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Abstract

In the article we describe a system which allows a mobile robot equipped with a
3D laser range �nder to navigate in indoor and outdoor environment. A global
map of the environment is constructed, the particle �lter algorithm is used in order
to accurately determine the position of the robot. Based only on data from the
laser, the robot is able to recognize certain classes of objects like a �oor, a door,
a washbasin, or a wastebasket. For complex objects, the recognition process is
based on Haar features identi�cation. When an object is detected and identi�ed,
its position is associated with the appropriate place in the global map, making it
possible to give orders to the robot with use of semantic labels, e.g. �go to the
nearest wastebasket�. The obstacle-free path is generated using a Cellular Neural
Network which takes into account travel costs like distance or the ground quality.
This path planning method is fast and in comparison to potential �eld method, it
does not su�er from local minima problem. We present some results of experiments
performed in a real indoor environment.

1 Introduction

The ability to navigate is the most important competence for a mobile robot. This
task is de�ned as a combination of three fundamental elements: map building,
localization, path planning.

Knowledge about robot environment is usually encoded in a form of a map.
The mapping problem is one of the most active areas in robotics. Most of methods
focus on two categories:

• metric maps (Thrun et al., 2005; Elfes, 1987; Moravec and Elfes, 1985) which
represent some geometric features of the environment. One of the most popular
geometric map representation is the occupancy grid. This kind of representa-
tion allows fast generation of a collision-free path, however, if very precise map
of environment is required a huge amount of memory is necessary. Feature-
based representations are attractive because of their compactness and are very
useful during process of localization but path-planning based on this kind of
map is time consuming.
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• topological maps (Latombe, 1992; Remolina and Kuipers, 2004) represent re-
lations between distinctive parts in the environment, they can be used to solve
abstract tasks.

This two representations can be combined into a hybrid map (P�ngsthorn et al.,
2007; Thrun et al., 2005) which contains both metric and topological information.
Recently researchers have been focused on semantic maps that contain data about
meaning of the detected objects, functionalities or even events (Rusu et al., 2008;
Mozos et al., 2007; Siemiatkowska et al., 2009).

The robot needs to know its position in the environment. The most widely
used is odometry. It is inexpensive and provides a good short time accuracy,
but errors in determining the position of the robot increase proportionally with
the distance travelled by the vehicle. If the robot travels for a prolonged period
of time additional localization methods should be applied. Usually the Kalman
�lter method is used to simultaneously estimate the robot position (Olson, 2000;
Grewal and Andrews, 2001; Weingarten and Siegwart, 2005). In this method, the
encoder readings are used as an input and sensors measurements as observations.
Determining the displacement of the robot in relation to the landmarks allows
us to update the position of the robot in the environment. An alternative and
e�cient way of localization are particle �lters (Rekleitis, 2004; Fox, 2003). The
key idea of the method is to represent the possible robot locations as a set of
N samples (particles). Each sample consists of a pair (q, w), where q is a state
vector - coordinates of a possible position of the robot, and w is a weighting factor,
w ∈ [0, 1]. This kind of localization is used in our approach.

The aim of path planning is to �nd optimum collision-free path between the
starting position of the robot and the target location. Various methods are pro-
posed to solve the problem (Latombe, 1992; Chu and Eimaraghy, 1992; Buckley,
1989). They can be classi�ed as a global or local. Global methods (Latombe, 1992;
Bennewitz et al., 2000) require the map of the whole environment and are time
consuming. When the local path planning algorithm (Buckley, 1989; Bennewitz
et al., 2000; Barraquand et al., 1992; Azarm and Schmidt, 1996) is used then only
information about nearby obstacles is taken into account. Although the method
is fast, it can be trapped in local minima.

The problem how to �nd optimal collision-free path is strictly connected with
the type of the environment. In the case of indoor navigation the optimum path
is the safest path, the robot has to move far from the obstacles. The distance
travelled by the robot is less important than in the case of outdoor navigation.
When the robot moves outside the building the cost of traveling depends on the
type of the ground. It is less expensive, in terms of time and energy, to move along
a road than along a grass.

