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1. Abstract
This paper proposes a new approach for modeling and identification of damping in linear structures. The
approach is based on the Virtual Distortion Method (VDM), which is a reanalysis methodology for fast
modeling and identification of structural parameters. The VDM is extended in the sense of consider-
ing structural damping in frequency domain. The assumed damping model is a modified version of the
proportional damping, which allows to distinguish between and to modify independently the damping
properties of each element and in each degree of freedom. In this way, a precise formulation of the task
of remodeling of damping is possible. Moreover, the proposed approach is used to state and solve the
(basically nonlinear) inverse problem of identification of material damping by decomposing it into two
linear subproblems.
2. Keywords: damping identification, structural reanalysis, Virtual Distortion Method (VDM)

3. Introduction
The energy of vibrations in real structures is always dissipated and the nature of this process is com-
plex. There are various mechanisms of the damping phenomena, discussed f.e. in [1,2,3]. One class
is material damping in high damping alloys, composite materials and viscoelastic materials. Another
class is interface friction also called boundary damping associated with junctions or interfaces between
substructures. Further there are viscous effects due to the fluid which is in contact with a structure as
well as non material damping like acoustic radiation damping or linear air pumping. The most commonly
used model is the classical damping model. It is based on the assumption that linear system possesses
classical normal modes and there are non-zero elements only on the diagonal of modal damping matrix.
In non-classically damped systems the off-diagonal elements are ignored. This assumptions make the
calculation easier because allows for decoupling of equations of motion. In some cases it is not possible to
make such simplifications and off-diagonal elements which couple equations of motion have to be taken
into account [2,4]. In this paper only classical, viscous damping model is considered. Methods of vis-
cous damping identification in frequency domain can be divided into three groups [5,6]: matrix methods
which use full frequency response functions to obtain mass, stiffness and damping matrices, modal meth-
ods based on complex mode shapes and natural frequencies received from modal testing and enhanced
methods which are based on the two previous methods in order to improve accuracy or reduce the number
of measurements. Adhikari presented a generalized proportional damping method for damping modeling
in which damping coefficients vary with the frequency [7]. The method requires measurements of natural
frequencies and modal damping factors.

The approach proposed in this paper is based on the Virtual Distortion Method (VDM), which is a fast
reanalysis method for modeling and identification of structural parameters [8,9,10,11]. At its beginnings,
the VDM was used in statics for remodeling and optimal design using only one stiffness-related field of
distortions. It has been soon applied to dynamic reanalysis in time and in frequency domains, as well
as extended to model both mass and stiffness modifications. The method has been widely applied for
damage identification and optimal design of elastic structures, for dynamic load adaptation of elastoplastic
structures, but also for identification of water leakages or damages in electric networks, etc [12,13]. Up to
now, however, reanalysis of damping was not considered. As a frequency-dependent feature, it is pursued
here in frequency domain, which leads to a quasi-static formulation.

The VDM allows a structure to be quickly reanalyzed based only on the Finite Element Method
solution of the unmodified structure, without the need to recompute the mass, stiffness and damping
matrices. It is possible, provided that the response of the original structure can be combined with its
responses to certain local distortions that model the modifications. These responses, that is the influence
of local distortions on the global solution, are stored in influence matrices which are the crucial tool of
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the VDM. Such an approach, anticipating that partial responses can be scaled and added together, is
valid only for linear systems. As a result, the VDM allows the damping properties of a structure or its
substructure to be quickly reanalysed and identified, without the need for a repeated analysis of the full
structure.

In general, the relation between the damping parameters and the response is clearly nonlinear. How-
ever, the response depends linearly on the damping-modeling distortions. Moreover, in the task of
damping identification, the relation between the distortions and the damping parameters turns out to
be also linear, provided the response is measured in suitable points. Hence, a temporary change of vari-
ables from the damping parameters to the distortions significantly simplifies the (basically nonlinear)
identification problem by decomposing it into two simple linear subproblems. The proposed process of
damping identification proceeds in two stages. First, the space of all complex distortions corresponding
to the measured response is found. This solution is often nonunique, as the governing matrix is usually
singular. Hence, second, the solution is limited to the distortions corresponding to physically meaningful
real damping parameters, which in practical cases can be in this way determined uniquely.

The paper is structured as follows: the next (fourth) section specifies the generalized damping model,
the fifth section states the general VDM-based formulation of the reanalysis problem, while the inverse
problem of damping identification is considered in the sixth section. The seventh section illustrates the
proposed approach in a numerical example.

