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Propagation of weak discontinuities for
quasilinear hyperbolic systems with

coefficients functionally dependent on solutions

by Małgorzata Zdanowicz (Białystok) and
Zbigniew Peradzyński (Warszawa)

Abstract. The propagation of weak discontinuities for quasilinear systems with coef-
ficients functionally dependent on the solution is studied. We demonstrate that, similarly
to the case of usual quasilinear systems, the transport equation for the intensity of weak
discontinuity is quadratic in this intensity. However, the contribution from the (nonlocal)
functional dependence appears to be in principle linear in the jump intensity (with some
exceptions). For illustration, several examples, including two hyperbolic systems (with
functional dependence), the dispersive Maxwell equations and fluid equations of the Hall
plasma thruster, are considered.

1. Introduction. Hyperbolic systems of linear as well as nonlinear equa-
tions are characterized by several important properties: 1) the Cauchy prob-
lem is well posed (at least in a local sense), 2) causality property: the vari-
ation of the initial data over a compact domain can influence the solution
after a finite time in a compact domain only. The latter property is related
to the fact that weak discontinuities propagate along bicharacteristics with
finite speed.

The question arises which of the above properties is preserved when we
assume that the coefficients of the system are functionally dependent on the
solution. In this case it is clear that, in general, causality cannot be pre-
served, at least not in the usual sense. Varying the initial data in a small
region can influence the solution everywhere. Still, as will be demonstrated,
weak discontinuities may appear only on characteristic surfaces. In addition,
similarly to the case of usual PDEs, the transport equation for the jump
intensity can be obtained. In contrast to the case of the usual nonlinear
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dependence when the transport equation is quadratic in the amplitude of
the discontinuity, the contribution from nonlocal functional dependence is
in principle linear, except the cases when a certain “resonant coupling” be-
tween discontinuities on different characteristics (or possibly the same one)
occurs. We confine our attention to the case of quasilinear systems, allowing
however for the functional dependence of their coefficients on solutions. In
Section 2 we show that under fairly weak assumptions, weak discontinuity of
the solution can occur only on characteristic surfaces. We restrict our consid-
erations to the case of jump in the first derivatives. When higher derivatives
are suffering a jump, the procedure is practically the same, except that one
has to deal with prolonged systems.

2. Weak discontinuities for systems with functional dependence.
Let us consider the following system of l quasilinear equations:

(2.1)
m∑
j=1

n∑
ν=1

Asνj (x, u(x), u(·))uj,xν = fs(x, u(x), u(·)), s = 1, . . . , l,

with coefficients Asνj , fs defined for x ∈ Ω̃ ⊂ Rn and u(·) from some open
subset B of C(Ω̃). We are concerned with the case when the coefficients
of the system can depend on the unknown functions u : Ω̃ → Rm also in a
nonlocal, functional way, which is expressed by the symbol u(·) in Asνj and fs.
Let Ω ⊂ Ω̃ be an open set and Σ′ a smooth hypersurface in Ω̃, which divides
Ω into two disjoint open parts, Ω+ and Ω−. Hence Ω = Ω+ ∪ Ω− ∪ Σ and
Σ = Ω+ ∩Ω− ∩Ω.

Theorem 2.1. Assume that the continuous function u : Ω̃ → Rm and
the coefficients of the system satisfy the following conditions:

(i) A(x, u(x), u(·)) and f(x, u(x), u(·)) are continuous in x ∈ Ω.
(ii) u ∈ C1(Ω+) ∩ C1(Ω−).
(iii) For any x0 ∈ Σ the derivatives u,xν have finite limits u+

,xν (x0) for
x→ x0 with x ∈ Ω+ and similarly u−,xν (x0) for x→ x0 with x ∈ Ω−.
Their difference will be denoted by [u,xν (x0)] = u+

,xν (x0)− u−,xν (x0).
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(iv) u satisfies (2.1) in Ω+ and Ω−.
(v) The jump [u,xν ] of the first derivatives of u is nonzero on Σ except

possibly at isolated points.

Then the surface Σ of weak discontinuity is a characteristic surface.

Notice that although all coefficients of (2.1) as well as the function u
are defined on a bigger domain Ω̃, we do not assume that u satisfies (2.1)
outside of Ω+ and Ω−. Similarly the functional dependence can refer to a
bigger domain than Ω.

Proof. First of all, recall that under the above assumptions, the deriva-
tives of u in directions tangent to Σ are continuous on Σ. Indeed, taking any
curve γ : x = x(s) of class C1 on Σ which passes through a point x1 ∈ Σ,
and integrating the one-sided gradient of u along this curve from x1 to any
other point x2 of this curve, we obtain

uj(x2)
+ = uj(x1)

+ +
n∑
ν=1

�

γ

u+j
,xν dx

ν ,

uj(x2)
− = uj(x1)

− +
n∑
ν=1

�

γ

u−j,xν dx
ν .

Since u is continuous on Ω, we have

0 = uj(x2)
+ − uj(x2)

−, 0 = uj(x1)
+ − uj(x1)

−.

Thus, if σ = dx(s)/ds denotes the vector tangent to γ at x1 then

0 =
n∑
ν=1

�

γ

[uj,xνσ
ν ] ds.

Here [g] denotes the jump of g across the surface of discontinuity.
In the limit when x2 is approaching x1 we obtain

[uj,xν ]σ
ν = 0, ν = 1, . . . , n.

