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The description of the behaviour of the ultrafine-grained titanium by the constitutive model of
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Abstract

Themain objective of the present paper is the description of the behaviour of the ultrafine-grained (UFG) titanium by the constitutive
model of elasto-viscoplasticity with the development of the identification procedure. We intend to utilize the constitutive model of
the thermodynamical theory of elasto-viscoplasticity for description of nanocrystalline metals presented by Perzyna (2010)[1]. The
identification procedure is based on experimental observation data obtained by Jia et al. (2001)[4] for ultrafine-grained titanium and
by Wang et al. (2007) [5] for nanostructured titanium. Hexagonal close-packed (hcp) ultrafine-grained titanium processed by sever
plastic deformation (SPD) has gained wide interest due to its excellent mechanical properties and potential applications as biomedical
implants.
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1. The constitutive model

We propose to introduce some simplification of the consti-
tutive model developed by Perzyna (2010)[1] by assuming that
the internal state variable vector� = (∈p, d, �) consists of
two scalars and one tensor, i.e.∈p denotes the equivalent vis-
coplastic deformation,d defines the mean grain diameter and�
is the microdamage second order tensor, with the physical inter-
pretation that(� : �)1/2 = ξ defines the volume fraction poros-
ity. The equivalent inelastic deformation∈p describes the dis-
sipation effects generated by viscoplastic flow phenomena, the
microdamage tensor� takes into account the anisotropic intrin-
sic microdamage mechanisms on internal dissipation andd de-
scribes the dynamic grain growth during intensive deformation
process. We postulate the plastic potential function in the form
f = f(J1, J2, ϑ,�), whereJ1, J2 denote the first two invariants
of the Kirchhoff stress tensor� andϑ is absolute temperature.
The evolution equations are assumed as follows

dp = ΛP, L�� = Ξ, ḋ = D (1)

where

Λ =
1

Tm
〈Φ(

f

κ
− 1)〉, P =

∂f

∂�

����
�=const

��������� ∂f

∂�

���������−1

, (2)

dp denotesthe rate of inelastic deformation tensor,Tm denotes
the relaxation time for mechanical disturbances, the isotropic
work–hardening–softening functionκ = κ̂(∈p, ϑ, �, d), Φ is the
empirical overstress function, the bracket〈·〉 defines the ramp
function,L� denotes the Lie derivative andΞ andD denote the
evolution functions which have to be determined.
Let us assume that the intrinsic microdamage process is gener-
ated by growth mechanism only. Based on the heuristic sugges-
tions and taking into account the influence of the stress triaxiality
and anisotropic effects on the growth mechanism we assume the
evolution equation for the microdamage tensor� as follows

L�� =
∂g∗

∂�
1

Tm
〈Φ[

Ig

τeq(ϑ,�)
− 1]〉. (3)

The tensorial function ∂g∗
∂� represents the mutual mi-

cro(nano)crack interaction for growth process,τeq = τ̂(ϑ,�)
denotes the threshold stress function for growth mechanism,
Ig = b1J1 + b2

p
J
′
2 definesthe stress intensity invariant,J

′
2

denote the second invariant of the Kirchhoff stress deviator ten-
sor,bi (i = 1, 2) are the material coefficients which can depend
on d. In the evolution equation (3) the functiong = ĝ (� , ϑ,�)
plays the fundamental role, and we introduce the denotation
∂g∗
∂� = ∂ĝ

∂�
����� ∂ĝ

∂�
�����−1

. Assuming that the dynamic grain
growth is the rate dependent mechanism (cf. Perzyna (2010)[1])
we postulate

ḋ =
Ĝ(ϑ,�)

Tm
〈Φ
�

Id

τd(ϑ,�)
− 1

�
〉, (4)

whereG = Ĝ(ϑ,�) is the material function,Id = c1J1+c2

p
J
′
2

representsthe stress intensity invariant for grain growth,ci (i =
1, 2) are the material coefficients which may depend ond, and
τd = τ̂d(ϑ,�) denotes the threshold stress for dynamic grain
growth mechanism. For previous theoretical and experimental
works on this problem please consider following papers, e.g.
Chen et al. (2006)[6], Kumar et al. (2003)[7], Meyers et al.
(2006)[8] and Nowak and Perzyna (2011) [9].

