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Transitions between steady states of a multi-stable stochastic system in

the perfectly mixed chemical reactor are possible only because of stochastic

switching. In realistic cellular conditions, where diffusion is limited, tran-

sitions between steady states can also follow from the propagation of

travelling waves. Here, we study the interplay between the two modes of tran-

sition for a prototype bistable system of kinase–phosphatase interactions on

the plasma membrane. Within microscopic kinetic Monte Carlo simulations

on the hexagonal lattice, we observed that for finite diffusion the behaviour of

the spatially extended system differs qualitatively from the behaviour of the

same system in the well-mixed regime. Even when a small isolated sub-

compartment remains mostly inactive, the chemical travelling wave may

propagate, leading to the activation of a larger compartment. The activating

wave can be induced after a small subdomain is activated as a result of a sto-

chastic fluctuation. Such a spontaneous onset of activity is radically more

probable in subdomains characterized by slower diffusion. Our results show

that a local immobilization of substrates can lead to the global activation of

membrane proteins by the mechanism that involves stochastic fluctuations fol-

lowed by the propagation of a semi-deterministic travelling wave.
1. Introduction
Living cells receive stimuli and process information with a circuitry of interacting

genes and proteins. From the mathematical perspective, cell fates can be identified

with attractors of the dynamical system defined by the interaction network [1].

Accordingly, cellular decisions correspond to transitions between multiple

steady states of this dynamical system [2], allowing for phenotypical differen-

tiation of genetically uniform cells [3]. Remarkably, many key biological

regulatory and signalling modules are controlled by bistable switches, often lead-

ing to binary cellular responses of crucial importance, such as death or survival,

senescence or proliferation [4,5]. In this work, we consider state-to-state transitions

leading to the activation of proteins diffusing on the plasma membrane.

1.1. State-to-state transitions in homogeneous and
heterogeneous reactors

Transitions between steady states in the perfectly mixed chemical reactor are poss-

ible only because of stochastic switching. (The classic monographs on stochastic

processes covering material used in this study are those by van Kampen [6],

Gardiner [7] and Nicolis & Prigogine [8].) In well-mixed reactors, however,

the expected time to switch t depends exponentially on the system size,

t/ expðaVÞ, a . 0, assuming a constant concentration of molecules N/V [9].

The number of reacting molecules in the plasma membrane is of order N ¼ 103 to

105 [10,11], implying an infinitesimal rate of switching between macroscopic

states of activity and inactivity in the well-mixed approximation. In spatially

extended reactors, the characteristic size of the well-mixed subcompartment is effec-

tively controlled by diffusion. Relatively small diffusion coefficients of membrane

proteins, D � 1022 to 1021 mm2 s21 [12,13], coinciding with fast reaction rate con-

stants of order c � 1/s [14] imply a correlation length l/
ffiffiffiffiffiffiffiffiffi
D=c

p
shorter than

1 mm. The membrane can be therefore heterogeneous without any molecular
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structure imposed by cytoskeletal corrals, protein scaffolds or

lipid rafts. In stochastic spatially extended bistable systems, the

diffusion-limited number of interacting molecules controls

the transition rates between macroscopic states. Interestingly,

even when in the deterministic approximation a system is mono-

stable, the volume of the well-mixed stochastic reactor can

serve as a ‘bifurcation parameter’ controlling the emergence of

noise-induced bimodality [15].

In deterministic spatially extended reactors, transitions

between steady states of bistable systems can result from the

propagation of heteroclinic travelling waves. (See the book by

Murray [16] for an extensive introduction.) A local state-to-

state transition can initiate the propagation of a travelling

front driving the whole system towards the ‘more stable’

steady state, in which the system would eventually persist.

Crucially, for a bistable birth–death process, the deterministi-

cally preferred steady state (global deterministic attractor)

can be different from the steady state in which the stationary

probability distribution (SPD) concentrates (global stochastic

attractor) [17,18]. For gradient systems, the macroscopic (deter-

ministic) state-coexistence line in the parameter space is

obtained for the potential which exhibits minima of equal

depth. In spatially extended systems, this coexistence line corre-

sponds to standing heteroclinic wave solutions. The stochastic

state-coexistence line results from the solution of the (stochastic)

chemical master equation, and in particular cases can be found

analytically in the limit of zero noise by the Maxwell-type con-

struction [19]. This implies that the spatially extended reactor

may remain in a stochastically preferred steady state until a

local but sufficiently large fluctuation initiates a semi-determi-

nistic transition of the whole reactor to the state preferred in

the deterministic approximation [20].

Simulations of Newtonian hard sphere dynamics provided

evidence [21] that in the bistable perfectly stirred system the

global attractor is correctly defined by the (stochastic) master

equation, while using the Fokker–Planck equation with

either linear (additive) or nonlinear (multiplicative) noise

may lead to incorrect predictions [9]. Baras et al. [21] used the

Bird’s direct simulation Monte Carlo method [22] to study

the chemical kinetics in a homogeneous Boltzmann gas by

associating the entire system volume with a single collisional

cell. The method was proposed to perform simulations of

rarified gas for which the Knudsen number is greater than 1,

which is equivalent to the assumption of perfect homogeneity.

By employing on-lattice kinetic Monte Carlo (KMC) simula-

tions, we recapitulate here this result in the infinite diffusion

limit (see [23]). We will demonstrate, however, that in reactors

characterized by finite diffusion the global attractor can be

prescribed either through the deterministic or through the

stochastic approach, depending on the diffusion coefficient.