Clearly, since γ is an arbitrary curve on Σ it follows that σ can be any vector
tangent to Σ. Consequently, the derivatives of u in directions tangent to Σ
are continuous. Since at each point of Σ we have n− 1 linearly independent
tangent vectors, we conclude that rank [uj,xν ] ≤ 1 and [uj,xν ] = (Xjλν), where
X = (Xj) ∈ Rm, λ = (λν) ∈ Rn,

∑n
ν=1 λνσ

ν = 0.
Let x ∈ Σ. Then on the two sides of Σ we have
m∑
j=1

n∑
ν=1

As,νj (x, u+(x), u+(·))u+ j
,xν = fs(x, u+(x), u+(·)), s = 1, . . . , l,

m∑
j=1

n∑
ν=1

As,νj (x, u−(x), u−(·))u− j,xν = f s(x, u−(x), u−(·)), s = 1, . . . , l.



180 M. Zdanowicz and Z. Peradzyński

Subtracting the second equation from the first, by the continuity of u, A, f
in Ω we arrive at

m∑
j=1

n∑
ν=1

As,νj (x, u(x), u(·))[uj,xν ] = 0, s = 1, . . . , l,

for x ∈ Σ. Since [uj,xν ] = (Xjλν), we have
m∑
j=1

n∑
ν=1

(As,νj (x, u(x), u(·))λν)Xj = 0 for x ∈ Σ.

This means that X is an eigenvector of the matrix Aλ (=
∑n

ν=1A
sν
j λν),

corresponding to the null eigenvalue of Aλ, and λ is the “perpendicular”
characteristic vector. Since, by definition, the surface perpendicular to λ is
a characteristic surface, we conclude that the surface of weak discontinuity
must be a characteristic surface.

As a simple example we take the Maxwell equations in two independent
variables (t, x). We assume that the medium is dispersive (the dielectric
constant depends on the frequency). For simplicity we take the magnetic
permeability to be constant and equal to µ0. Let E,D, P,B,H denote the
electric field, electric displacement field, electric polarization field, magnetic
induction field and magnetic field respectively. Then we have the following
constitutive relations:

D(t, x) = ε0E(t, x) + P (t, x),

B(t, x) =
1

µ0
H(t, x),

P (t, x) = −
t�

−∞

( ∞�
−∞

χ(t, t′, x, x′)E2(t
′, x′) dx′

)
dt′,

where ε0 is the dielectric constant of the vacuum and χ(t, t′, x, x′) is the
electric susceptibility of the medium. In the one-dimensional case, in the
absence of electric charge and electric current, when additionally B2 = const
and E3 = const, the Maxwell equations reduce to

B3,t + E2,x = 0, D2,t +H3,x = 0.

Using the constitutive relations we can write these equations in terms of E2

and B3, obtaining the following linear hyperbolic system:

(2.2)
∂

∂t

(
E2

B3

)
+

(
0 1

ε0µ0

1 0

)
∂

∂x

(
E2

B3

)

=

(
−
	t
−∞(

	∞
−∞ χ,t(t, t

′, x, x′)E2(t
′, x′) dx′) dt′

0

)
,
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where only the RHS includes functional dependence on the solution. Conse-
quently, the discontinuities propagate with the vacuum light velocity.

However, if we assume that the function χ also depends on the current
electric field E(t, x), i.e.

P (t, x) = −
t�

−∞

( ∞�
−∞

χ(E2(t, x), t, t
′, x, x′)E2(t

′, x′) dx′
)
dt′,

then our Maxwell equations become nonlinear with characteristic velocities
functionally dependent on the solution:

(2.3)
∂

∂t

(
E2

B3

)
+

(
0 c2(I1)

1 0

)
∂

∂x

(
E2

B3

)
=

(
I2

0

)
,

where

c2(I1) =
1

ε0µ0(1 + I1)
,(2.4)

I1 =

t�

−∞

( ∞�
−∞

χ,E2(E2(t, x), t, t
′, x, x′)E2(t

′, x′) dx′
)
dt′,(2.5)

I2 = −
t�

−∞

( ∞�
−∞

χ,t(E2(t, x), t, t
′, x, x′)E2(t

′, x′) dx′
)
dt′.(2.6)

In this case the characteristic velocities depend on I1 and are equal to ±c(I1).

3. Some simple examples. In this section several nonlocal versions
of nondissipative Burgers equations will be studied in order to elucidate
the possible differences in propagation of discontinuities caused by nonlocal
dependence. Let us consider the following four examples:

ut(t, x) + u(t, x)ux(t, x) = 0,(3.1)

ut(t, x) + u(t, x+ 1)ux(t, x) = 0,(3.2)

ut(t, x) + u(t− 1, x)ux(t, x) = 0,(3.3)

ut(t, x) + u(t− 1, x+ 1)ux(t, x) = 0.(3.4)

To make a clear distinction we will speak of the functional dependence of co-
efficients on the solution only in the case where we have nonlocal dependence.
Hence (2.2), (2.3), (3.2), (3.3), (3.4) have coefficients functionally dependent
on the unknown function u, whereas (3.1) does not. The first (local) of the
four equations (3.1)–(3.4) is taken to compare its properties with the other
three (nonlocal).

For all the above equations we will write the transport equation for the
amplitude of weak discontinuity. To do this we differentiate (3.1)–(3.4) with
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respect to x and introduce the new function p(t, x) = ux(t, x). In this way we
obtain the prolonged equations. Let f(χ−(t), t) and f(χ+(t), t) denote the
one-sided limits of f(t, x) when x tends to the characteristic curve x = χ(t).
For example

(3.5) f(χ+(t), t) = lim
x→χ(t)
x>χ(t)

f(t, x).