In this article the system which allows the robot to navigate in outdoor and
indoor environment is presented. Data obtained from a 3D laser range scanner
is analyzed and semantic labels are attached to the detected objects. The map
is represented as a grid of cells and a list of labels which are attached to each
cell. The robot �nds the optimal collision free path based on the geometric and
semantic information stored in the map. The goal for the robot is described using
semantic labels. It is possible to ask the robot to move towards the door or to the
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washbasin. In the case when the same label is attached to many objects the least
expensive path is found automatically.

2 Map building

Mapping process is very important element of the navigation system. A map can
represent geometric or semantic features of the environment.

When geometric representation is used it is assumed that the robot operates
in a R2 or R3 space W which is called workspace. This space contains objects
Oi ∈W , Oi - is the set of points occupied by the object i.

If the robot is assumed to cooperate with people, the workspace W has to be
transformed into information space I. In our method each object is described by
the following parameters: (s, us, rs, fs), where s - represents the semantic label,
u : S → R+, u represents traversability level of the object, r ∈ R is the radius
of the in�uence of the object, fs : R → R is the function which represents the
in�uence of the object. Parameters u, r, fs are used during path planning and are
described in the next section of the article. Process of map building consists of
the following parts: perceptions, data analysis, localization and data aggregation.

2.1 Perception

Perception of the environment (Siemiatkowska et al., 2009) is one of the crucial
problems in mobile robotics. During path-planning process a mobile robot must
be able to detect certain classes of objects and landmarks. This makes possible to
estimate correct position of a robot, as well as to identify its goals.

One of the most common ways to perceive the environments is to use visual
CCD-based cameras. Images from such cameras can be used do detect objects
based, e.g., on appearance (Krose et al., 2007) as well as to estimate robot position
and object size when using stereoscopic vision. There are, however, some limits
connected with this approach. For example, lightening conditions vary signi�-
cantly which makes the detection process di�cult and often unreliable Geometric
information calculated from stereo-vision is limited due to large errors.

Recently laser range �nder scanners gained more popularity in the �eld of mo-
bile robotics. Such scanners can give 2D information about distance in a single
plane or full 3D data. Data from 3D scanners can be used to detect and clas-
sify wide range of objects, (Chen and Medioni, 1991). One of the most common
method is to use the well-known ICP algorithm (Besl and McKay, 1992). In this
paper we describe another approach which is essentially based on image analysis
�eld. Similar work has been considered with use of images representing distance
and re�ectance (Nüchter et al., 2005, 2004). One of the main advantages when
compared to classic methods is its speed and low memory consumption.

The experiments described here have been performed on a mobile robot �Elek-
tron� which has been built at Institute of Automatic Control and Robotics of
Warsaw University of Technology. The basic sensor is the Sick LMS 200 indoor
laser mounted on a rotating support which enables to make 3-dimensional rep-
resentations of the environment. The head can rotate the scanner around the
horizontal axis within the angular range θ from -15◦ to +90◦. The scanning laser
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enables to measure the distance to obstacles within −90◦ ≤ φ ≤ 90◦ with resolu-
tion of 0.5◦, see Fig. 1. The data is subsequently transmitted to the control unit
by means of an RS 422 bus.

Figure 1: The �Electron� robot with explanation of the φ, θ angles.

The laser scanner provides measurements as a set of 3-tuples {φi, θi, ri} where
φ and θ represent the horizontal angle of the laser ray and vertical inclination
angle of the laser base respectively, ri is the measured distance. It is common
that the next step of data analysis is to transform these values into a point cloud
which is a set of 3D points in the Cartesian coordinate system with the robot in its
center. However, we propose here a rather di�erent and novel approach in which
we convert the measurements into a 2D image and then apply fast and well-known
algorithms used in image analysis.