Interestingly, the deterministic description in which the system

is modelled by means of reaction–diffusion equations predicts

the same global attractor as that obtained in the Langevin

approach based on the macroscopic (deterministic) law of

evolution into which an external additive noise term is incor-

porated. This places the discrepancy between the master

equation and the diffusion approximation in the new context.

1.2. State-to-state transitions in biological
membrane systems

The highly organized structure of cells, comprising zones

of confinement [24,25] or altered motility [26–28], should
allow signalling systems to employ intricately both transi-

tion modes, i.e. stochastic switching and semi-deterministic

travelling wave propagation. Thus far, selected aspects of

these phenomena have been investigated in the context

of membrane-proximal signalling and spontaneous cell polar-

ization. It has been shown that the self-recruitment of

cytoplasmic proteins to the cell membrane leads to the gener-

ation of a single cluster of active molecules and thus may

define a unique axis of cell polarity [29]. A local increase in

the density of molecules in the presence of positive feedback

is able to work as an activating switch [30]. In the context of

Ras nanoswitches, it has been demonstrated that at uniform

slow motility the sole positive feedback in the interaction net-

work of membrane-anchored proteins generates expanding

activity patches [31]. In excitable networks, transient clans of

activated molecules emerge and vanish spontaneously, even

without directional spatial cues [32,33]. Spatio-temporal oscil-

lations of membrane-recruited Min proteins in Escherichia coli
were demonstrated to be enabled by the inherent noise [34];

on the other hand, macroscopically stable homogeneous oscil-

lations can be abolished by local fluctuations, depending

critically on the size and dimensionality of the reactor [35]. In

stimulated thin neuronal protrusions, it has been observed

that slowly diffusing autocatalytic CaMKII kinases exhibit

pulsatile compartmentalized activity [36]; a spatially extended

bistable system can spontaneously generate subregions, where

different steady states dominate [37]. Self-organized foci of

activity can generate activating travelling waves [38]. Propa-

gation of waves can give rise to long-lasting cell polarity

when the fast-diffusing inhibitor accumulates proportionally

to the amount of slow-diffusing activated molecules so that

the wavefront can be stalled. This mechanism, known as

wave pinning, has been investigated for bistable systems

[39,40]. When the diffusion coefficient of the inhibitor is very

large (in principle, infinite), the mechanism of polarization is

known as the local excitation, global inhibition [41,42].
1.3. Overview of results
In order to provide a comprehensive view and to be able to recog-

nize new mechanisms of macroscopic state-to-state transitions

available in spatially extended systems, we study a generic

bistable system of membrane-bound autophosphorylating

kinases and phosphatases by means of KMC simulations on

the hexagonal lattice. These simulations are compared with the

simulations of the Markov process in the perfectly mixed reactor

and with the deterministic approximation, i.e. reaction–diffusion

partial differential equations (PDEs).

In the limit of infinite diffusion, unsurprisingly, the

SPD in the spatial on-lattice KMC simulations converges

to the SPD obtained from Gillespie algorithm simulations

of the well-mixed system. For slower diffusion, however,

we observe that the SPD is qualitatively different from the

case of the perfectly mixed system; specifically, the bimo-

dality can emerge or vanish. We demonstrate that the

probability mass fraction concentrated in the stochastically

and deterministically preferred steady states depends on

the speed of diffusion and properties of the reactor, such as

volume and shape. We show that the state-to-state transitions

in large reactors can follow from the propagation of semi-

deterministic travelling waves. These waves can be induced

deterministically by the externally triggered state transition

in a sub-volume of the spatially extended reactor; they can
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also arise spontaneously as a result of to local stochastic fluc-

tuations. We found that the expected time to transition on the

membrane grows exponentially with diffusivity. For a given

diffusion coefficient, the expected time to transition increases

exponentially with the volume of the reactor V as long as the

reactor is perfectly mixed, and then it decreases as 1/V. At

slow diffusion, for some parameters, the reactor may exhibit

a dynamical structure of perpetual local activations and inac-

tivations, and refrain from assuming uniformly a single

steady state. Finally, we identify a novel mechanism in

which the coexistence of stochastic and deterministic effects

can give rise to the global activation of membrane proteins

in response to a localized cue.
Interface
10:20130151
2. Material and methods
2.1. Model
The analysed system of reactions involves two molecular species:

kinases and phosphatases. Each kinase molecule contains two indis-

tinguishable phosphorylation sites, hence it can assume three states:

dephosphorylated, monophosphorylated or bisphosphorylated.

The (auto)phosphorylation activity of a kinase increases with its

phosphorylation level. Phosphatases are explicitly present in the

system although they are not modified in any process.

The interaction network comprises the variant of the two-

step phosphorylation–dephosphorylation motif, where kinases

autophosphorylate one another and are dephosphorylated by

phosphatases, which act non-specifically with respect to the

level of phosphorylation of a substrate kinase [15,43]. The system

encompasses the simplest case of the ubiquitous multi-site phos-

phorylation and exhibits bistability [44,45]. Since it consists of

eight reactions, it may be viewed as far from minimal [46]; however,

in contrast to other small bistable systems [47,48], all its reactions

are bimolecular and elementary (i.e. only one of two reacting

molecules changes its state), rendering the system appropriate

for microscopic lattice-based simulations of diffusion-influenced

reaction kinetics.

