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Abstract

The objective of the paper is formulation of sensitivity analysis for flow approach simulations of deep drawing problemswith respect
to arbitrary design parameters. First, finite element formulation of the primary problem is presented. Its important feature is the
full algorithmic tangent viscosity matrix which, as it willbe shown, is a necessary tool in sensitivity calculations. The algorithmic
(consistent) tangent matrix is unfortunately asymmetric,which is addressed in our considerations. The semi-analytical formulation of
sensitivity is used, which means that some complex design derivatives in the sensitivity equations are estimated by finite difference
method. The finite difference method will be used as a reference method for verification of the sensitivity results.
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1. Introduction

The flow approach to modeling of large plastic deformation
processes [1, 7] is a numerically efficient alternative to tradi-
tional displacement-based finite element formulations, both im-
plicit quasi static and explicit dynamic simulations. It isbased
on the rigid-viscoplastic constitutive equation in which stress is a
function of strain rate and the form of the equation is analogous
to nonlinear elasticity, with strain replaced by strain rate. The for-
mulation is suitable, in particular, to model deep drawing of metal
sheets [8] or other plastic metal forming processes, like rolling or
extrusion.

The most efficient known optimization algorithms are the
gradient methods. To effectively use them, one needs informa-
tion on design sensitivity of the structural response. Design sen-
sitivity analysis has been widely discussed regarding traditional
displacement FE formulations [3], including also large elasto-
plastic deformations [5,6]. Although issues of sensitivity analysis
in flow approach formulations of sheet metal forming have also
been addressed in the literature [2,4,9], complete formulation of
the problem including geometric nonlinearities and full form of
the consistent tangent matrix has not yet been developed.

The present paper is an attempt to fill this gap in the state
of the art. The results of sensitivity analysis may allow to fully
integrate the deep drawing algorithm with a gradient-basedopti-
mization system and thus accelerate the process of optimization
of tool geometry and stamping control parameters.

2. Formulation of rigid-viscoplasticity problem

2.1. Finite element formulation

In sheet metal forming analysis, shell formulation with plane-
stress constraints is adopted for sheet. Under this assumption, the
constitutive equation of a rigid-viscoplastic material assumes the
form

σ = D(ε̇)ε̇ (1)

whereσ andε are stress and strain, respectively, andD denotes
strain-rate-dependent viscosity matrix. Formal analogy between
equation (1) and a formulation of nonlinear elasticity makes it
easy to solve the plastic flow problem in a similar manner as non-

linear elasticity problems, with strains replaced by strain rates
and nodal displacements with velocities.

The finite element equilibrium equation assumes the vector-
matrix form,

K̄(q, q̇) q̇ = F (q, q̇) (2)

in whichq, q̇ andF denote generalized nodal displacement, ve-
locity and external load vectors, respectively, whileK̄ is the se-
cant viscosity matrix.F is a sum of prescribed loads applied to
sheet, reactions due to kinematic boundary conditions (prescribed
velocities) and contact reactions, all of them dependent onq and
q̇ (contact is modelled with penalty approach).

SinceK̄ is actually also dependent on history of deformation,
the problem is solved in subsequent time steps, with the follow-
ing implicit integration scheme assumed for generalized nodal
displacements attn+1 = tn +∆t,

q
n+1 = q

n +
[

(1− ϑ)q̇n + ϑq̇
n+1

]

∆t (3)

where the solutionqn and q̇n is known from the previous time
step andϑ ∈ (0, 1] is the implicit integration parameter.