The most straightforward way to transform data from the laser scanner is to
use (φ, θ) as pixel coordinates and assign the pixel color according to the measured
distance. However, since this approach does not lead to a satisfactory method of
representing geometrical properties of the environment we propose to map three
coordinates associated with normal vector for each pixel to RGB values of an
ordinary color image. For each pixel (i, j) using simple trigonometry we obtain its
position p in 3D Cartesian coordinates with the robot in its center (a standard
procedure for point cloud methods). Then four neighbouring points p1...4 with
(i± 1, j − 1), (i± 1, j + 1) are considered (alternatively we take into account more
points, however it does not give any improvement to the overall procedure). If
a point pn is too far or to close to p, including it in calculation might lead to
spurious errors. Therefore all pn not ful�lling the inequality

ε0 ≤ ‖p− pn‖ ≤ ε1

are rejected; the thresholds ε0 and ε1 are, for our laser, 0.5 cm and 30 cm respec-
tively. The normal vector n is calculated as

n =
∑

1≤i≤3

∑
i<j≤4

pi × pj

where × is the cross product, n is normalized afterwards. A color RGB image is
constructed by assigning values of the coordinates nx,ny,nz as colors red, green
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and blue accordingly. Note that for example ceiling or �oor will have red and
green component equal to 128, while blue will be larger than 128 for �oor (making
it blueish) and smaller than 128 for ceiling (making it look more yellowish). On
the other hand all of the planes perpendicular to the laser scanner will have the
blue component equal to 128. Moreover, walls which are placed along the line of
sight of the robot will be pink in its left-hand side and cyan on the other side. A
sample image for an outdoor scene is depicted in Fig. 2.

2.2 Segmentation

In order to detect objects of interest and place them onto a global, semantic map
we distinguish two procedures:

• Rule-based identi�cation of areas: after simple segmentation, a rule based
classi�er is applied in order to detect objects like �oor, doors or grass (outdoor)

• Object identi�action with Haar features: for more complex objects, we use a
classi�er based on Haar features. Each, single classi�er is trained for detection
of one class of objects.

2.2.1 Rule-based identi�cation of uniform areas

The �rst step is to perform a fast segmentation of the gathered data into areas, each
one representing a uniform polygon in the real scene. Along the most important
areas are, of course, ceiling, �oor, walls, doors, etc. Besides the list of polygons,
some numbers characterizing physical properties of a polygon can be extracted as
well. These can be later used for better object classi�cation.

In the �rst step a �ood �ll algorithm (we use the OpenCV library), is run on
an image representing distance with pixel (0,0) as the seed point. The threshold
for the algorithm is constant and it corresponds to about 5 cm (di�erence between
neighbor pixels is considered when �ooding). If the resulting area is large enough,
i.e., has total size greater than 30 pixels is marked with number 1 and then the
same procedure is applied for a next pixel which has not been assigned to the
area. In this way we obtain area number 2, and the procedure is repeated until
all the pixels are assigned to one of the n areas. All areas which are too small to
be classi�ed are marked with number 0 and are not considered in any later stage
of the process.

After the �rst step is �nished, one has list of areas which represent �continuous
structures� of the environment. For example, a chair standing in front of a wall
will be assigned to di�erent area than wall since there is a large change of distance
between the chairs edge and the wall. On the other hand, walls, ceiling, and �oor
will be classi�ed as a single area since change of the distance in all the corners is
assumed to be small.

Having the set of areas together with information about x, y, z coordinates in
the real environment for each pixel, one can de�ne simple rules for identifying
objects of certain class. Then the following characteristics are used to identify
certain objects (see also, e.g., Vosselman et al. (2004)):
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• size � usually an object which is supposed to be detected is characterized by
some reasonable geometrical size

• orientation � for example: walls or doors are always vertical, ceiling, �oor are
always horizontal, �oor has z component equal to the ground level

• topology � relations between surfaces is important

• measure of �roughness� � value(s) used to describe to what extend an area is
�at

Based on the above characteristics a simple rule-based classi�er is applied. For
example, in such system an object is labeled as door if it is a single, vertical surface
with width in range 1-2m, height 1.5-2.5m, it connects directly to a �oor at its
bottom and to a wall from all other sides.