4. Damping model
A generalized Rayleigh damping model is used. The standard model decomposes the structural damping
into two components that are related to environmental and material factors [15] and weighted by the
coefficients α and β, respectively. In the standard model, the damping matrix C is a linear combination
of the mass matrix M and the stiffness matrix K, which are assumed in this paper to be known (or
identified beforehand),

C = αM + βK. (1)

The standard Rayleigh model is generalized here to allow independent modeling of material damping
in the structural elements and environmental damping in the degrees of freedom (DOFs). For notational
simplicity it is assumed here that the considered structure is a truss; however, the approach can be
straightforwardly applied for other structures (see e.g. [14,11] for VDM-based reanalysis of frames and
plates). In case of a truss, the stiffness matrix can be directly related to the diagonal matrix S of element
stiffnesses EiAi by

K = GTLSG, (2)

where L is the diagonal matrix of element lengths li and G is the geometric (or displacement-strain)
matrix, which transforms the global displacements u to local element strains, that is ε = Gu. Independent
modeling of damping in all elements and in all DOFs is possible by assuming that

C = CαM + GTLSCβG, (3)

where Cα and Cβ are diagonal matrices of the environmental and material damping factors related
respectively to the DOFs and to the elements of the structure,

Cα = diag {α1, . . . , αNDOF},
Cβ = diag {β1, . . . , βNel},

where NDOF and Nel denote the numbers of the DOFs and of the elements.

5. Reanalysis of damping properties
The analysis is performed in the frequency domain. A harmonic excitation feiωt is considered, where f
is a vector of the complex excitation amplitudes in all DOFs.

In agreement with the general idea of the VDM [9], modifications of environmental and material
damping are modeled by two respective fields of virtual distortions imposed on the original unmodified
structure. The response of the modified structure is thus modeled as the response of the unmodified
structure distorted by the influences of the virtual distortions.

5.1. Original unmodified structure
The response of the structure to the harmonic excitation f is also harmonic; it will be denoted by uL
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(displacements) or εL (strains). It is assumed that the response is known, that is obtained by solving
the linear equation of motion of the original unmodified structure, which yields the following quasi-static
formulation: [

−ω2M + iωC + K
]
uL = f (4)

or, by Eq.(2) and Eq.(3),

−ω2MuL + iωCαMuL + iωGTLSCβε
L + GTLSεL = f . (5)

5.2. Modified structure
Consider a modification of the damping properties that is characterized by certain (diagonal) modifica-
tions to the original matrices of damping parameters,

∆Cα := Ĉα −Cα,

∆Cβ := Ĉβ −Cβ ,

where Ĉα and Ĉβ denote the modified matrices. The response u of the modified structure can be
computed directly by solving the quasi-static form of the equation of motion,

−ω2Mu + iωĈαMu + iωGTLSĈβε+ GTLSε = f . (6)

However, Eq.(6) relates the response f to the damping modifications ∆Cα and ∆Cβ in a nonlinear way,
and hence any direct solution of the inverse problem corresponding to Eq.(6) can be numerically costly.
Moreover, the formulation of Eq.(6) involves all DOFs and thus requires a solution of the full system,
which is impractical in case of a large structure and localized modifications.

5.3. Modeled structure
The modifications ∆Cα and ∆Cβ of the environmental and material damping are modeled by two respec-
tive fields of harmonic virtual distortions: force distortions (or pseudo forces) acting in the affected DOFs
and strain distortions imposed on the affected elements. The complex amplitudes of these distortions are
denoted by d0 and φ0, respectively. Both fields distort the original unmodified structure,

−ω2Mu +
[
iωCαMu− d0

]
+
[
GTLS(iωCβε− φ0)

]
+ GTLSε = f , (7)

in such a way that the responses and the member forces in the modified and the modeled structures are
equal. Therefore, Eq.(6) and Eq.(7) yield together the following system of two linear equations:

−iω∆Cα Mu = d0, (8a)

−iω∆Cβ ε = φ0. (8b)

Note that Eqs.(8) express the distortions d0 and φ0 in an implicit way, since the responses u and ε on
the left-hand side depend on the distortions.