We will denote by σ(t) = p(t, χ+(t)) − p(t, χ−(t)) the jump of the first
derivative ux across the characteristic curve x = χ(t). The last step is to
write the transport equation.

1. Differentiating (3.1) with respect to x we get

(3.6) pt(t, x) + u(t, x)px(t, x) = −p2(t, x).

The left hand side is the derivative of p along the characteristic curve x =
χ(t) (dχ/dt = u(t, χ)). Therefore we can write this equation as an ordinary
differential equation along the characteristic curve,

(3.7)
dp(t, χ(t))

dt
= −p2(t, χ(t)).

If there is a discontinuity of p(t, x) along the characteristic line then the
jump

(3.8) σ(t) = p(t, χ+(t))− p(t, χ−(t))
satisfies

(3.9)
dσ(t)

dt
= −2p(t, χ+(t))σ(t) + σ2(t).

The transport equation in this case is an ordinary differential equation
with a quadratic term with respect to σ on the right hand side.

2. Differentiating (3.2) with respect to x we obtain

(3.10) pt(t, x) + u(t, x+ 1)px(t, x) = −p(t, x+ 1)p(t, x).

The equation of the characteristic is

(3.11)
dχ(t)

dt
= u(t, χ(t) + 1).

Usually for a given characteristic curve x = χ(t) its shift x = χ(t) + 1 is not
a characteristic curve and therefore p(t, x) is continuous on x = χ(t) + 1,
p(t, χ−(t) + 1) = p(t, χ+(t) + 1). In this case we arrive at the transport
equation

(3.12)
dσ(t)

dt
= −p(t, χ(t) + 1)σ(t),

which is again an ordinary differential equation, but this time linear in σ.
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It may happen however that also the curve

x = χ̃(t) := χ(t) + 1

is a characteristic curve on which the solution has a weak discontinuity.
In that case we have a sort of resonant interaction between discontinuities
located at different (parallel) characteristic curves. As a result we obtain a
system of two coupled equations for the respective jumps σ and σ̃ across
both curves:

dσ(t)

dt
= −p(t, χ̃+(t))σ(t)− p(t, χ+(t))σ̃(t) + σ(t)σ̃(t),(3.13)

dσ̃(t)

dt
= −p(t, χ̃(t) + 1)σ̃(t).(3.14)

Clearly, we have only two equations in the system if there are no other
discontinuities coupled (e.g. x = χ(t) + 2 is not a characteristic with weak
discontinuity of the solution), otherwise we can end up with a still more
complex system of transport equations.

3. For (3.3) we have

(3.15) pt(t, x) + u(t− 1, x)px(t, x) = −p(t− 1, x)p(t, x).

This time the characteristic curves are given by

(3.16)
dχ(t)

dt
= u(t− 1, χ(t)).

In the most typical case the translation of the characteristic curve along the
t-axis by 1 is not a characteristic curve. In that case we obtain the following
transport equation:

(3.17)
dσ(t)

dt
= −p(t− 1, χ(t))σ(t),

which is a linear ordinary differential equation equation for σ. If, however,
the point (t− 1, χ(t)) belongs to the same characteristic x = χ(t), we arrive
at the following single functional differential transport equation:

dσ(t)

dt
= − p(t− 1, χ+(t))σ(t)− p(t, χ+(t))σ(t− 1)(3.18)

+ σ(t)σ(t− 1).

This can happen when the characteristic is of the form χ(t) = const or if
χ(t) is a 1-periodic function.
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The characteristic x = χ(t) is a 1-periodic function.

The point (t− 1, χ(t)) can belong to another characteristic curve, x = χ̃(t)
(i.e.(t−1, χ(t)) = (t−1, χ̃(t−1))), on which there is also weak discontinuity
of u.

Translating the characteristic x = χ(t) along the
t-axis may produce a new characteristic x = χ̃(t).

Then
dσ(t)

dt
= −p(t− 1, χ+(t))σ(t)− p(t, χ+(t))σ(t− 1)(3.19)

+σ(t)σ(t− 1),

dσ̃(t)

dt
= −p(t− 1, χ̃+(t))σ̃(t),(3.20)

where σ̃ denotes the jump across the characteristic x = χ̃(t).

4. In the case of (3.4) we obtain the following prolonged equation:

(3.21) pt(t, x) + u(t− 1, x+ 1)px(t, x) = −p(t− 1, x+ 1)p(t, x).

Consequently, the characteristic curves satisfy

(3.22)
dx

dt
= u(t− 1, x+ 1).

If x = χ(t) is a characteristic with discontinuity of u, then as before, the
characteristic curve shifted along t is not usually a characteristic curve. In
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that case the transport equation will be a linear ordinary differential equation
in σ:

(3.23)
dσ(t)

dt
= −p(t− 1, χ(t) + 1)σ(t).

If, however, after translation we fall on the same characteristic curve (i.e.
the point (t − 1, χ(t) + 1) belongs to the curve {(t, x) : x = χ(t)}), then
the transport equation is an ordinary differential equation with retarded
argument:

dσ(t)

dt
= −p(t− 1, χ+(t) + 1)σ(t)(3.24)

− p(t, χ+(t))σ(t− 1) + σ(t)σ(t− 1).