2.2. Reaction – diffusion system: kinetic Monte Carlo on
the lattice

The spatial and stochastic simulations of the system are per-

formed using the on-lattice KMC at the single molecule

resolution. Molecules are allowed to hop between adjacent sites

of a hexagonal lattice with propensity proportional to the dif-

fusion coefficient. It is assumed that two molecules cannot

occupy the same lattice site. Kinases K and phosphatases

P can react only when in adjacent sites according to the

following rules:

Phosphorylation by a dephosphorylated kinase:

KþK �2cL
1! KþKp, ð2:1aÞ

KþKp �
cL

1! KþKpp: ð2:1bÞ

Phosphorylation by a monophosphorylated kinase:

Kp þK �2cL
2! Kp þKp, ð2:2aÞ

Kp þKp �
cL

2! Kp þKpp: ð2:2bÞ

Phosphorylation by a bisphosphorylated kinase:

Kpp þK �2cL
3! Kpp þKp, ð2:3aÞ

Kpp þKp �
cL

3! Kpp þKpp: ð2:3bÞ
Dephosphorylation (by a phosphatase):

P þKp �
cL

0! P þK, ð2:4aÞ

P þKpp �
2cL

0! P þKp: ð2:4bÞ

The relative activity of a kinase increases strongly with its phos-

phorylation level: c1 , c2 , c3 (parameter values are given in the

electronic supplementary material, table S1). Two molecules can

diffuse away without reacting; on the other hand, a series of reac-

tions involving two molecules is allowed, and such consecutive

events are more probable at small diffusion coefficients when

contacts last longer. The total numbers of kinases NK and phos-

phatases NP are constant in a simulation and their fractional

surface concentrations (i.e. the fraction of lattice sites occupied

by a species) are assumed to be rK ¼ 0:4 and rP ¼ 0:1, respect-

ively. For the sake of simplicity, we assume the same motility

M of kinases and phosphatases; the propensity of hopping to a

neighbouring empty site of a hexagonal lattice is M/6. We will

consider both spatially uniform and non-uniform motility to

account for subdomains of slower diffusion, e.g. large lipid

rafts [27]. In a two-dimensional reactor, the macroscopic diffu-

sion coefficient D depends on the total fractional concentration

of membrane molecules r ¼ rK þ rP and the lattice constant ‘,

D ¼ ð1� rÞ‘2M
4

: ð2:5Þ

The lattice constant is equal to the characteristic mean centre-to-

centre spacing between neighbouring membrane proteins, which

is of order ‘ ¼ 10 nm [49].
2.3. Spatially homogeneous Markov process:
Gillespie algorithm

The Gillespie algorithm for KMC was employed for stochastic

simulations in the limit of the perfectly mixed chemical reactor

[50]. To provide a basis for the comparison of well-mixed

Gillespie (superscript G) with on-lattice (superscript L) KMC

simulations, kinetic rate constants cL
1 ; c

L
2 ; c

L
3 ; c

L
0 have to be rescaled

according to the general rule

cG
i ¼

nc

V
cL

i ; ð2:6Þ

which reflects the fact that the propensity of each reaction in the

perfectly mixed reactor is inversely proportional to the volume

(or, here, surface) of the reactor V and is proportional to the

number of possible contacts (nc ¼ 6 for the hexagonal lattice).

The scaling ensures that in the limit of M!1 the SPD obtained

in on-lattice KMC simulations converges to that obtained with

Gillespie KMC simulations (see the electronic supplementary

material, figure S1c) [23].
2.4. Spatially extended deterministic approximation:
partial differential equations

We will also consider the deterministic limit of the on-lattice

KMC described by a system of PDEs. For this approximation,

kinetic rate constants cL
1 ; c

L
2 ; c

L
3 ; c

L
0 are scaled according to the fol-

lowing rules:

ci ¼ 6rKcL
i ¼: VKcL

i for i [ f1; 2; 3g, ð2:7aÞ
c0 ¼ 6rPcL

0 ¼: VPcL
0 : ð2:7bÞ

These coefficients are used to parametrize dimensionless reaction–

diffusion PDEs. Since we assume that the diffusion coefficient of

kinase molecules is independent of their phosphorylation level,

we may introduce fractional concentrations of dephosphorylated,

monophosphorylated and bisphosphorylated kinases denoted by
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k, kp and kpp (k þ kp þ kpp ¼ 1). The fraction of phosphorylated

kinases, kp þ kpp, will be considered as a measure of activity of

the system. The resulting PDEs read as follows:

@k
@t
¼ Dr2k þ c0kp � 2ðc1k þ c2kp þ c3kppÞk; ð2:8aÞ

@kp

@t
¼ Dr2kp þ 2ðc1k þ c2kp þ c3kppÞk þ 2c0kpp

� ðc1k þ c2kp þ c3kppÞkp � c0kp; ð2:8bÞ
@kpp

@t
¼ Dr2kpp þ ðc1k þ c2kp þ c3kppÞkp � 2c0kpp: ð2:8cÞ

Evolution of the above system was simulated using the finite-

element method implemented in COMSOL MULTIPHYSICS (Comsol

Inc., Sweden).

For a certain range of parameters, equations (2.8a–c) exhibit

bistability (figure 1). The stable steady state corresponding to a

high and a low value of kp þ kpp will be referred to as the active

and the inactive state, respectively. For default parameters:

c0 ¼ 1, c1 ¼ 0.02, c3 ¼ 4 (see the electronic supplementary material,

table S1) and c2 ¼ 0.2, in the active state kp þ kpp ¼ 0.86 and in the

inactive state kp þ kpp ¼ 0.07 (see the electronic supplementary

material, figure S1b).

2.5. Estimation of the stationary probability distribution
for rarely switching systems

An important characteristic of (homogeneous or heterogeneous)

stochastic bistable systems is the expected time to switch from

one to the other steady state, or the mean first-passage time

(MFPT). Numerical estimates of the MFPT for activation ton

and deactivation toff can be obtained from running multiple

(parallel) simulations with initial conditions in both basins of

attraction. When switches are too rare to provide a reliable esti-

mation of the SPD from a single trajectory, MFPTs allow one to

quantify relative probabilities of finding a system in the basin

of attraction of the active steady state pon ¼ toff/(ton þ toff ) and

inactive steady state poff ¼ 1 2 pon.

