. The macroscopic velocity gradient \mathbf{L} and the macroscopic stress tensor Σ in the aggregate are specified as

$$\mathbf{L} = \frac{1}{N} \sum_{g=1}^{N} \mathbf{L}^g, \quad \Sigma = \frac{1}{N} \sum_{g=1}^{N} \sigma^g. \quad (7)$$

In the Taylor averaging scheme, all grains in the aggregate share the same velocity gradient, viz.

$$\mathbf{L}^g = \mathbf{L}. \quad (8)$$
In the VPSC scheme, a single grain is treated as an inclusion in the effective medium of equivalent averaged properties of the aggregate, so that the local strain rate and stress tensors are related to the macroscopic quantities by the interaction equation of the form [36]

\[\sigma^e - \Sigma = -L^* \cdot (d^e - D), \]
(9)

where the Hill tensor \(L^* \) depends on the shape of the inclusion and on the averaged properties of the aggregate, while \(d^e \) and \(D \) denote, respectively, the local and the macroscopic strain rate tensors defined as symmetric parts of the corresponding velocity gradients.

The self-consistent scheme relies on the Eshelby solution to the inhomogeneity problem obtained for a linear constitutive equation. Its application in the case of non-linear viscoplasticity requires the material response to be linearized at each time increment. Different ways of linearization have been proposed in the literature. In this work, we use the affine self-consistent model as discussed in [37].

4. Results

To simulate the texture evolution in the KOBO extrusion process, the grain aggregate is subjected to the strain paths determined using the procedure described in Section 2 for the following parameters of the KOBO extrusion process: diameter reduction \(d_0 : d = 40 : 8 \) mm, die rotation angle \(\phi_0 = 4^\circ \), die rotation frequency \(f = 8 \) Hz, and extrusion velocity \(V_0 = 1 \) mm/s. The results are presented for sample strain paths corresponding to the material points initially located at \(r_0 = 0, 6, 12, 15, 18 \) mm (the corresponding final radii are \(r = 0, 1.2, 2.4, 3.0, 3.6 \) mm, respectively).

The \{111\} pole figures presenting the final texture obtained for the Taylor model and the self-consistent (VPSC) model are shown in Fig. 3. Two ways of presentation of the results are used: discrete point plots showing the orientation of each \{111\} pole for each of 500 grains and contour plots presenting the reconstructed orientation distribution functions for the same set of data. In both cases, the extrusion (axial) direction is perpendicular to the figure, and the radial direction is aligned with the horizontal axis of the figure. It is seen that the texture evolution within the extruded element is strongly heterogeneous depending on the location of the material point within the cross-section. In the center (\(r_0 = 0 \)), the texture image is equivalent to the one resulting from the classical extrusion process because the torsion affects only the material points outside the symmetry axis. For \(r_0 > 0 \), the texture looses its axial symmetry, and it exhibits the symmetry only with respect to the horizontal axis. In the material elements subjected to severe cyclic torsion (Fig. 3c-d), strong texture develops characterized by the presence of intensive poles corresponding to specific orientations of crystallites.

Figure 4 shows the inverse pole figures for the final texture presenting orientation of the extrusion axis with respect the crystal axes. Due to the cubic crystal symmetry, only the basic triangle is shown. Again, for the material points located at the center of the extruded cylinder, the texture corresponds to the classical result for the extrusion process: the extrusion...
axis is coaxial with the \langle111\rangle crystallographic directions in most of the crystallites, and it is coaxial with the \langle100\rangle directions for a small fraction of the crystallites. As the contribution of cyclic torsion increases with increasing radius, the orientation of extrusion axis with respect to the crystal frame deviates and additional orientations appear. However, there is always an important fraction of crystallites for which the extrusion axis is close to the \langle111\rangle directions. The difference in the predictions of the Taylor model and the VPSC model is clearly seen, especially concerning the fraction of crystallites with extrusion axis close to the \langle100\rangle crystal axis.

Fig. 5. \{111\} pole figures after extrusion process assisted by monotonic torsion: (a) \(r = 1.2\) mm, (b) \(r = 2.4\) mm, (c) \(r = 3.6\) mm

Fig. 6. [001] inverse pole figures after extrusion process assisted by monotonic torsion: (a) \(r = 1.2\) mm, (b) \(r = 2.4\) mm, (c) \(r = 3.6\) mm

The influence of the cyclic character of the die rotation on the texture evolution has been also studied. To this end, the texture evolution has been simulated for a hypothetical extrusion process assisted by cyclic torsion of the die. The deformation field and the trajectories of material points have been determined for a non-hardening material using the finite element method. Subsequently, evolution of crystallographic texture has been modelled along these trajectories. A micro-mechanical model combining the crystal plasticity model and the self-consistent grain-to-polycrystal scale transition scheme has been used for that purpose. For comparison, predictions of the classical Taylor averaging scheme have also been computed.

The resulting pole figures depend on the position along the radius of the extruded rod. This is because each trajectory corresponds to a substantially different deformation path. As the crystallographic texture is the source of plastic anisotropy, non-uniform texture is expected to result in strong heterogeneity of plastic properties within the rod.

The presented results confirm that the grain-to-polycrystal scale transition scheme has a significant influence on the texture image predicted by the model. Based on the results reported for other forming processes, e.g., for ECAP [16], it is expected that the predictions of the affine VPSC scheme are more reliable than those of the Taylor scheme. Nevertheless experimental validation of the present predictions is necessary and would be an interesting subject of future research.

Acknowledgements

This work has been supported by the Polish Ministry of Science and Higher Education through the KomCerMet project (contract no. POIG.01.03.01-00-013/08) in the framework of the Operational Programme Innovative Economy 2007-2013.

REFERENCES

118

Received: 10 April 2012.