This can occur when the characteristic curve is defined by a periodic function
g in the form χ(t) = x0− t− g(t), where g ∈ C1(−1,∞) and g(t) = g(t− 1)
for t ≥ 0. Hence χ(t) + 1 = χ(t− 1).

The plot of χ(t) = 4− t− sin(2πt).

It can happen that the point (t−1, χ(t)+1) belongs to another characteristic
x = χ̃(t) and the function u also has a weak discontinuity there. In this case
the transport equation (see (3.25) below) on the characteristic x = χ(t)
is coupled with the transport equation (see (3.26)) on the characteristic
χ̃(t) = χ(t) + 1 (additionally, we assume here that u does not have a weak
discontinuity on the curve x = χ̃(t) + 1):

dσ(t)

dt
= −p(t− 1, χ̃+(t))σ(t)(3.25)

− p(t, χ+(t))σ̃(t− 1) + σ(t)σ̃(t− 1),

dσ̃(t)

dt
= −p(t− 1, χ̃(t) + 1)σ̃(t).(3.26)
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Equation (3.26) remains linear if x = χ̃(t)+1 = χ(t)+2 is not a characteristic
curve, or if it is, but u does not suffer weak discontinuity there.

Although the above examples of transport equations do not exhaust all
possible cases, they shed some light on the problem of transport of weak
discontinuities in the case of equations with functional dependence. It can
also be shown that by a suitable choice of initial data all the considered
cases of transport equations for (3.2)–(3.4) can really occur. One may think
that if instead of translation in space or time, the functional dependence is
expressed by integral operators, then the “resonances” could not occur and
the contribution from such functional dependence to the transport equation
would be linear. However, for the equation

(3.27) ut(t, x) + ux(t, x)

x�

0

K(t, s)us(t, s) ds = 0

with a Volterra type operator, the transport equation is nonlinear. Notice
that taking K(t, x) ≡ 1 we practically obtain (3.1). Similarly taking x + 1
instead of x as an upper limit of integration we end up with an equation
containing a shift along the x-axis.

4. The prolonged system. Now we will be concerned with a system
consisting of m equations with m unknown functions and two independent
variables (t, x) ∈ [0, T ]× R:

(4.1) ut +A(t, x, u, u(·))ux = f(t, x, u, u(·)),

where

u : [0, T ]× R→ Rm, u(t, x) =


u1(t, x)

...
um(t, x)

 , f =


f1

...
fm

 .

Assume that the matrix A has at least one real eigenvalue ξ of a constant
multiplicity s. Without loss of generality we can assume that this is the first
eigenvalue. Assume moreover that there exist s linearly independent left
eigenvectors L1, . . . , Ls corresponding to this eigenvalue. Clearly ξ as well
as the corresponding eigenvectors are (in general) functionally dependent on
u(·). We also assume enough differentiability of A and f , to guarantee that
all differentiations below can be performed.

We define the matrix L in such a way that the first s rows are the
eigenvectors L1, . . . , Ls. The nextm−s rows are linearly independent vectors
Ls+1, . . . , Lm such that

LkA ∈ span{Ls+1, . . . , Lm}, k = s+ 1, . . . ,m.
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In other words Ls+1, . . . , Lm span the left invariant subspace for the matrix
A complementary to L1, . . . , Ls. After this choice of L the first s columns
of the inverse R = L−1 are right eigenvectors of A corresponding to ξ. The
remaining columns of R span the complementary, m − s-dimensional right
invariant subspace for A. In this case, A can be decomposed as follows:

A(t, x, u, u(·)) = R(t, x, u, u(·))D̃(t, x, u, u(·))L(t, x, u, u(·)),
where

L =


L1

...
Lm

 , R =
(
R1 . . . Rm

)
, D̃ =

(
ξIs 0

0 Q

)
.

Here Q is an (m− s)× (m− s) matrix, Is stands for the s× s unit matrix,
Li, i = 1, . . . ,m, are row vectors and Ri, i = 1, . . . ,m, are column vectors.
Since L1, . . . , Ls are linearly independent left eigenvectors corresponding to
the eigenvalue ξ, the column vectors R1, . . . , Rs are right eigenvectors corre-
sponding to the same eigenvalue.

For brevity we assume that the functional dependence of the coefficients
of the system is realized by their dependence on a single, nonlinear integral
operator I[u]. For example I[u] can be a nonlinear operator of the form

(4.2) I[u] =

α2(t)�

α1(t)

( t�

t−θ(x)

Φ(t, τ, x, s, u(τ, s)) dτ
)
ds,

or

(4.3) I[u] =

α2(t)�

α1(t)

Φ̃(t, x, s, u(t, s)) · us(t, s) ds,

where

1. α1, α2 : [0, T ] → R, α1, α2 ∈ C1([0, T ]), −∞ ≤ α1 ≤ α2 ≤ ∞; α1 and
α2 are not characteristic curves;

2. 0 ≤ θ(x) ≤ ∞ for x ∈ R;
3. Φ : [0, T ]× [−θ(x), T ]×Rm+2 → R is differentiable with respect to all

arguments and its partial derivatives are bounded;
4. Φ̃ : [0, T ] × Rm+2 → Rm is bounded together with all its partial

derivatives;
5. Φ̃ · us denotes the scalar product of Φ̃ and us in Rm.
In the case of the operator (4.2) the system has memory. The initial

condition for u must also be given for negative time:

(4.4) u(t, x) = u0(t, x), (t, x) ∈ [−θ(x), 0]× R.
We use the following notation for any function g = g(t, x, u):
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• gx = ∂
∂xg(t, x, u) is the partial derivative with respect to x,

• g,x or dg
dx denotes the total derivative,

g,x = gx +

m∑
i=1

guiu
i
x + gIIx,

• X · ∇ug denotes the directional derivative of g(t, x, u1, . . . , um, I) with
respect to the variables u in the direction of the vector X ∈ Rm,

X · ∇ug =

m∑
i=1

Xigui .