2. The identification procedure

The identification procedure consists of two parts. In the first
part the determination of the material functions and the mate-
rial constants involved in the description of the dynamic yield
criterion Eqn (6) is presented. As an experimental base the re-
sults concerning experimental observation for ultrafine-grained
titanium obtained by Jia et al. (2001)[4] and for nanostructured
titanium obtained from the compression tests at high strain rates
(103 − 104 s−1) by Wang et al. (2007) [5]. The second part
is focused on the determination of the material functions and the
material constants appeared in the evolution equations (3) and (4).
However, before our final approach to the identification of all pa-
rameters of our model, we assume that the grain size is constant,
functionG = 0 in Eqn (4). Let us also assume that for simplicity

TS03-23

TS
03



CMM-2013 – Computer Methods in Mechanics 27–31 August 2013, Poznan, PolandCMM-2013 – Computer Methods in Mechanics 27–31 August 2013, Poznan, PolandCMM-2013 – Computer Methods in Mechanics 27–31 August 2013, Poznan, Poland

we use the scalar internal state variableξ = (� : �)1/2 instead of
microdamage tensor� and we propose the evolution equation for
the porosityξ as follows (cf. Perzyna (2005) [2])

ξ̇ = ξ̇grow =
g∗(ξ, ϑ)

Tmκ0(ϑ)

h
Ig − τeq(ξ, ϑ,∈P )

i
(5)

whereTmκ0(ϑ) denotes the dynamical viscosity of a material
andτeq(ξ, ϑ,∈P ) is the void growth threshold stress.

Let us introduce the particular form for the plastic poten-

tial function as followsf =
h
J
′
2 + n (ϑ, d) (� : �)1/2 �J2

1

�i 1
2

,

whereJ
′
2 denotesthe second invariant of the stress deviator of the

Kirchhoff stress� andn = n (ϑ, d) is the material function.
From Eqn (1)1 and Eqns (2) we have the dynamical yield crite-
rion in the form

h
J
′
2 + n (ϑ, d) (� : �)1/2 �J2

1

�i 1
2

= κ

�
1 + Φ−1

�√
3

2
Tm∈̇P

��
.

(6)

whereκ = κ0(ϑ) + κ∗(∈P ) is the isotropic work-hardening-
softening function. Taking advantage of the description of the mi-
croshear banding effects for nanocrystalline titanium we can pro-
pose the relation for the relaxation time (cf. Perzyna (2010)[1],
Pȩcherski (1998) [3])

Tm = T 0
m

�
1− f0

ms
1

1 + exp (a− b ∈P )

� ∈̇P

∈̇P
s

− 1

! 1
p

, (7)

whereT 0
m, f0

ms, a, b, p and∈̇P
s arematerial function ofd.

To integrate our set of the nonlinear equations (see Eqn (5),
Eqn (6) and Eqn (7)) the return mapping algorithm is used to
solve the system of above equations. All operators are performed
at the end of time increment. We applied our algorithm within
ABAQUS/EXPLICIT code by writing a user-material subroutine.
We consider the compression quasistatic and dynamic processes
(the initial boundary-value problems) for the cylindrical speci-
men to investigate the deformation mode and to compare the ob-
tained results with those observed experimentally during the pro-
cesses of direct impact compression test, cf. Jia et al. (2001) [4]
and Wang et al. (2007) [5].

The sample is modeled with 3D solids elements (type C3D8R
in the ABAQUS). In numerical simulations the specimen is sup-
ported by a transmitting rod and is impacted by a second moving
one with an imposed velocity. Both rods in contact with sam-
ple are chosen as an elastic bodies with finite friction. Simu-
lation leads to plastic strain and strain rates in the same range
as in experimental test of Wang et al. (2007) [5]. The elasto-
viscoplasticity model parameters are determined for specimen
with different average grain size for the course grained titanium
d = 30 µm (CG) and the ultrafine-grained titaniumd = 260 nm
(UFG). In each case we have started our computations assuming
at the beginning a broad range of feasible parameters. After ini-
tializing and after final determination of material constants which
minimising the residua of the constitutive model and the experi-
mental data we apply our model in numerical simulation of uni-
axial compression and we have obtain the final state of strain and
stress.

3. Final comments

There is our hope that proposed identification procedure for the
thermodynamical theory of elasto-viscoplasticity of nanocrys-
talline metals may be used as a base for the description of the
behaviour of hexagonal close-packed ultrafine-grained titanium
processed by sever plastic deformation and may allow to do the
investigation of plastic strain localization and fracture phenom-
ena in nano-mechanical processes, for instance compare: Asaro
et al. (2003) [10], Zhu et al. (2005) [11] and Zhu et al. (2003)
[12]. These coming results and excellent mechanical properties
of this kind of titanium make potential applications possible as
biomedical implants.
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