As the measure of �roughness� R, for each point (i, j) we use:

Ri,j = (w2 − 1)−1
∑

−w≤k 6=0≤w

∑
−w≤l 6=0≤w

ni,j · nk,l,

where w is width of window for which the averaged dot product of normal vector
at (i, j) and its neighbors is calculated. Then, for each area A one can further
divide it into smaller areas A′, squares with width w′. For each A′ its averaged
�roughness�, R̄ is calculated. For example, for outdoor environment, w = 2, w′ = 5,
an area for sidewalk has R̄ ≈ 1, whereas region covered by grass has R̄ ≈ 0.95. The
value R̄ gives information about traveling cost through A′ for the mobile robot.
This cost is later used in the path planning algorithm. Results of classi�cation for
a sample outdoor scene is shown in Fig. 2.

Figure 2: Left: Photo of an outdoor scene. Right: top: an RGB image representing
normal vectors constructed from data from laser range �nder, bottom: result of a rule-
based classi�cation, A-sidewalk (a �at terrain with low travel cost), B-grass (a terrain
with average �roughness� coee�cient R̄ ≈ 0.95; travel cost is higher than for the sidewalk).
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2.2.2 Object identi�cation with Haar features

Treating laser scanner data as an image makes possible to directly apply well known
methods for object detection and pattern recognition from image analysis �eld.
Here we show how to enrich our classi�cation system by using scheme based on a
boosted cascade of simple features to detect objects. Algorithms which are applied
here are available in OpenCV library and they implement methods proposed by
Viola and Jones (2001, 2004) for basic set of Haar-like features and by Lienhart
and Maydt (2002) for rotated features which enhance the basic set. After the
system is trained for recognition of certain objects, new images can be analysed
very fast while maintaining good hit rate and reasonably low false alarm rate. This
makes the method interesting and practical for our purposes. Moreover, having
direct geometrical information about a detected object we can often reject false
classi�cations just by analysing its real size.

Images generated from laser data in the way proposed above have, of course,
di�erent properties than usual visual images gathered by cameras. For example,
illumination and any lighting conditions are not of our interest here. Either in
bright light with many shadows or in completely dark room one gets the same
image. On the other hand, when the robot equipped with the scanner moves on a
�oor, red and green components of the image change so there is some dependency
upon its position. This, however, does not have to lead to problems with object
detection by image analysis, since many methods used for that purpose operate
on gray-scale images.

In the �rst stage of our classi�er it is necessary to train it for objects of interest,
like stairs or o�ce equipment. Here we show an example of detection of a washbasin
visible from perspective of the robot. In order to perform training a Haar-like
classi�er needs a large set of positive and negative example images. All of the
images should be scaled to the same size, we use 20x20. As the set of negative
examples we use large number of arbitrary images representing a scene without
any object of our interest, i.e., without any image of a washbasin in this case.

In order to get set of positive examples we take several snapshots with the
laser scanner of a scene with the object of interest. Then, after constructing
images representing the scene, we crop a sub-image with the object only, making
background translucent. In the next step all the sub-images are rotated about
x, y, z axis by random angles, intensity is randomly modi�ed and washbasin are
placed onto a random background image. Finally we have 1000 di�erent images
of a sink with random transformations placed onto di�erent backgrounds. Large
images containing the object serve as testing images after training.

After the training process is completed, the classi�er can be applied to any
region of an image giving true if the region is likely to contain pattern similar to
one of those from the positive samples set, false otherwise. Analysis is very fast
so one can try many di�erent regions with varied sizes from all parts of the image.
By doing this in a loop one can search entire image for object of interest. Figure
�g:haar shows a result of such analysis when searching with classi�er trained for
detection of objects similar to a sink and stairs respectively.

Areas corresponding to objects detected with the discussed method can be later
processed in our classi�cation scheme when building semantic map. Naturally,
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each object which is going to be recognized has to have its own speci�cally trained
Haar-features classi�er. In more sophisticated approach it is possible to combine
object recognition from both: visual images and images constructed from laser
scans.

Figure 3: Sample scenes with result of the detection (black rectangles) of a washbasin-
like objects. On the left side a small subset of the training set is presented.

2.3 Localization

The global map of the environment is represented as a grid of cells. A global
coordinate system is introduced in W . Each cell corresponds to the square of size
5cm×5cm ∈W , and a list of semantic labels s is attached to each cell of the grid.
The method of transformation from W to I is described in the previous section.