Let us start from the case when the coefficients of (4.1) depend on the
values of u and the operator (4.2). Multiplying (4.1) on the left by the matrix
L and differentiating the result with respect to x we have

(4.5) L,xut + Luxt + D̃,xLux + D̃(Lux),x = L,xf + Lf,x.

After easy manipulations, noticing that ut = f −Aux we arrive at

(4.6) (Lux),t + D̃(Lux),x = L,tux + Lf,x − D̃,xLux + L,xRD̃Lux.

Since LR = I, we have L,xR+ LR,x = 0 and consequently

(Lux),t + D̃(Lux),x = L,tux + Lf,x − D̃,xLux − LR,xD̃Lux,

or

(4.7) (Lux),t + D̃(Lux),x = L,tux + Lf,x − L(RD̃),xLux.

Let p := Lux and so ux = Rp. In terms of p we can rewrite (4.7) as

(4.8) pt + D̃ px = L,tRp+ Lf,x − L(RD̃),xp.

Now we will show that the right hand side of (4.8) is in fact a second
order polynomial in the variable p = (p1, . . . , pm)

T .
Using directional derivatives we obtain

L,tRp+ Lf,x − L(RD̃),xp = LtRp+ (ut · ∇uL)Rp+ LII,tRp

+Lfx + L(ux · ∇uf) + LfII,x

−L(RD̃)xp− L(ux · ∇u(RD̃))p

−L(RD̃)II,xp

= LtRp+ ((f −RD̃p) · ∇uL)Rp+ LII,tRp

+Lfx + L((Rp) · ∇uf) + LfII,x

−L(RD̃)xp− L((Rp) · ∇u(RD̃))p

−L(RD̃)II,xp,
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where

I,x =

α2(t)�

α1(t)

( t�

t−θ(x)

∂Φ

∂x
dτ − ∂θ

∂x
Φ
(
t, θ(x), x, s, u(θ(x), s)

))
ds,(4.9)

I,t =

α2(t)�

α1(t)

( t�

t−θ(x)

∂Φ

∂t
dτ

)
ds(4.10)

+

α2(t)�

α1(t)

(
Φ
(
t, t, x, s, u(t, s)

)
− Φ

(
t, t− θ(x), x, s, u(t− θ(x), s)

))
ds

+
∂α2

∂t

t�

t−θ(x)

Φ
(
t, τ, x, α2(t), u(τ, α2(t))

)
dτ

− ∂α1

∂t

t�

t−θ(x)

Φ
(
t, τ, x, α1(t), u(τ, α1(t))

)
dτ.

Applying the directional derivative to RL = LR = I along a vector X we
have

(X · ∇uL)R = −L(X · ∇uR).

So we can transform our equality to obtain

L,tRp+ Lf,x − L(RD̃),xp = LtRp− L((f −RD̃p) · ∇uR)p+ LII,tRp

(4.11)

+ Lfx + L((Rp) · ∇uf) + LfII,x

− L(RD̃)xp− L((Rp) · ∇u(RD̃))p

− L(RD̃)IIxp.

Using the last equality we can write the prolonged equation (4.8) in the form

(4.12) pt + D̃px = ϕ0 + ψ0 + ϕ1p+ ψ1p+ ϕ2(p, p),

where

ϕ0 = Lfx,(4.13)
ψ0 = LfII,x,(4.14)

ϕ1p = L((Rp) · ∇uf) + {LtR− L(RD̃)x − Lf}p,(4.15)
ψ1p = {−L(RD̃)II,x + LII,tR}p,(4.16)

ϕ2(p, p) = L{(RD̃p) · ∇uR− (Rp) · ∇u(RD̃)}p.(4.17)

The contribution from functional dependence comes through the terms ψ0

and ψ1p, so it is linear in p.
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Notice that all coefficients of the above polynomial in p as well as I,x, I,t
are continuous.

In principle we allow α1 = −∞ or α2 = +∞ but then it is necessary to
assume some additional conditions which yield continuity of the integrals in
I,x, I,t with respect to (t, x).

Basically, in the case of the operator (4.3), the derivation of the prolonged
system is almost the same. However, there will appear a new term with the
Fréchet derivative of I[u] at the “point” u(·) acting (linearly) on ut(·). This
is denoted by I ′(u;ut). Since ut = f −RD̃p, we finally obtain

pt + D̃px = Lfx + L((Rp) · ∇uf) + {LtR− L(RD̃)x}p(4.18)
−L{(f −RD̃p) · ∇uR+ (Rp) · ∇u(RD̃)}p
+LfII,x + {−L(RD̃)II,x + LII,tR}p
+LII

′(u; f −RD̃p)Rp.
In this case the total derivatives of I with respect to x and t are given by

I,x =

α2(t)�

α1(t)

Φ̃x(t, x, s, u(t, s)) · us(t, s) ds,(4.19)

I,t =

α2(t)�

α1(t)

Φ̃t(t, x, s, u(t, s)) · us(t, s) ds(4.20)

+α2,tΦ̃(t, x, s, u(t, s)) · us(t, s)
∣∣
s=α2(t)

−α1,tΦ̃(t, x, s, u(t, s)) · us(t, s)
∣∣
s=α1(t)

,

I ′(u;ut) =

α2(t)�

α1(t)

( n∑
i=1

Φ̃uiu
i
t

)
· us(t, s) ds+ [Φ̃ · ut]s=α2(t)

s=α1(t)(4.21)

−
α2(t)�

α1(t)

(
Φ̃s +

n∑
i=1

Φ̃uiu
i
s

)
· ut ds.