If n independent simulations of the initially inactive system

were running until finite times T1�i�n; it could happen that

spontaneous activations were observed only in a fraction of
trajectories at times ti � Ti. Then one can use the maximum-

likelihood estimate for ton,

ton ¼
Xn

i¼1

minðti;TiÞ
non

; ð2:9Þ

where non is the number of observed on switches [51]; toff can be

estimated analogously.
3. Results
3.1. General considerations
We are interested primarily in macroscopic state-to-state

transitions of a bistable reaction–diffusion Markov process

on the membrane. Depending on the chemical reaction rate

parameters, diffusion coefficients of molecules and the size

of the domain, the process can be approximated by means of

the perfectly mixed stochastic system, perfectly mixed deter-

ministic system or the spatially extended deterministic system:

— The reactor can be considered as perfectly mixed when its

diameter L is smaller than the characteristic distance l tra-

velled by a molecule in the characteristic time tr between

two subsequent reactions. In estimations of l and tr, we

employ the rate constant c0, because the dephosphorylation

reaction is both relatively fast and density-independent

(rP is constant, while densities of kinases at a particular

phosphorylation level evolve in time). We assign tr ¼ 1/c0

and obtain l ¼ 2
ffiffiffiffiffiffiffiffi
Dtr

p
¼ 2

ffiffiffiffiffiffiffiffiffiffi
D=c0

p
[6,52]. When l . L, the

positions of a molecule subjected to subsequent reaction

events can be regarded as uncorrelated.

— The process in the well-mixed reactor can be considered in the

deterministic approximation when MFPTs of macroscopic

state-to-state transitions are longer than the duration of

other processes modifying the system; for instance, the dur-

ation of the cell cycle T. The characteristic MFPT t grows

exponentially with the size of the well-mixed reactor [9],

t ¼ 1

c0

� �
expðrPVÞ: ð3:1Þ

When t� T; the process can be considered as deterministic,

in the sense that the chance for a stochastic transition in the

considered time interval T is negligible.

— In the non-mixed reactor, the volume of the mixed

subcompartment in two dimensions can be defined as

V0 ¼ D/c0. The characteristic transition time for such a

sub-volume is

t0 ¼
1

c0

� �
expðrPV0Þ: ð3:2Þ

As we will see, a stochastic transition in any subcompart-

ment, depending on parameters, may trigger travelling

waves leading to the macroscopic state-to-state transition

of the whole reactor. In large reactors for which V0 , V,

the MFPT for such locally induced transition t� is given

as the waiting time of V/V0 concurrent processes,

t� ¼ V0

V

� �
1

c0

� �
expðrPV0Þ ¼

V0

V

� �
t0: ð3:3Þ

It is assumed here that the expected time to switch is

much longer than the time of the wavefront propagation

over the whole reactor, and that every local ignition can

effectively give rise to a propagating front. When

t� � T; the process can be considered deterministic: the
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Figure 2. SPDs for different motility coefficients and square domains of different sizes. The lattice-based KMC simulations were performed on toroidal domains (i.e.
square domains with periodic boundary conditions) for (c1 ¼ 0.02, c2 ¼ 0.2) and the remaining parameters with their default values: c3 ¼ 4, c0 ¼ 1. In the last
column, SPDs were obtained using (spatially homogeneous) Gillespie algorithm simulations. The MFPTs ton and toff are shown in each panel. A small number in
square brackets reports the number of observed switches non or noff if smaller than 20. The SPD is marked as ‘undetermined’ when no switches were observed
during simulations. (Online version in colour.)
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chance for a stochastic state-to-state transition is negligible

at the considered time scale.

Although in the above considerations we used D, in the

further analysis of the on-lattice system the speed of diffusion

will be expressed in terms of the motility M. According to

equation (2.5), for default parameters in non-dimensionalized

units M ¼ 8D.

3.2. Different preferred steady states of the stochastic
system and its deterministic approximation

The bistability domain of equations (2.8a–c) in the (c1, c2) par-

ameter space for fixed c3 ¼ 4 and c0 ¼ 1 is shown in figure 1.

The domain is divided by the c2(c1) line (dashed) on which

the standing wave solutions exist. These heteroclinic sol-

utions connect the active and inactive stable steady states.

For parameters from above the dashed line, travelling

waves propagate from the active to the inactive state. This

can be interpreted as the domination of the active steady

state. For parameters below the line, the travelling waves pro-

pagate in the opposite direction, i.e. the inactive state is

dominant. This deterministic separatrix (dashed line) can be

compared with the separatrix for the stochastic perfectly

mixed system (dotted line). For parameters from the latter

line the SPD of the perfectly mixed process described by reac-

tions (2.1a–2.4b) remains bimodal in the limit of the infinite

reactor volume. In the same limit, for parameters above

(below) the line, the SPD converges to the Dirac delta in the

active (inactive) steady state [17]. Interestingly, these two

separatrices do not overlap and they delineate a region

where the system of PDEs prefers the active state, while the

stochastic perfectly mixed system in the limit of the infinite

reactor volume is inactive. The divergence of these separa-

trices suggests that for realistic reactors characterized by a

finite diffusion the choice between the active and the inactive

state depends on the speed of diffusion and the size or even

shape of the reactor [20].
3.3. Diffusion and size of the reactor control
system activity

Here, we analyse the expected activityof the kinase–phosphatase

system by means of the SPD obtained in on-lattice KMC

simulations, as a function of the compartment volume (surface)

