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After summaries on Rayleigh's distribution and Wigner's surmise, the time evolution of Rayleigh�Wigner's
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1. Introduction

Non-Gaussian distributions occur in systems that do
not follow strictly the prescriptions of standard statistics.
Important example of non-Gaussian statistics is distri-

bution which was introduced by Lord Rayleigh in con-
nection with the problem of interference of harmonic os-
cillations with random phases [1, 2]. This distribution
is known also as Wigner's surmise distribution giving a
remarkably good description of the level repulsion ob-
served in neutron scattering [3, 4]. As the mathematical
form of both is identical, we call them Rayleigh�Wigner's
distribution (RWD).
Rayleigh�Wigner's distribution appears in computa-

tion of the large zeros of Riemann's zeta function on
the critical line, which according to the Montgomery�
Odlyzko law have the same statistical properties as the
distribution of eigenvalue spacings in a Gaussian unitary
ensemble [5�9]. Rayleigh�Wigner's distribution is also
met in social sciences; e.g. the bus system in Cuernavaca,
Mexico, is subject to this distribution [10]. This wide
range of applications of RWD is a new illustration of
Wigner's opinion on unreasonable e�ectiveness of math-
ematics [11].

1.1. Rayleigh's distribution

As it is well known, superposition of orthogonal phase
shifted sinusoid oscillations leads to complex harmonic
motions, known as Lissajous' curves. In particular, the
resultant of two isoperiodic vibrations of equal amplitude
is wholly dependent upon their phase relation. If such
vibrations are colinear and their phases di�er by half a
period, the resultant vanishes.
John William Strutt (Baron Rayleigh, known also as

Lord Rayleigh) inquired in 1880 what results from the
composition of a large number n of equal vibrations of
amplitude unity, of the same period, and of phases acci-
dentally determined.
The intensity of the resultant, represented by the

square of the amplitude, depends of course, upon the
manner in which the phases are distributed, and may

vary from zero to n2. A question arises whether it ex-
ists a de�nite intensity which becomes more and more
probable when n is increased without limit.

1.1.1. Two opposite phases only

First, there is analysed the case in which the possi-
ble phases are restricted to two opposite phases, which
is equivalent to regarding the amplitudes as at random
positive or negative. If there be as many positive as neg-
ative, the result is zero, if, on the other hand, all signs
be the same, the intensity is n2.

Adopting the Bernoulli binomial distribution method,
Rayleigh considered N independent combinations, each
consisting of n unit vibrations. When N is su�ciently
large, the statistics become regular and the number of
combinations in which the resultant amplitude is found
to be x may be denoted by Nf(n, x), where f is de�nite
function of n and x.

Let each of the N combinations receives another ran-
dom contribution of ±1. Only those combinations can
subsequently possess a resultant x which originally had
amplitudes x− 1 and x+ 1. Half of the former, and half
of the latter number will acquire the amplitude x, so that
the number required is

1

2
Nf(n, x− 1) +

1

2
Nf(n, x+ 1).

Because this should be identical with the number corre-
sponding to n+ 1 and x, we obtain

f(n+ 1, x) =
1

2
f(n, x− 1) +

1

2
f(n, x+ 1),

which can be written in the form
f(n+ 1, x)− f(n, x)

=
1

2
[f(n, x− 1)− 2f(n, x) + f(n, x+ 1)] .

This can be regarded as a di�erence counterpart of the
di�erential heat (or di�usion) equation [12],

∂f

∂n
=

1

2

∂2f

∂x2
.

Its special solution reads

(624)
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f(n, x) =
A√
n
e−x

2/n,

in which A is a normalizing constant, A = 1/
√
2π. It is,

of course, the Gaussian distribution.
1.1.2. Phases distributed at random

Next, it is considered a problem in which the phases of
the n unit vibrations are distributed at random over the
entire period. The resultant amplitude is denoted by r
and the phase by θ, and thus any point (x, y) represents
the vibration of amplitude r and phase θ. Of the large
number N of points

Nf(n, x, y)dxdy

are to be found within the in�nitesimal area dx, dy
around the point (x, y).
Now, it is supposed that n/2 vibrations is distributed

at random along the x-axis, and n/2 along y, and let
us inquire into the probabilities of the various resultants.
The probability that the end of the representative line,
in other words the representative point, lies in the rect-
angle dxdy around the point (x, y) is, according with the
previous expression,

f(n, x, y)dxdy =
1

πn
e−

x2+y2

n dxdy.

Substituting polar coordinates r, θ, the rectangular coor-
dinates are

x = r cos θ, y = r sin θ.

Integrating with respect to θ, it is seen that the prob-
ability of the representative point of the resultant lying
between the circles r and r + dr is

fR(n, r)dr =
2

n
e−r

2/nrdr.

If the amplitude of each component be α, instead of unity,
the probability of a resultant amplitude between r and
r + dr is

fR(n, r;α)dr =
2

nα2
e−r

2/nα2

rdr.