In spite of the similarity of (4.18) and (4.12) there is an important quali-
tative difference between them. The coefficients of the polynomial in p on
the RHS of (4.18) are expressed by integrals containing ux, so they depend
functionally on p, whereas in the case of (4.12) they do not.

We are interested in the propagation of weak discontinuity in the open
domain located between the curvesx = α1(t) andx = α2(t). The discontinuity
occurs on a characteristic which crosses the line t = const at most at one
point (1), therefore the functions definedby (4.19)–(4.21) are continuous in t,x.

(1) This follows from the fact that the characteristic speed ξ is finite.
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5. The transport equation. Suppose that u(t, x) is a solution of the
system under consideration. Let x = χ(t) be the characteristic curve cor-
responding to an eigenvalue ξ of the matrix A evaluated on u. We assume
that ξ has constant multiplicity s. Let R1, . . . , Rs denote the corresponding
right eigenvectors. The jump of pk, k = 1, . . . ,m, across the characteristic
x = χ(t) will be denoted by

σk = p+
k − p

−
k , k = 1, . . . ,m.

Along this characteristic line only σk for k = 1, . . . , s can be different from
zero, while for k > s we have σk = 0. Indeed, by the equation

Lut + D̃Lux = Lf,

we obtain

(5.1) L[ut] + D̃L[ux] = 0.

By the continuity of u(t, x) on the curve of weak discontinuity x = χ(t) we
have

(5.2)
du

dt
(t, χ+(t)) =

du

dt
(t, χ−(t)),

or

(5.3) χ′(t)u+
x + u+

t = χ′(t)u−x + u−t .

This could also be written as

(5.4) [ut] = −χ′(t)[ux].

Substituting (5.4) into (5.1) we get

L(−χ′(t)[ux]) + D̃L[ux] = 0,

(D̃ − χ′(t)Im)[Lux] = 0,

(D̃ − χ′(t)Im)[p] = 0.

Since ξ is an eigenvalue of the matrix A of multiplicity s, χ′(t) = ξ(t, χ(t))
and D̃ is composed of two square blocs: a diagonal one, Is of dimension s, and
an (m − s)-dimensional block Q. Obviously, according to our assumptions,
ξ is not an eigenvalue of Q. Therefore all σk for k > s must be equal to zero.
Hence we conclude that only the functions pk for k = 1, . . . , s can have jump
discontinuities on x = χ(t).

Now we will write a system of ordinary differential equations which gov-
erns the evolution of the jump intensity σk of pk, k = 1, . . . , s, along the
characteristic curve x = χ(t). Equations of this system are called transport
equations. For convenience we denote by σ the m-dimensional column vector
whose m− s components σs+1, . . . , σm are identically zero:

(5.5) σ = (σ1, . . . , σs, 0, . . . , 0).
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To derive an equation for σ we start from (4.12) or from (4.18). In both cases
we obtain the equations

(5.6)
dσk
dt

= H1kσ +H2k(σ, σ), k = 1, . . . , s,

along the characteristic curve x = χ(t). In the case of (4.12) when the
coefficients of the system depend on the operator (4.2) we have

H1kσ = Lk((Rσ) · ∇uf) + {LktR− Lk(RD̃),x}σ(5.7)

−Lk{((f −RD̃p+) · ∇uR)σ − ((RD̃σ) · ∇uR)p+}
+Lk{((Rp+) · ∇(RD̃))σ + ((Rσ) · ∇u(RD̃))p+}
+ {−Lk(RD̃)II,x + LkI I,tR}σ,

H2k(σ, σ) = −Lk((RD̃σ) · ∇uR)σ − Lk((Rσ) · ∇u(RD̃))σ.(5.8)

In the case of (4.18), when the coefficients of the system depend on the
operator (4.3), we have

H1kσ = Lk((Rσ) · ∇uf) + {LktR− Lk(RD̃)x}σ(5.9)
−Lk{((f −RD̃p+) · (∇uR))σ − ((RD̃σ) · (∇uR))p+}
+Lk{((Rp+) · ∇u(RD̃))σ + ((Rσ) · ∇u(RD̃))p+}

+ {LkI I ′(u; f −RD̃p)R− Lk(R
˜̃D)II,x + LkI I,tR}σ,

H2k(σ, σ) = −Lk((RD̃σ) · ∇uR)σ − Lk((Rσ) · ∇u(RD̃))σ.(5.10)

Note that in both cases the terms resulting from dependence on I[u(·)] are
linear in σ.

6. Examples from physics. After these general considerations, we now
come back to the systems (2.2) and (2.3). In those examples the matrix A
has real eigenvalues and can be diagonalized, i.e. A = RDL, where (in the
case of (2.2)) we have

D =

(
1/
√
ε0µ0 0

0 −1/√ε0µ0

)
, L =

( √
ε0µ0 1

−√ε0µ0 1

)
,

R := L−1 =

(
1/(2
√
ε0µ0) −1/(2

√
ε0µ0)

1/2 1/2

)
.