V and reactants motility coefficient M. First, let us remember

that when M!1 the SPD from on-lattice KMC simulations

converges to that obtained from Gillespie KMC simula-

tions (M ¼1). For M ¼ 3000, the difference is still discernible

(last two columns in figure 2) but the agreement becomes

nearly perfect for M ¼ 10 000 (see the electronic supplementary

material, figure S1c). In figure 2, we consider the case of

(c1 ¼ 0.02, c2 ¼ 0.2), for which the stochastic system and its

deterministic approximation are preferentially in the active

state. As shown, the probability of the active state increases

with V for finite M as well as in the limit of the perfectly

mixed reactor (M ¼1, last column in figure 2). For large

motility (M � 300), the active state probability increases from

nearly 0 to almost 1 as the compartment volume increases

from V ¼ 10 � 10 to V ¼ 30 � 30. It demonstrates that the rela-

tive stability of steady states is controlled by the volume of the

reactor. For perfectly mixed systems, this effect has been

reported previously by Zheng et al. [53].

In figure 3, we consider a more interesting case of (c1 ¼ 0.02,

c2 ¼ 0.15), for which the stochastic perfectly mixed system is

preferentially in the inactive state, but its deterministic approxi-

mation is preferentially active. In this case, in addition to

the compartment volume, the activity of the system is con-

trolled by the substrate motility M. For chosen parameters,

the system is preferentially in the active state for small motility

(M ¼ 30) and in the inactive state for large motility (M � 1000).

For intermediate values (100 �M � 300), the choice of the

dominant state is controlled by the volume of the reactor.

The tendency of the system to inactivate as M! 1 is visible

also in figure 2, although it is pronounced only for small

system volumes, for which the perfectly mixed system remains

prevalently in the inactive state.
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in (a). For the square-shaped reactor, the expected ton grows exponentially
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ffiffiffi
M
p
Þ but slower than

� expðMÞ.
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In the subsequent analysis, we employ the mean first-

passage time of the transition from the inactive to active

steady state ton and the time for the reverse transition toff. At

large substrate motility (M � 1000), MFPTs (given in each

panel of figures 2 and 3) increase dramatically with the

volume of the compartment. It is known that in a perfectly

mixed reactor MFPTs increase exponentially with its volume

[9]. In the case of finite motility, the situation is more compli-

cated. Let us consider the case of a fixed motility for which

one can determine a characteristic distance l and the well-

mixed sub-volume V0. When the reactor diameter exceeds l,

it should be considered as a composition of multiple (�V/V0)

well-mixed sub-reactors. In such a structured reactor, the tran-

sition to the active steady state can result from a stochastic

switch occurring in any of these sub-reactors, followed by the

propagation of the activating wave, as discussed in §3.4. In

this regime, ton decreases with the number of well-mixed sub-

compartments (�V/V0), and thus it is inversely proportional

to the volume of the reactor, ton / 1=V. These diverging limit-

ing behaviours jointly result in the non-monotonic dependence

of ton on the volume of the reactor (figure 4a): ton increases

exponentially until the volume of the reactor V exceeds the

volume of the well-mixed compartment V0, and then decreases

with the reactor volume as ton / 1=V. Since larger motility

implies larger perfectly mixed sub-volumes, the volume of

the reactor for which the MFPT reaches its maximum increases

with motility. The activation and inactivation processes are not

symmetric, because for given parameters either activating or

inactivating travelling waves may propagate. For the parameters

considered in figure 4a, the activating travelling waves propagate.

As a result, after a local inactivation, the activity is promptly

recovered by waves from surrounding subcompartments, and

thus the only possible mode of transition towards inactivity

requires simultaneous inactivation of the whole reactor. Conse-

quently, while ton decreases for small motility (V . V0 regime)

and increases for large motility (V , V0 regime), toff grows

exponentially with V in both regimes (figures 2 and 3).

Irrespective of the volume of the reactor and for both con-

sidered values of c2, one can observe that for sufficiently low

motility the active state is preferred. There are two properties

of the system that give rise to such behaviour at decreased moti-

lity: (i) in addition to the less effective distributive mechanism,

the more effective processive phosphorylation reactions are

more likely to happen (when two kinase molecules stay in
contact longer, it is more probable that the substrate kinase

will be phosphorylated twice by the same catalytic kinase;

also, once the substrate kinase is phosphorylated it becomes

more amenable to ‘fire back’ and to activate the first kinase)

and (ii) the catalytic capacity of less abundant phosphatase

molecules becomes dampened after they saturate their



t = 0

0

1

100 200 300 400 500 0

1

500 1100

0

1

x (  t = 150)

t = 150
t = 300

(a)

t

(b)

fr
ac

tio
ns

 o
f 

ki
na

se
s (c)

(d)

k

kp kpp

kpp

kpp

kp

kp

k

k

fr
ac

tio
ns

 o
f 

ki
na

se
s

fr
ac

tio
ns

 o
f 

ki
na

se
s

Figure 5. Kinase activity wave propagation on the cylindrical domain 30 � 1100 for parameters (c1 ¼ 0.02, c2 ¼ 0.15) and M ¼ 3000. At t ¼ 0, a fragment of
the cylinder (30 � 100) is in the active state. (a) Three snapshots from an on-lattice KMC simulation. (b) Time profile of the kinase activity profile integrated over
the whole domain. (c) Kinase activity profile across the domain at time t ¼ 150, averaged using the sliding window of width w ¼ 11. (d ) Kinase activity profile
obtained from corresponding PDEs in COMSOL. (Online version in colour.)