The result is a function of n and α only through nα2.
Hence, the standard form of Rayleigh's probability den-
sity function is

fR(x; a) =
x

a2
e−x

2/2a2

for x > 0 and parameter a > 0. In probability theory
and statistics, the Rayleigh distribution is an example of
continuous probability distribution.

1.2. Wigner's surmise

Statistics of energy spacings is the important problem
raised by the appearance of the nuclear spectra at high
energies, such as that of uranium U239, cf. [4, 13]. The
speci�c problem concerns the probability of succession
of spacings s1, s2, . . . , sn between adjacent energy levels.
Wigner when asked, in the course of a meeting � to
guess the form of the density, proposed ad hoc the form
of a Gaussian multiplied by s.

Let c be the probability of an energetic level in the unit
energy interval. If the values of the levels were indepen-
dent, the probability P that there is no levels within the
distance h from a given level would obey the equation

P (s+ h) = P (s)− cP (s)h

for very small h. This leads to the di�erence equation
P (s+ h)− P (s)

h
= −cP (s)

and for h→ 0 gives
dP

ds
= −cP

and
P (s) = e−cs,

which means that the exponential law would follow.
Actually, however, the probability of a level right next

to another one is proportional to the distance therefrom.
This suggest that

P (s+ h) = P (s)− cP (s)hs

or
dP

ds
= −cPs.

Hence
P (s) = C e−cs

2/2,

where C is a positive constant. From this the WSD can
be obtained by di�erentiation

fW(s) = − dP

ds
= Cse−cs

2/2.

Wigner was not completely sure that his guess is correct.
He was therefore surprised when some years later, Mehta
[14] and Gaudin [15] found that the Wigner surmise is
usable for practical comparisons.
For the independent positive variable x, and the posi-

tive constant a the mathematical form of Wigner surmise
distribution is

fW(x) = 2axe−ax
2

.

The position of maximum and the maximal value are
given by

xmax =
1√
2a

and fW(xmax) =
√
2ae−1/2.

The mathematical form of the Wigner surmise distri-
bution fW(x) is identical with Rayleigh's distribution
fR(x). Notice, however, that the Wigner distribution
was derived for the one-dimensional energy levels prob-
lem, while Rayleigh discussed system of two-dimensions.

1.3. Another examples of RWDs applications

A Rayleigh distribution is often observed when the
overall magnitude of a vector is related to its directional
components.
Two-dimensional Maxwell's distribution in cylindrical

coordinates has form of RWD. Similarly, the RWD is
met when wind velocity is analyzed into its orthogonal
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2-dimensional vector components. Assuming that the
magnitude of each component is uncorrelated, normally
distributed with equal variance, and zero mean, then
the overall wind speed (vector magnitude) is described
by a RWD.
The RWD arises in the case of random complex num-

bers whose real and imaginary components are indepen-
dently and identically distributed (i.i.d.) Gaussian. In
that case, the absolute value of the complex number is
Rayleigh-distributed.
The aforementioned problems are in obvious manner

analogous to problem described in Sect. 1.1 and belong-
ing to Lord Rayleigh.
Public transport in Mexico is di�erent to that in Eu-

rope. First, no leading companies are responsible for city
transport. There are no timetables for city buses and
sometimes not even well-de�ned bus stops. The driver is
usually the owner of the bus and so his aim is to maxi-
mize the income. Because every passenger boarding the
bus has to pay, the driver tries to collect the largest possi-
ble number of passengers. When not regulated, the time
interval during which two subsequent buses pass a given
point will display a Poissonian distribution. This is a
consequence of the absence of correlations between the
motion of di�erent buses. Such a situation is, however,
not attended by the drivers because then the probability
density that two buses will arrive at a bus stop within
short time interval is large. In this case, the �rst bus
collects all the waiting passengers and the second bus
that arrives slightly later will �nd the stop practically
empty. This reasoning produces certain correlations be-
tween buses, which change the Poisson process into RWD
[16�18]. This process di�ers from the situation on �nan-
cial markets, where correlations in time produce symmet-
ric distributions [19].
�eba compared distribution of the bird-to-bird dis-

tances with the bumper-to-bumper distances between
parking autos and found that the both distributions are
in good agreement with RWD [20].
Rayleigh�Wigner's distribution is observed also in re-

sults of school examines, in the case when the students
obtain some basic knowledge, but do not master an ad-
vanced one. Then the peak of the distribution is shifted
to left [21, 22].

1.4. Numerical evidence for the Wigner surmise

The �Wigner surmise� states that the probability den-
sity function of the eigenvalue spacings of a random sys-
tem follows the Rayleigh distribution. Thus far the sur-
mise has been proved mathematically only for systems
described by the �Gaussian orthogonal ensemble (GOE)�
of matrices. Random matrices associated with practical
engineering structures do not have the form of the GOE,
and yet there is strong evidence that the Wigner surmise
may still be applicable.
Brown and Langley tried to determine the conditions

under which the natural frequency spacings of an engi-
neering structure will have a Rayleigh distribution. To

this end, numerical simulations have been performed for
a simply supported �at plate, a simply supported string,
and a system composed of two spring-coupled plates.
In each case the structure was made uncertain by the
addition of randomly placed masses or springs. It was
found that the validity of the Wigner surmise depends
on three factors: (i) the level of randomness, (ii) the de-
gree of symmetry, and (iii) for the coupled system, on the
strength of coupling between the two subsystems [23].