We denote by u = (E2, B3) the unknown function and by f the right hand
side of the relevant system ((2.2) or (2.3)):

(6.1) ut +Aux = f.

Equations (2.2) are linear, and D, L, R are constant matrices. We multiply
(6.1) on the left by the matrix L of left eigenvectors and differentiate with
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respect to x to obtain
Lutx +DLuxx = Lf,x.

Let p = Lux. Then we can rewrite the system (2.2) in the form

(6.2) pt +Dpx = Lf,x,

where

(6.3) f,x =

(
−
	t
−∞(

	∞
−∞ χ,tx(t, t

′, x, x′)E2(t
′, x′) dx′) dt′

0

)
.

This system has two characteristics: x = χ1(t, x0) = t/
√
ε0µ0 + x0 corre-

sponding to the eigenvalue 1/
√
ε0µ0 and x = χ2(t, x0) = −t/√ε0µ0 + x0

corresponding to the eigenvalue −1/√ε0µ0.
Let σk, k = 1, 2, denote the jump of the function pk, k = 1, 2, across the

characteristic x = χk(t, x0):

σk = p+
k − p

−
k , k = 1, 2.

From (6.2) we obtain transport equations for the jumps:

• along the characteristic x = χ1(t, x0):

σ1,t +
1

√
ε0µ0

σ1,x =
dσ1

dt
= 0,

• along the characteristic x = χ2(t, x0):

σ2,t −
1

√
ε0µ0

σ2,x =
dσ2

dt
= 0.

For system (2.3) we have

D =

 1√
ε0µ0(1+I1)

0

0 − 1√
ε0µ0(1+I1)

 , L =

( √
ε0µ0(1 + I1) 1

−
√
ε0µ0(1 + I1) 1

)
,

R =

 1

2
√
ε0µ0(1+I1)

− 1

2
√
ε0µ0(1+I1)

1/2 1/2

 .

In a similar manner, but after much more involved calculations (cf. (4.8))
we arrive at

(6.4) pt +Dpx =

( √
ε0µ0(1 + I1) I2,x

−
√
ε0µ0(1 + I1) I2,x

)

+

 3I1,x
4
√
ε0µ0(1+I1)3/2

+
I1,t

4(1+I1)
I1,x

4
√
ε0µ0(1+I1)3/2

− I1,t
4(1+I1)

− I1,x
4
√
ε0µ0(1+I1)3/2

− I1,t
4(1+I1) − 3I1,x

4
√
ε0µ0(1+I1)3/2

+
I1,t

4(1+I1)

 p,



194 M. Zdanowicz and Z. Peradzyński

where

I1,x =

t�

−∞

( ∞�
−∞

χxE2(E2(t, x), t, t
′, x, x′)E2(t

′, x′) dx′
)
dt′(6.5)

+E2,x(t, x)

t�

−∞

( ∞�
−∞

χE2
2
(E2(t, x), t, t

′, x, x′)E2(t
′, x′) dx′

)
dt′,

I1,t =

t�

−∞

( ∞�
−∞

χtE2(E2(t, x), t, t
′, x, x′)E2(t

′, x′) dx′
)
dt′(6.6)

+E2,t(t, x)

t�

−∞

( ∞�
−∞

χE2
2
(E2(t, x), t, t

′, x, x′)E2(t
′, x′) dx′

)
dt′

+

∞�

−∞
χE2(E2(t, x), t, t, x, x

′)E2(t, x
′) dx′,

I2,x = −
t�

−∞

( ∞�
−∞

χtx(E2(t, x), t, t
′, x, x′)E2(t

′, x′) dx′
)
dt′(6.7)

−E2,x(t, x)

t�

−∞

( ∞�
−∞

χtE2(E2(t, x), t, t
′, x, x′)E2(t

′, x′) dx′
)
dt′.

Finally we obtain the following transport equations:

• on the characteristic defined by dx
dt = 1√

ε0µ0(1+I1)
the intensity σ1

evolves according to

dσ1

dt
= σ1

{
p+

1 + p2

4ε0µ0(1 + I1)2

t�

−∞

( ∞�
−∞

χE2
2
E2(t

′, x′) dx′
)
dt′(6.8)

− 1

2

t�

−∞

( ∞�
−∞

χtE2E2(t
′, x′) dx′

)
dt′

+
3I+

1,x

4
√
ε0µ0(1 + I1)3/2

+
I+

1,t

4(1 + I1)

}
−σ2

1

1

4ε0µ0(1 + I1)2

t�

−∞

( ∞�
−∞

χE2
2
E2(t

′, x′) dx′
)
dt′;

• on the characteristic defined by dx
dt = −

1√
ε0µ0(1+I1)

we have

dσ2

dt
= σ2

{
p1 + p+

2

4ε0µ0(1 + I1)2

t�

−∞

( ∞�
−∞

χE2
2
E2(t

′, x′) dx′
)
dt′(6.9)
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− 1

2

t�

−∞

( ∞�
−∞

χtE2E2(t
′, x′) dx′

)
dt′

−
3I+

1,x

4
√
ε0µ0(1 + I1)3/2

+
I+

1,t

4(1 + I1)

}
−σ2

2

1

4ε0µ0(1 + I1)2

t�

−∞

( ∞�
−∞

χE2
2
E2(t

′, x′) dx′
)
dt′.