2.2. Iterative computation scheme

Having obtained the solution for the time instanttn, we can
solve the nonlinear equation system (2) fortn+1 with the use of
the Newton iteration scheme. The solution procedure consists in
calculation of the secant viscosity matrix̄K and the force vector
F for consecutive approximations ofq̇ and determination of its
correctorsδq̇, according to

d

dq̇

(

K̄q̇ − F
)

δq̇ = F − K̄q̇ , q̇ := q̇ + δq̇ (4)

The above scheme is repeated until the convergence criterion is
fulfilled. It can be written in the compact form as

K δq̇ = r (5)

where

K = K̄ +
dK̄

dq̇
q̇ −

dF

dq̇
, r = F − K̄q̇, (6)

are called, respectively, the algorithmic tangent viscosity matrix
and the vector of unbalanced (residual) nodal forces correspond-
ing to the current approximate solutioṅq. Note that, in view of
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equation (3), the following relation holds at the current time in-
stanttn+1 for any variable dependent on bothq andq̇:

d(·)

dq̇
=

∂(·)

∂q̇
+ ϑ∆t

∂(·)

∂q
. (7)

2.3. Algorithmic tangent matrix

The full expression of the tangent viscosity matrixK is quite
elaborated, as it includes derivatives of numerous geometrically
nonlinear variables, expressions for contact forces etc. Most of
the components appear to be symmetric, however, some are not.
Fortunately, the asymmetric terms are only those related tode-
pendence ofK̄ andF on nodal displacementsq and thus, ac-
cording to (7), they contribute toK mutiplied byϑ∆t. In other
words,

K = Ksymm +Kasymmϑ∆t. (8)

This allows to estimate the asymmetric terms as small and ne-
glect them in the iteration procedure without significant loss in
convergence speed.

3. Sensitivity analysis

Differentiating the main system of equations with respect to
a design parameterh, one can obtain

dK̄

dh
q̇ + K̄

dq̇

dh
=

dF

dh
. (9)

Note that all terms depend onh either explicitly, or through
other variables that are design-dependent. Among those vari-
ables, some are known at the beginning of the time step (so their
design derivatives are also known) and some — and here we are
talking aboutq̇—are not, and the derivativedq̇

dh
is unknown. For

simplicity of notation, let us define the ‘explicit design derivative’
of any variablea(q̇(h), . . . , h) as

d̃a

dh
=

da

dh

∣

∣

∣

∣

q̇=const

, i.e.
da

dh
=

da

dq̇

dq̇

dh
+

d̃a

dh
. (10)

The so defined explicit derivative includes all the design deriva-
tives of arguments ofa that are known at the beginning of the
time step computations.

With this notation, equation (9) can be rewritten after trans-
formations as

K
dq̇

dh
=

d̃r

dh
. (11)

This means that one has to solve a linear system of equations with
the same tangent coefficient matrix as was used in the last equi-
librium iteration. This makes the sensitivity computations very
time-efficient, especially that the matrixK has already been de-
composed at the moment. All one has to do is to build the right
hand side vector in (11).

It must be admitted that the matrix we actually use in the
computations is in fact only the symmetric approximate of the
full tangent matrix. This does not usually introduce significant
error in the results obtained. However, to make the analysismore
strict, one can consider solving the system (11) in iterations, with
moving the asymmetric terms to the right-hand side. This will
slightly extend the computation time.

Computation of the right-hand side vector given in equation
(11) for an arbitrary design parameter may appear a very difficult
task. In order to ensure the highest possible level of generality of

the program we assume that the sensitivity will be determined by
the semi-analytical differentiation method. In this approach, the
explicit design derivative ofr is estimated using the following
formula:

d̃r(q̇(h), . . . , h)

dh

∣

∣

∣

∣

h=h0

≈

≈
r(q̇(h0) , . . . , h0+∆h)− r(q̇(h0) , . . . , h0)

∆h
, (12)

where∆h is perturbation of design parameterh around its pri-
mary valueh0 .

4. Final remarks

As it appears from the presented formulation, the design sen-
sitivity problem is linear and thus time-efficient. The consistent
tangent viscosity matrix is necessary in the formulation. Unfor-
tunately the matrix is not symmetric but negligence of the asym-
metric terms does not appear to introduce significant errorsin the
results.

The fully analytical implementation of design sensitivityis
very difficult. The presented semi-analytical formulationem-
ploys finite difference quotient to compute the explicit design
derivative of nodal residual forces.

Numerical examples will be presented at the conference pre-
sentation.
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