The formula Eq.(7), rewritten in the form

−ω2Mu + iωCαMu + GTLSCβε+ GTLSε = f + d0 + GTLSφ0

and compared to Eq.(5), proves that the response u and ε of the modeled structure depends linearly on
the virtual distortions and hence can be stated in the following form:

u = uL + Bfd0 + Bεφ0, (9a)

ε = εL + Dfd0 + Dεφ0, (9b)

where Bf, Bε, Df and Dε are so-called quasi-static influence matrices, which describe in frequency
domain the response of the structure to the unit harmonic force in each DOFs (Bf and Df) and to the
unit harmonic distortion imposed on each element (Bε and Dε). In other words, Bf is the NDOF×NDOF
FRF matrix computed at the considered ω and

Df = GBf,

Bε = BfGTLS,

Dε = GBfGTLS.
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The formulas Eq.(9) can be substituted into Eq.(8) in order to yield the following single square linear
system:

Fx0 = b, (10)

where the principal matrix F is given by

F =
[

I + iω∆CαMBf iω∆CαMBε

iω∆CβDf I + iω∆CβDε

]
,

the vector x0 collects the virtual distortions,

x0 =
[

d0 φ0
]T
,

and the right-hand side vector is given by

b =
[
−iω∆CαMuL

−iω∆Cβε
L

]
.

Given the response of the unmodified structure (uL and εL) and the assumed damping modifications
(∆Cα and ∆Cβ), the corresponding response of the modified structure (u and ε) can be computed by
first solving Eq.(10) for the distortions, and then by the direct substitution of the computed distortions
into Eq.(9).

5.4. Remarks
Theoretically, the square system Eq.(10) in the full form is large: the number of unknowns equals the
total number of the distortions, that is the total number of both DOFs and elements of the considered
structure. Indeed, if all structural matrices M, K, Cα and Cβ were available and if damping was
globally modified, the direct solution of Eq.(6) would be numerically less costly. However, as in all other
VDM-based approaches, in most of the applications the proposed here distortion-based approach can be
preferable because of two common reasons:

1. Reduced-size local analysis: If modifications or identification of damping in only a limited number
of DOFs or elements is considered, the virtual distortions in all other localizations vanish, and the
dimensions of the VDM-based formulation become respectively smaller. Moreover, in such a case
only the respective parts of the full response vectors ε and u are necessary, which can simplify a
practical implementation.

2. Linearity of the inverse problem: The formula Eq.(6), as well as Eq.(10), relates the response to
the damping modifications in a nonlinear way, and hence any direct solution of the corresponding
inverse problem can be numerically costly. However, the proposed formulation of Eq.(8) and Eq.(9)
allows the identification problem to be decomposed into two simple linear subproblems, provided
the response is measured in suitable points. This is described in the next section.

6. Identification of material damping
In this section, the problem of identification of element-specific coefficients of the generalized material
damping model is considered. It is assumed that the mass and stiffness matrices are known or identified
beforehand. The problem can be thus stated as follows: given the mass and stiffness matrices M and K, a
harmonic excitation f and the strain response ε in all considered elements, find the corresponding element-
specific coefficients of material damping βi. A straightforward solution would require a minimization of
the residual of Eq.(6) with respect to all coefficients βi, which is clearly a nonlinear problem that can be
numerically costly, especially in case of a large structure. In this section, an alternative and significantly
simpler approach is proposed.

Let εL denote the theoretical reference response corresponding to vanishing material damping βi = 0;
the response εL can be directly computed by Eq.(4) with the damping matrix C equal to zero (or to
an initial approximation). The original nonlinear inverse problem is decomposed into two simple linear
steps:

1. Identification of the virtual distortions φ0 that correspond to the response ε. This amounts to the
solution of the following version of the linear equation Eq.(9b):

Dεφ0 = ε− εL, (11)

where, since identification of only material damping is considered, it has been assumed that the
force distortions d0 vanish.
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2. Computation by Eq.(8b) of the element-specific coefficients βi of material damping. Since the
response εi in each element is known, Eq.(8b) is decoupled into the following set of simple linear
equations in one unknown:

−iωβiεi = φ0
i , i = 1, 2, . . . , Nel. (12)

6.1. Step 1: Identification of equivalent virtual distortions
The aim of the first step is to solve the square linear system Eq.(11) in order to find the virtual distortions
φ0 that result in the response ε. Since in statically indeterminate structures the influence matrix Dε

is singular, there is an infinite number of distortions that solve Eq.(11) in the least-squares sense; they
will be collectively called the equivalent distortions. These distortions form a linear subspace that can be
computed using the (unique) singular value decomposition (SVD) [16] of the influence matrix, defined as

Dε = UΣVH, (13)

where U and V are certain complex unitary matrices, VH denotes the conjugate transpose of V, and Σ
is a diagonal matrix with real positive elements on the diagonal, which are ordered non-increasing and
are called the singular values of Dε. The equivalent virtual distortions can be represented in the following
form:

φ0 = φSVD + Wα, (14)

where the columns of the matrix W generate the null space of Dε, the vector α contains arbitrary
complex numbers and φSVD is the least-squares solution of Eq.(11). Therefore, the matrix W is the
submatrix of V that is formed by its last columns that correspond to all vanishing singular values, while
the vector α linearly combines the columns of W. The least-squares solution φSVD can be computed
using the Moore-Penrose pseudoinverse of Dε as

φSVD = VΣ+UH
(
ε− εL

)
,

where the diagonal matrix Σ+ is obtained from Σ by replacements of its all nonvanishing elements with
their reciprocals.