The position of the robot q is described in con�guration space C. We assumed
that the robot is placed initially at the point qi, i = 0, q0 = (x0, y0, θ0), where
(x0, y0) ∈ W and θ0 describes the orientation of the robot in the global coordi-
nate system. The data taken at q0 are analyzed and represented in form of the
map. When the robot moves to the next position qi+1, it gathers data from the
lase scanner, which it transformed into another point cloud which has to be ana-
lyzed and transformed from local into global coordinate system. To performe this
task the robot has to know its position qi, so it has to compute following values:
(∆x,∆y,∆θ), where:

∆x = xi+1 − xi,
∆y = yi+1 − yi,
∆θ = θi+1 − θi.

(1)

The most widely used method of localization is odometry, but when this method
is applied the errors of determining position of the robot increase if the vehicle
travels for a long time. In our approach the particle �lter algorithm (Rekleitis,
2004; Fox, 2003; Fox et al., 1999; Olson, 2000) is used to simultaneously estimate
the robot position. In this method possible locations of the robot are represented
as a set of pairs (q,w), where q is a state vector (position and orientation of the
robot in the global coordinate system) and w ∈ [0, 1] is the weighting factor which
describes the con�dence level that the robot is in q. The algorithm consists of the
following steps:

• Initial set Qi of particles is generated.
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• In the next step the new set Qi+1 is computed. The particles are iteratively
propagated using the control input (motion model). On the basis of the mea-
surement model, the weight wi+1 is attached to each particle.

• The particles which have the maximum values of wi+1 are multiplied and
particles with the value of wi+1 below some threshold are reduced.

The main part of the algorithm is to detect and to match characteristic features
of the environment. The semantic information is very useful during localization.
In our approach walls are used as landmarks. This kind of localization is typically
used in structured environment (Gutmann et al., 1998).

The number of particles depends on the uncertainty of odometry. In the case
of the mobile robot Elektron1, the error of determining the orientation of the
robot surpasses 30o so a large number of particles has to be used during the
localization process. In order to improve the odometry, the information about
the main directions is taken into account during the propagation of the particles
(Siemi�atkowska and Dubrawski, 1999). When information about main directions
of the environment is used the error in determining the orientation of the vehicle
does not surpass 3o. This approach allows us a reduction in the number of the
particles.

Fig. 4 presents the map of the environment which was built based on laser range
indications. Each pixel corresponds to 5cm× 5cm square area. Cells representing
objects labelled as stairs, wastebasket, washbasin, door are distinguished. White
pixels represent the �oor area and unknown area. Black pixels represent walls and
other unclassi�ed obstacles. The ceiling area is recognized by our algorithm but
it is not presented in the picture.

Figure 4: The map of the environment
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3 Path planning

In our approach Cellular Neural Network (Chua and Roska, 1993; Chua and Young,
1988) is used for collision free path planning. The Cellular Neural Network (CNN)
is a single-layer network de�ned on regular lattices. The neurons are usually ar-
ranged in rectangular network. It is assumed that CNN consists of cells that
interact locally. This type of CNN can be view as a generalization of cellular au-
tomata. The neurons can be modelled as locally connected �nite states machines.
The state xij of a cell cij depends on the states of the neighbouring cells, values

of input signals uij , and values of interconnection weights, aijkl and bijkl. a
ij
kl is a

weight between cells ckl and cij , b
ij
kl is a weight between ukl and cell cij .

Before the process of path planning starts the traversability level (cost function)
u ∈ [0, L] is attached to each object. This value depends on the object and on
the type of the robot. For example stairs is traversable for the walking robot but
is not traversable for wheel vehicles, if s represents the �oor then corresponding
value u = 0, when the area is not traversable, for instance s presents a wall then
u = L.

We assumed that the goal is given using semantic labels and motion planning
occurs in the con�guration space C which is the set of all possible con�guration of
the robot. The symbol R(q) is a set of points occupied by the robot at con�guration
q.

In the set of objects O the set of obstacles Occ ∈ O is distinguished. Free space
Wfree = W −Occ. An obstacle Cocc in the con�guration space corresponds to the
set of con�guration that intersects the obstacles in W .

Ccc = {q|R(q) ∩Occ 6= ∅} (2)

Qfree = Q−Occ

The goal con�guration Qgoal is de�ned a set of points which intersects the
object Ogoal.