t = t0

(a)

rsif.royalsocietypublishing.org
JR

SocInterface
10:20130151

7

neighbourhoods (a phosphatase molecule can dephosphorylate
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Figure 6. Spontaneous initiation of the activity wave in a subdomain of the
cylindrical domain 20 � 1000 for parameters (c1 ¼ 0.02, c2 ¼ 0.15) and
M ¼ 1000. The expected waiting time for the activation is ton ¼ 596 s.
(a) Four snapshots from an on-lattice KMC simulation (inessential parts of
the reactor are truncated) and (b) time profile. (Online version in colour.)
3.4. Propagation of waves of kinase activity on
cylindrical domains

In this section, we consider travelling wave propagation on long

cylindrical domains. Elongated thin membrane protrusions

constitute, for example, pseudopodia of motile cells and dendri-

tic spines of neurons. First, we focus on parameters (c1 ¼ 0.02,

c2 ¼ 0.15) lying in the range in which the preferred steady

states for well-mixed and spatially extended reactors diverge

(figure 1). For these parameters and large motility, M ¼ 3000,

the 30 � 30 reactor is principally inactive (figure 3). However,

in a semi-one-dimensional array of a large number of such reac-

tors the activating travelling waves can propagate as predicted

by the deterministic approximation, equations (2.8a–c). In

figure 5a, we show snapshots from on-lattice KMC simula-

tions of the stochastic travelling wave in the cylindrical

domain 30 � 1100 (top–bottom boundary conditions are peri-

odic, left–right reflecting). At t ¼ 0, the left 30 � 100 area

(‘seed’) is assigned to be in the active steady state and the rest

of the cylinder, 30� 1000, is set to the inactive state. At the

very beginning of the simulation, the transition between the

active and the inactive region becomes smooth and a wave pro-

file is formed, which then propagates so that eventually the

whole reactor adopts the active steady state (figure 5a,b). This

surprising divergence of system behaviours in a small 30 � 30

and in a long 30� 1100 reactor is due to the fact that motility

M ¼ 3000 renders the small reactor mixed, but it is by far too

small to mix the longer reactor: 30=2 , l	 1100, where 30/2

is the effective diameter of the 30� 30 reactor in periodic

boundary conditions, and l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M=ð2c0Þ

p
. Therefore, in the

long reactor, the system converges to the attractor preferred

by the deterministic approximation. Moreover, since the

number of molecules on the wavefront (the width of which

grows /
ffiffiffiffiffiffiffiffiffiffiffi
M=c0

p
) is quite large, the stochastic wave profile

resembles the deterministic profile obtained from PDEs

(figure 5c,d).

For parameters (c1,c2) below the deterministic standing wave

line (figure 1), the travelling wave can propagate in the opposite

direction such that the whole system becomes inactive, provided

that the diffusion is sufficiently fast, as discussed in §3.5 (see the

electronic supplementary material, figure S6).
With increasing motility, the velocity of the wave in on-

lattice KMC simulations approaches the velocity in PDEs,

which is /
ffiffiffiffiffiffiffiffiffi
Mc0

p
(see the electronic supplementary material,

figure S3). The number of molecules on the length of the wave-

front increases with motility and, as a consequence of the

reduced noise, at higher motilities the activating front propagates

more steadily. The size of the activating seed also increases with

motility and at higher motilities seeds are more likely to be swept

away (see the electronic supplementary material, figure S2). Con-

sequently, as we will see in §3.5, at large motility the stochastic

wave initiations are much less frequent: they need the creation

of a larger seed, and thus the initiating stochastic fluctuation

must involve a larger number of molecules.

3.5. Spontaneous wave activation
The two already discussed transition modes, the stochastic

switching in a well-mixed system and semi-deterministic tra-

velling wave propagation in a spatially extended system, can

work in conjunction. The initially inactive system can be

excited owing to a local fluctuation, which could in turn

initiate an activating travelling wave. We investigate this

mechanism in the system with (c1 ¼ 0.02, c2 ¼ 0.15) and

M ¼ 1000 in the semi-one-dimensional reactor of V ¼ 20 �
1000 (figure 6). A spontaneous local activation, occurring in
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a random place of the reactor, gives rise to two fronts, which

propagate in opposite directions, driving the whole reactor

to the active state. The average time to switch on was esti-

mated as t20�1000
on ¼ 596 (from non ¼ 16 switches). Based on

the analysis in §§3.3 and 3.4, the activation mechanism can

be understood as follows: the 20 � 1000 reactor can be con-

sidered as an array of 50 smaller 20 � 20 sub-reactors.

These small sub-reactors switch on and off with switching

times t20�20
on ¼ 3:52� 104, t20�20

off ¼ 2:02� 103 (figure 3).

Thus, the expected time to switch on in the whole reactor

can be estimated as ton ¼ t20�20
on =50 ¼ 700, which agrees

(unexpectedly well) with the measured t20�1000
on ¼ 596.

The same reasoning fails for a two-dimensional reactor of

V ¼ 200 � 200. For the same parameters, a spontaneous acti-

vation was not observed in long simulations (with total

simulation time � 2 � 104). In the two-dimensional case, the

spontaneously appearing seeds of activity are extinguished

by the inactive neighbourhood more easily than in the reactor

of cylindrical geometry. The spontaneous activation was

observed only after reducing motility to M ¼ 300 (figure 7).