6.2. Step 2: Computation of the coefficients of material damping
Given the equivalent distortions by Eq.(14), the element-specific damping parameters βi can be computed
by Eq.(12). Since all βi are required to be real numbers, thus the set of complex equations Eq.(12) yields
a twofold larger set of real equations,

βi = −Re
φSVDi +

∑
jWijαj

iωεi
,

0 = −Im
φSVDi +

∑
jWijαj

iωεi
,

where the complex combination coefficients αj cease to be arbitrary and instead have to satisfy together
with the damping coefficients βi a real linear system, which in the block matrix form can be stated as
follows: [

Re W −Im W −ω diag Im ε
Im W Re W ω diag Re ε

] Reα
Imα
β

 =
[
−ReφSVD

−ImφSVD

]
(15)

and in the case of overdeterminacy should be solved in the least-square sense. The system Eq.(15) has
2Nel equations and Nel + 2Ns real unknows, where Nel denotes the number of the considered i-indexed
damping coefficients and Ns denotes the number of the j-indexed vanishing singular values in Eq.(13).
An obvious lower bound constraint has usually to be imposed on all coefficients βi in order to guarantee
that the system is dissipative.

6.3. Remarks and possible generalizations
The identification procedure outlined in this section can be straightforwardly generalized in order to
use the formulas Eqs.(8) and (9) in their full form. Hence, the DOF-specific environmental damping
coefficients αi can be identified in the same way as the material damping coefficients βi. Moreover, the
response measured in DOFs ui can be also taken into account besides the strain response of elements εi.
Note however that the response has to be measured in all DOFs and all elements considered for damping
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identification, so that the second step of the identification subproblem, which is related to Eq.(8), remains
linear.

In order to guarantee the uniqueness of the identification, or as a least-square safeguard against an
inevitable measurement noise, it is also possible to use

• surplus measurements in DOFs or elements which are not considered for damping identification. It
would increase the number of equations in the first identification step of Eq.(9), reduce the dimen-
sionality of the space of equivalent distortions, and thus increase the overdeterminacy of Eq.(15);

• more excitations than a single harmonic excitation f described above. In this case, the first identifi-
cation step of Eq.(9) will have to be repeated for each measurement separately, since the equivalent
distortions are excitation-specific. However, the damping coefficients remain the same, hence in the
second identification step the overdeterminacy of Eq.(15) will be increased.

Although the identification methodology proposed here stems from the general approach of the VDM
and hence uses a very different nomenclature, in the final form it turns out to be relatively similar to the
method of estimation of damping matrix proposed by Chen et al. [17]. However, the method proposed
here seems to be more general, as it allows for a reduced-size local identification and a more flexible
treatment of damping parameters of various origin.

7. Numerical example
7.1. The structure
The effectiveness of the identification procedure was demonstrated with a fifteen-element truss structure
shown in Figure 1. Truss elements of equal cross-sectional area A = 0.56 cm2 were made of steel with
Young’s modulus 205 GPa and the material density of 7850 kg/m3. Additionally, there were concentrated
masses in each node, m = 0.8 kg. The length of the horizontal elements was 0.75 m and the length of
the vertical elements was 0.4 m. The structure was excited with a harmonic force with the amplitude of
100 N and the frequency of 100 Hz. The stiffness K and the mass M matrices have been computed based
on the assumed structural parameters. The damping matrix has been initially approximated using the
original Rayleigh model Eq.(1) with coefficients which corresponds to structural damping of the lowest
modes at 5% of the critical damping. Based on the proposed model of the material damping, the actual
damping (which is to be identified in the following) has been assumed to be increased twofold in elements
no. 5 and 12 as threefold in element no. 10, see the slanted numbering of the elements in Figure 1, which
marks also the various considered scenarios for the harmonic force application.

Figure 1: Truss geometry and the considered load cases

The task of identification of the actual damping amounts to

1. Computing the influence matrix Dε of the original structure, that is using the known M, K and
the assumed initial approximation of C.