A path is a continuous curve in the con�guration space which is represented
by a function:

p : [0, T ]→ Q, (3)

where p(0) = qR, p(T ) = qgoal and qgoal ∈ Qgoal

It is assumed that:

∀t ∈ [0, T ] p(t) ∈ Qfree (4)

The minimum cost planning problem is de�ned as follows:
�nd the path p(t) that minimizes the travel cost from starting con�guration to the
destination con�guration.

We are looking for a path po(t) that minimizes the following function:

K(p0) = min
p

∫ T

t=0

k(p(t)) (5)

where k : Q→ R+ - is the cost function.
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In the discrete case K(p) is described as follows:

K(p0) = min
p

T∑
ti=0

k(p(ti)) (6)

k(p(ti)) = dist(p(ti), p(ti+1)) + u(p(ti)) (7)

where dist(p(ti), p(ti+1)) is a distance between p(ti) and p(ti+1) and u(p(ti)) is the
cost function being in the state p(ti) . If p(ti) ∈ Cocc then u(p(ti)) =∞.

The problem is solved applying Bellman(Meyn, 2007; Bellman, 1957) approach
implemented using Cellular Neural Network (CNN) (Chua and Young, 1988; Chua
and Roska, 1993).

The CNN which is used for path planning consists of three layers each of them
consists of N ×M neurons. Each neuron corresponds to some cell of grid-based
map of the environment.

The �rst layer is the goal layer, the symbol gij describes the state of neuron
ij in the goal layer. gij = L if the corresponding area of C-space belongs to Qgoal

and gij = 0 in other cases.
The second layer is called traversability layer, the value uij represents the cost

when the robot is placed in the cell ij.
The third layer is called di�usion layer. Symbol xij represents the state of the

cell ij. The process of path planning consists of the following steps:

• Initialization
Weights of connection between corresponding cells are computed using the
following formulae:

aklij = dist(pij , pkl) (8)

where dist(pij , pkl) is the distance between centres of gravity of areas pij and
pkl which are represented by cells ij and kl. Initial values of CNN's cells equal:

xij(0) = gij − uij (9)

• Di�usion process

xij(t+ 1) = max(gij − uij ,maxkl∈Nij (xkl(t)− aklij − ukl(t)) (10)

where Nij is the neighbourhood of the cell cij , a
kl
ij is the weight between cij

and ckl. The values of input signals uij represent the in�uence of the obstacles,
uij = L, where L is a very large value if the area which corresponds to the cell
cij is occupied by an obstacle and uij ∈ [0, L] in other cases. The process is
continued until stability:

∀ij xij(t) = xij(t+ 1) (11)

The collision free path is represented as a list of cells. When the cell ckl indicates
the current position the next position is indicated by the cell cnm which ful�lled
the following requirements:

xnm = maxcij∈Nkl{xij} (12)
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a) b)

c)

Figure 5: The collision free paths: a) di�usion map (the shortest path), b) values of u
(the shortest path), c) planned paths: dotted line - the short path, solid - line - the safe
path

Fig. 5c presents the result of path planning to a washbasin. If is assumed that the
path has to be a shortest one then r = 5cm, fs(r1) = L if r1 < r and fs(r1) = 0 if
r1 ≥ r. It is assumed that s is the label attached to an obstacle. When the path
has to go far from the obstacles then r = 30cm and fs is de�ned as follows:

fs(r1) =

 0 if r1 ≤ r
1 if r1 ∈ [ r2 , r]
L if r1 ≤ r

2

(13)

R represents the robot position, Fig. 5a presents the di�usion map, �g. 5b presents
values of uij in the case when the shortest path is planned. When the shortest
path is planned the robot goes to the washbasin which is next to the door. The
safe path ends up near the second washbasin.

4 Conclusions

The main purpose of the work presented in this article was to build a system for
mobile robot navigation. It is assumed that the goal is given using semantic labels.
Experimental results validated the proposed approach and showed the bene�ts of
a dual representation of an environment, as well as CNN for path planning. The
proposed path planning method does not su�er from local minima problem.
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