Increasing motility increases the number of communicated

molecules and thus reduces the switch rate: ton grows exponen-

tially with the motility in the case of the two-dimensional

reactor (figure 4b). One could expect that ton(M) for the one-

dimensional reactor grows / expð
ffiffiffiffiffi
M
p
Þ. However, such

dependence does not fit well to obtained data points, although

it yields a better fit than ton / expðMÞ. The divergence from

the ‘/ expð
ffiffiffiffiffi
M
p
Þ’ prediction can be due to the fact that in the

cylindrical reactor ton(M) spans the large range of motilities

involving the change of the stochastically preferred steady

state (figure 3).

The observation that the reduced motility increases the

probability of system activation suggests that regions of reduced

diffusivity can serve as ignition points for the activation of the

whole reactor. We verified this hypothesis by performing simu-

lations of the 200 � 200 domain with a spatially varying

diffusion coefficient. The overall motility was set to M ¼ 1000,

while in a circular region of r¼ 14 motility was reduced 10

times to Mpatch¼ 100. In order to minimize possible

peculiarities caused by the sharp jump on the brink of the

patch, the motility in its vicinity was increasing linearly, concen-

trically until reaching the outer circle of radius r0 ¼ rþ 10;

beyond which M ¼ 1000. Within this set-up, we observed that
the patch of lowered diffusivity acts as an ignition centre: sto-

chastic activation switches are much more probable in this

region, and the local activation, with some probability, again,

can start the semi-deterministic travelling wave (figure 8). As

one can expect, ton decreases sharply with the radius of the

patch (see the electronic supplementary material, figure S7).

For completeness, it should be noted that, when the sto-

chastic and deterministic global attractors coincide in the

active state (which happens for parameters c1 and c2 above

the stochastic bimodality curve in figure 1), the initially inac-

tive system is more likely to be activated by local stochastic

fluctuations: for small diffusion, the activating seeds plausi-

bly appear in several places simultaneously, giving rise to

several travelling fronts (see the electronic supplementary

material, figure S4).

In the already considered case of (c1 ¼ 0.02, c2 ¼ 0.06)

depicted in the electronic supplementary material, figure S6,

the stochastic and deterministic global attractors coincide

in the inactive state. In this case, simultaneous local inactivations

can occur probably in various places of the compartment. To

avoid spontaneous switching and illustrate the possibility

of the propagation of the inactivating wave, we considered

M ¼ 10 000 in the wider 50 � 1100 reactor, where stochastic

switches are rare.

Interestingly, in the 30 � 1000 toroidal domain at

M ¼ 300, the reactor is able to maintain a fractional activity

(see the electronic supplementary material, figure S5). Since

in the parameter space the point (c1 ¼ 0.02, c2 ¼ 0.06) is

closer to the curve of the deterministic standing wave

than point (c1 ¼ 0.02, c2 ¼ 0.2), it can be expected that for

(c1 ¼ 0.02, c2 ¼ 0.06) inactivating travelling waves are not

formed as easily as activating waves for (c1 ¼ 0.02, c2 ¼ 0.2).

Hence, scattered local on or off switches do not propagate;

they render the reactor dynamically yet persistently spatially

structured. As a consequence, most of the probability mass is

contained between stable steady states of the deterministic

system, in contrast to all previously analysed cases.
4. Discussion
In this study, in order to understand the principal mecha-

nisms of biochemical information processing and cellular
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decision-making, we systematically investigated transition

modes available to a generic bistable reaction system in the

spatially extended reactor. We used primarily microscopic

simulations on the two-dimensional lattice complemented

by the analysis of approximations neglecting either stochasti-

city or spatial resolution. In the well-mixed compartment (the

size of which is determined by the diffusion coefficient),

the transition rates between macroscopic steady states of the

system decrease exponentially with the number of reacting

molecules or the size of the compartment. In larger, non-

mixed compartments, transition rates are controlled by the

number of diffusively communicated molecules, which is typi-

cally much smaller than the total number of molecules. We

demonstrated that the local stochastic state-to-state transitions

occasionally initiate travelling waves, which expand in the

semi-deterministic manner leading to the (in)activation of

the whole reactor: either a local activation or inactivation can

be amplified spatially, depending on the reaction rate

constants. At increasing diffusivity, more molecules become

communicated and local transitions become less probable.

On the other hand, travelling waves can propagate only

when the diffusion is sufficiently fast. At large diffusion coeffi-

cients, the wavefronts are thicker, contain more molecules

and thus are less affected by fluctuations. As a result, in the

limit of large diffusion, the velocity of a wavefront in the dis-

crete stochastic system converges to that of its deterministic

approximation modelled by PDEs.

Importantly, there exists a range of parameters for which the

macroscopic, stochastically preferred steady state (or global sto-

chastic attractor, i.e. the state which is prevalently occupied in a

perfectly mixed regime) is different from the steady state pre-

ferred deterministically (or global deterministic attractor, i.e.

the state which expands as a result of the propagation of travel-

ling waves) [17,20]. We demonstrated that in this range of

parameters, even when a small compartment is predominantly

inactive, a travelling wave may spread the active state over the

larger reactor. If parameters are such that global stochastic

and deterministic attractors converge (in either the active or

inactive state), the system is effectively monostable, i.e. the

escapes from the ‘less stable’ macroscopic steady state can

arise spontaneously with a high probability. Consequently,

the reactor settles in the more stable steady state or remains
spatially heterogeneous with its regions flipping between

steady states, giving rise to transient clans of activated mol-

ecules [37]. Our macroscopic analysis thus implies that the

well-known mechanism of state-to-state transitions arising in

bistable reaction–diffusion systems is restricted only to the sub-

domain of the bistability domain in the parameter space. Only

these bistable systems which exploit in the parameter space

the region of diverging stochastic and deterministic attractors

are expected to be both resistant to spontaneous autoactiva-

tion (caused by stochastic switching) and sensitive to external

stimuli (allowing for deterministic activation by means of the

propagation of travelling waves). This physiologically rele-

vant region in the parameter space (delineated by two

separatrices in figure 1) grows with the increasing differences

between reaction rate constants, c1 , c2 , c3. We note that the

catalytic activity of a kinase can grow with its phosphorylation

level even stronger than is assumed in the analysed system, i.e.

kinetic rate constants can span several orders of magnitude:

c1 	 c2 	 c3 [54].