2. Choosing the number and the form of the harmonic test excitations fk.

3. Computing the corresponding theoretical response εLk of the original structure using the known and
assumed data.

4. Making the corresponding measurements εk of the actual structure, which in the numerical example
can be computed using the assumed actual damping (which is to be identified later).
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5. Identification of the modifications of the material damping coefficients in all truss elements by
means of the Eq.(11) and Eq.(12) or Eq.(15).

It has been assumed that the (simulated) measurement setup is accurate enough to trace the shift be-
tween the responses ∆ε = ε− εL that is used to identify the damping. In order to make the results more
reliable, the simulated measured response ε has been contaminated with uncorrelated Gausian noise at
10% rms level of ∆ε. The noise has been numerically generated as a vector of pseudorandom complex
numbers with normally distributed amplitudes and the phases distributed uniformly between 0 and 2π.

7.2. Optimum choice of test excitations
Figure 1 depicts the cases of single test excitations fk, which have been assumed to be possible. Let
K denote a subset of all these excitations, which is to be used for the identification. Due to practical
reasons, the set K should be as small as possible and contain preferably only few excitations. In order
to choose it, an optimality criterion is necessary. Since the identification accuracy depends mainly on
the accuracy of the solution of Eq.(15), hence its condition number κ has been used as a measure of
optimality. The exact condition number depends on the matrix W, as well as on the measurements εk
and hence on the unknown damping. However, the W-related part of the system matrix in Eq.(12) is
composed of unit vectors and thus should not introduce much ill-conditioning. Therefore, the condition
number κ is estimated here by neglecting the W-related part of the matrix and assuming εk ≈ εLk , so
that

κ(K) ≈

[
maxi

∑
k∈K |εLk,i|2

mini
∑
k∈K |εLk,i|2

] 1
2

, (16)

where εLk,i is the response of the ith element to the excitation fk. Note that the proposed approximation
of κ is intuitive, as its minimization ensures that no element is too weakly excited with respect to other
elements.

All 1-, 2- and 3- element subsets of the 24 possible single force excitations have been considered.
By minimization of Eq.(16), the corresponding optimum excitation sets K have been found to be up to
symmetry K1 = {f2}, K2 = {f2, f6} and K3 = {f2, f6, f18}, respectively. Figure 2 plots in the logarithmic
scale the value of the proposed optimality criterion for all 1- and 2-element excitation sets.

5 10 15 20
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load case no.
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0
Κ

Figure 2: Optimality criterion for test excitations: (left) one excitation; (right) two excitations

7.3. Identification
The identification has been performed three times for the determined three optimum excitations sets K1,
K2 and K3. In the first step, the equivalent distortions have been obtained by Eq.(11). The base of the
null-space of the influence matrix consists of three vectors, which build the matrix W. In the second
step, the three system matrices of Eq.(15) have been constructed; for the two considered multi-excitation
sets of K2 and K3, its structure had to be expanded, as described in Section 6.3. The structure of the
matrix in the case of K3 is illustrated in Figure 3. Both the four diagonal parts related to Im ε1, Re ε1,
Im ε2 and Re ε1 and the block parts composed of Re W and Im W are clearly recognizable.

The final identification results are shown in Figure 4. A single harmonic excitation turned out to
be insufficient for an accurate identification, results obtained for two and three excitations seem to be
comparable.
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Figure 3: Visual representation of Eq.(15) expanded for the case of two excitation vectors
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Figure 4: Actual damping modifications and values identified using one, two and three excitations

8. Summary and conclusions
The presented method of reanalysis and identification of material damping is based on the VDM method.
The classical, viscous damping model is considered. The standard Rayleigh model is generalized here
to allow independent modeling of the material damping in structural elements and the environmental
damping in degrees of freedom (DOFs). The method requires that the mass M and stiffness K matrices
are known, as well as the structural response of the modified system. The proposed approach is used to
state and solve the (basically nonlinear) inverse problem of identification of material damping by decom-
posing it into two linear subproblems. The effectiveness of the identification procedure was demonstrated
with a numerical example. The identification has been performed three times for the determined three
optimal excitation sets. In order to make the results more reliable, the simulated measured response ε
has been contaminated with the uncorrelated Gausian noise. Basing on the generated results it can be
concluded that a single harmonic excitation is not sufficient in order to obtain a satisfactory solution.
If two harmonic excitations are used then the obtained solution complies well with the actual damping
modifications. Further increase in number of applied excitations does not, however, enhance the solution
considerably.
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