2. RWD and normalization

According to Wigner's surmise the statistical distribu-
tion of the widths and spacings of nuclear resonance lev-
els is the Gaussian distribution fG(x, t) multiplied by the
independent variable x. This multiplication makes small
distances less probable than those given by fG(x, t). We
put (for x > 0)

f(x, t) =
1

2Dt
xe−

x2

4Dt . (1)

Then we notice that
1

2Dt

∫ ∞
0

xe−
x2

4Dt dx = 1 (2)

and f(x, t) is normalized.

3. Di�usion equation corresponding to RWD

For function (1) we �nd consecutively
∂f(x, t)

∂t
=

(
−1

t
+

x2

4Dt2

)
f(x, t), (3)

∂f(x, t)

∂x
=

(
1

x
− x

2Dt

)
f(x, t), (4)

∂2f(x, t)

∂x2
=

(
− 3

2Dt
+

4x2

(4Dt)2

)
f(x, t), (5)

and

D
∂2f(x, t)

∂x2
=

(
− 3

2t
+

x2

4Dt2

)
f(x, t). (6)

Hence we observe that the function f(x, t) satis�es the
equation

∂f

∂t
= D

∂2f

∂x2
+

1

2t
f, (7)

in which the second terms on the right side is decreasing
with the time t.

4. Wigner's surmise counterpart

on the time axis

Another than (1) solution of Eq. (7) can be found. By
substitution

f(x, t) =
√
tu(x, t), (8)

we transform Eq. (7) into
∂u

∂t
= D

∂2u

∂x2
. (9)

This is an ordinary equation of di�usion, which admits
solution in the Gaussian form
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uG(x, t) =
1

2
√
πDt

e−
x2

4Dt

and

f(x, t) =
1

2
√
πD

e−
x2

4Dt . (10)

Di�erently to the case of Wigner's distribution, when
the Gaussian is multiplied by the spatial variable x, now
the Gaussian is multiplied by the squared time variable√
t. Comparing with Wigner's surmise (1) we see that in

Eq. (10) the factor x/t is lacking.

5. Mean square displacement

Consider the mean square displacement when stochas-
tic distribution f(x, t) is described by Eq. (7). We de�ne

〈x2〉 =
∫ ∞
0

x2f(x, t)dx. (11)

Multiply both sides Eq. (7) by x2 and integrate both
sides with respect to x from x = 0 to ∞. We notice that
integration by parts gives∫ ∞

0

x2
∂2f

∂x2
dx = 2, (12)

if we assume that at in�nity both f and ∂f/∂x vanish.
We get

∂

∂t
〈x2〉 = 2D +

1

2t
〈x2〉, (13)

which is satis�ed if
〈x2〉 = 4Dt. (14)

This is value twice greater than in classical one-
-dimensional di�usion or random walk problem, which
permits to regard that the additional term (1/2)〈x2〉 at
right hand side of Eq. (13) plays the role of the drift term
known from Smoluchowski's equation [24, 25].

6. Variance of Wigner's distribution

In full agreement with (14) the variance of distribution
f given by (1) when found directly, is

σ2 =

∫ ∞
0

x2f dx = 4Dt, (15)

instead of 2Dt for the Gaussian distribution and the kur-
tosis

κ =

(
1

σ2

)2 ∫ ∞
0

x4f dx =
32(Dt)2

(4Dt)2
= 2 (16)

is distinctly less than 3, the value for the Gaussian, cf.
[26, 27]. The identity of results (14) and (15) is an addi-
tional veri�cation of Eq. (7).

7. Conclusions

1. Equation (7) was found whose special solution is
Rayleigh�Wigner's distribution (1). Thus, it is possi-
ble to analyse the time evolutions of Rayleigh�Wigner's
type distributions in an analogical manner as the Gaus-
sian distributions are analysed by the di�usion (or heat)
di�erential equations.

2. While most non-equilibrium systems have no ana-
lytical solutions for the distribution and correlation func-
tions, in the case of RWD it is possible to give explicit
formulae for the variance and kurtosis of the distribu-
tion. The variance of RWD is a linear function of time,
as in Fick's classical di�usion, but is 2 times greater. The
kurtosis has value 2 which is smaller than the value of
classical di�usion equal 3, and still is time independent.
3. It was observed that Rayleigh's distribution arises

as a geometrical e�ect of the planar integration of ran-
dom harmonic vibrations. Identity of Rayleigh's distribu-
tion and Wigner's surmise might indicate on an intrinsic
relation of geometry of random harmonic motions and
nuclear phenomena.
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