In living cells, travelling waves may be induced by an

external stimulus; for example, upon binding of a specific

extracellular ligand (antigen and chemoattractant) by

membrane receptors. We demonstrated that partial immobil-

ization of a tiny fraction of kinases on the membrane may

lead to the global activation of the system. Since the locally

constrained motility does not lead to a locally increased sur-

face concentration of molecules, this activation mechanism

is different from the recently proposed density-dependent

switch [30]. In the mechanism introduced here, there is an

inherent threshold number of activated clustered molecules

required for triggering a travelling wave with a sufficiently

high probability. It has been proposed theoretically and

recently investigated numerically that a tiny fraction of

membrane receptors clustered upon binding of antigens are

capable of initiating immunogenic responses in B cells (see

[55] and references therein). In other cases, proteins can

become co-sequestered in lipid microdomains after the acti-

vation. Such confinement reduces their lateral diffusion and

presumably facilitates subsequent signalling events [56].

We analysed exhaustively the SPD with respect to the dif-

fusion coefficient and size of the reactor. In the context of the

recruitment of cytoplasmic proteins to the membrane milieu,
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Abel et al. [57] showed that decreasing motility or altering

the depth of a submembrane layer promotes or suppresses

SPD bimodality, depending on the topology of the interac-

tion network. In their case, the unimodal distribution arises

from averaging over the reactor and peaks between two

steady states. In the system analysed in this study, the

unimodality results from the preference of one of two

steady states of the deterministic approximation. We

showed that the SPD is controlled by both the motility of

molecules and the volume of the reaction chamber. In our

case, a single reaction rate parameter dictates the state to

which the system converges at the increasing diffusivity.

We found that, despite the system being bistable, the SPDs

may be bimodal only in small well-mixed compartments.

Large compartments have, generically, unimodal SPDs

analogously to the perfectly mixed systems of large numbers

of molecules [20,58].

In a spatially extended system, which in the case of slow

diffusion can be considered as a composition of multiple

well-mixed reactors, the expected time to activation has

been shown to shorten with increasing volume, which is in

stark contrast to a perfectly mixed reactor, for which the

time increases exponentially with the volume. Furthermore,

spatially extended reactors of similar volumes but different

geometries can have vastly different expected times to acti-

vation. In a two-dimensional reactor, the minimal size of

the ‘nucleation centre’ required for the initiation of a wave is

larger than in a semi-one-dimensional reactor, and thus the

expected time to the stochastic activation is longer. Propagation

of waves is also dependent on the reactor geometry. In a semi-

one-dimensional reactor, the front curvature is negligible,

while in a two-dimensional reactor the curvature reduces the

velocity of the travelling front, and may prohibit spreading of

the wave when the initial cluster is too small [55].

Our work provides further evidence that biochemical

reactions on the membrane can be reproduced only with

spatial stochastic simulations. In addition to the discussed

phenomena, in which local stochastic fluctuations lead to

global state-to-state transitions not captured by deterministic

reaction–diffusion equations, we found that in the discrete

system the effective reaction rates are controlled by the

diffusion. It can be observed that, in the case of slow
diffusion, the more effective processive phosphorylation

mode prevails over the less efficient distributive mechanism,

boosting the system’s activity [59,60]. Additionally, molecular

crowding (and self-crowding), which is reflected explicitly in

our lattice-based simulations and is expected to be significant

at assumed surface densities of reacting molecules, facilitates

consecutive phosphorylation events [61,62]. In the well-

mixed approximation, kinases are dephosphorylated at the

rate proportional to the product of phosphatase activity

and the number of phosphatases. Phosphatases, which

are modelled explicitly in spatial simulations, can become

unemployed after dephosphorylating all their neighbouring

kinases, resulting in the reduction of their effective enzymatic

activity [63].

The applied method of on-lattice KMC simulates the

master equation in continuous time and discretized space

at the single event and single molecule resolution. For large

systems, such simulations are inevitably computationally

demanding, but provide accurate estimations of MFPTs,

which are crucial for the performed analysis. Spatially or tem-

porally coarse-grained algorithms have lower computational

cost but also lower, in fact unknown, accuracy. The results pre-

sented in this paper consumed years of aggregate CPU time of

a computer cluster, but in the hope that they could be used to

calibrate faster approximate algorithms.

In summary, transitions in a bistable system on the

membrane employ both stochastic and deterministic effects.

Transitions between macroscopic steady states of spatially

extended systems are qualitatively different from transi-

tions available in well-mixed compartments. These transitions

employ travelling waves that can be initiated spontaneously

as a result of stochastic fluctuations. We demonstrated that

the SPD and MFPTs depend strongly on the diffusion coeffi-

cient, size and shape of the reactor. These factors (in addition

to reaction rates) decide the activity (or inactivity) of a spatially

extended bistable system.

This study was supported by the Foundation for Polish Science grant
TEAM/2009-3/6 and Polish Ministry of Science and Higher
Education grant no. N N501 13 29 36. Numerical simulations of
on-lattice KMC were carried out at the Zeus computer cluster at
the ACK Cyfronet AGH in Kraków and at the Grafen computer clus-
ter of the Ochota Biocentre in Warsaw.
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