Comparing these two examples one may note that the nonlinear dependence
of the polarization field on the current electric field leads to much more
complex transport equations. In this case we are dealing with local and
nonlocal dependence as well.

The system describing the dynamics of 3-component plasma in the Hall
thruster [BMPGD], [ZP] can serve as an example of a system with an oper-
ator of the type (4.3):

(6.10)


Na,t

n,t

V,t

T,t

+


Va 0 0 0

0 V n 0

0 kT
nm V k

m

0 2T
3n

I
ne

2
3T V − I

ne



Na,x

n,x

V,x

T,x



=


−βNan

βNan

νeff

(
I
en − V

)
+ βNa(Va − V )

− 2
3kβNa(γeEion − Eke) +

4νm
3k Eke − 2νew

3k Eke − 4
3νewT

 .
The unknown functions Na(t, x), n(t, x), V (t, x), T (t, x) represent the den-
sity of neutral atoms, the density of ions (which is equal to the density of
electrons) and the electron temperature. The functional I appearing in the
matrix of the system is given by

I =

( L�

0

νeff

en
dx

)−1

·
[
e

m
U0 +

L�

0

(
νeffV +

1

n

∂

∂x

(
kT

m
n

))
dx

]
.

Although the last example was the inspiration for this paper, we do not
give the transport equations for system (6.10), because of their technical
complexity.

7. The Cauchy problem for the initial discontinuity. Now we
assume that the system under consideration, i.e. (4.1), is hyperbolic with
coefficients functionally dependent on the solution. So we assume that the
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matrix A has real eigenvalues (not necessarily distinct) which are function-
ally dependent on the solution and consequently (by hyperbolicity) that A
has a complete set of m independent eigenvectors. To avoid complications
we assume that the eigenvalues have constant multiplicity. Under these as-
sumptions it follows that, for a given u(t, x), the matrix A(t, x, u(·)) can be
diagonalised:

A = RDL, R := L−1, D = diag[ξ1, . . . , ξm].

The matrix L is nonsingular and its rows are linearly independent left eigen-
vectors corresponding to the eigenvalues ξ1, . . . , ξm. The columns of R are
linearly independent right eigenvectors of A.

In particular our quasilinear hyperbolic system of m equations with m
unknowns functions may have the form

u,t +A(t, x, u, I[u])u,x = f(t, x, u, I[u]),

where I is an operator from C1(R) into itself and the matrix A is differen-
tiable with respect to all arguments. Depending on the form of the nonlocal
operator I[u], we assume that the function u satisfies appropriate initial
conditions, e.g.

u(t, x) = u0(t, x), (t, x) ∈ [−θ(x), 0]× R,

for (4.2) or u(0, x) = u0(t, x) for (4.3). Let us concentrate on the simple
case when the contribution from the functional dependence to the transport
equations is linear (no resonant cases which are somewhat pathological).
The dependence of the coefficients of the system on the local value of u(t, x)
can give rise also to quadratic terms in the transport equations. In that
case, according to our considerations, the transport equations are ordinary
differential equations. If u(0, x) has a weak discontinuity at some point x0

then the initial jump of p = Lu0,x defines an m-dimensional vector [p(0, x0)].
This vector can be decomposed in the basis formed by the right eigenvectors
of the matrix A,

[p(0, x0)] = σ1R1 + · · ·+ σmRm.

The coefficients σk of this decomposition constitute the initial conditions for
the transport equations defined along characteristic curves starting from x0.
Thus the jump discontinuity in the initial values will generate weak dis-
continuity, in general, on all characteristic curves starting from x0. Thus in
the case of nonlocal functional dependence given by (4.2) or (4.3) the weak
discontinuity behaves exactly in the same manner as in the case of usual
quasilinear hyperbolic systems.

8. Conclusions. It appears that from the point of view of propagation
of weak singularities, systems of quasilinear first order partial differential
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equations with coefficients functionally dependent on their solution behave
in a manner similar to the usual first order quasilinear systems. If there is
a jump in derivatives of the solution then it must occur on a character-
istic surface. The transport equations for the amplitude of the jump can
also be derived. In principle they are ordinary differential equations along
appropriate bicharacteristic curves. In the case of systems with two inde-
pendent variables (t, x), the bicharacteristics are simply the characteristic
curves. In this particular case, we derived the transport equations governing
the evolution of the jump intensity along the characteristic curves. To avoid
various difficulties we assumed that the multiplicity of the eigenvalue does
not change in the region under consideration. Although typically transport
equations are ordinary differential equations which are quadratic in the am-
plitude of weak discontinuity, some complications can appear in resonant
cases, when discontinuities occurring on various characteristic curves (or on
the same curve) interact. This is possible because of the nonlocal depen-
dence of solutions. Typically, the contribution coming from nonlocal depen-
dence is linear in the jump intensity (as in the case of operators (4.2), (4.3))
and the transport equation is an ordinary differential equation. However, as
demonstrated in Sec. 3, “resonant” interaction between discontinuities from
different characteristics can lead to systems of ordinary equations or even to
functional differential equations. In typical cases, however, when functional
dependence is sufficiently regular (e.g. (4.2), (4.3)) and when the coefficients
are also local functions of u, there is full similarity between the propagation
of singularities for the quasilinear system with functional dependence and for
the usual quasilinear hyperbolic system. In the case of a hyperbolic system
with initial data exhibiting weak discontinuity, the singularity propagates
along all possible characteristic curves which start from singularity points of
the initial data.
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