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One-dimensional random walk is analyzed. First, it is shown that the
classical interpretation of random walk reaching Lord Rayleigh’s analysis
should be completed. Further, an attention is called to the fact that the
parabolic diffusion is not an unique interpretation, but also the wave (or
hyperbolic) equation can be deduced. It depends on the accepted scale of
the length of step h and duration of the step τ in the walk, whether Fick–
Smoluchowski’s diffusion or a wave process is obtained. Only additional
arguments, such as positivity of distribution function or positivity of the
entropy growth, can help to choose the proper physical model. Also, the
infinite diffusion velocity paradox in connection with Einstein’s formula is
explained.
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1. Introduction

The concept of random walk was first introduced by Karl Pearson in
1905 [1]. However, earlier in 1880, Lord Rayleigh applied this process (with-
out naming it) to analyse a certain random vibration problem [2, 3].

Random walk is an idealisation of a path realised by a succession of
random steps, and can serve as a model for different stochastic processes.
It is discussed in mathematics, physics, biology, economics and finance. It
may denote the path traced by a Brownian particle as it travels in a liquid,
the search path of a foraging animal and the stock fluctuating price, as well
[4–15].
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Below, after summaries of Rayleigh’s and Kac’s approaches, an analysis
of difference scheme realised by the random walk is given. It is shown that,
depending on choice of scale of length of path and time needed to perform
the path, we obtain either Fickian (parabolic) diffusion or wave (hyperbolic)
equation.

Last, some consequences of hyperbolicity of wave diffusion equation are
discussed and the source of the infinite speed the paradox is explained. It
lies in a mathematical passage to infinitesimal increments in random walk,
but is substantiated by Einstein’s formula, verified by experiments.

One-dimensional random walk proceeds on the one-dimensional lattice:
the integer number line. The walker can only jump to neighbouring sites of
the lattice: he starts at 0 and at each step moves +1 or −1 with prescribed
probability. Below, initially, the discussion is conducted for the symmetrical
random walk. In Sections 8–10, the non-symmetrical case is treated.

1.1. Lord Rayleigh’s approach

Lord Rayleigh inquired what results from the composition of a large
number n of equal vibrations of amplitude unity, of the same period, and of
phases accidentally determined [2, 3]. First, he analysed the case in which
the possible phases are restricted to two opposite phases, what is equivalent
to regarding the amplitudes as at random positive or negative. If there is as
many positive as negative, the result is zero.

Adopting the Bernoulli binomial method, Rayleigh considered N inde-
pendent combinations, each consisting of n unit vibrations. When N is
sufficiently large, the statistics become regular and the number of combi-
nations in which the resultant amplitude is found to be x may be denoted
by N f(n, x), where f is definite function of n and x. Let each of the
N combinations receives another random contribution of ±1. Only those
combinations can subsequently possess a resultant x which originally had
amplitudes x−1 and x+1. Half of the former, and half of the latter number
(symmetrical case of the random walk) will acquire the amplitude x, so that
the number required is

1
2Nf(n, x− 1) + 1

2Nf(n, x+ 1) .

Because this should be identical with the number corresponding to n + 1
and x, we obtain

f(n+ 1, x) = 1
2f(n, x− 1) + 1

2f(n, x+ 1) (1)

what can be written in the form

f(n+ 1, x)− f(n, x) = 1
2 {f(n, x− 1)− 2f(n, x) + f(n, x+ 1)} . (2)
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This can be regarded as a difference counterpart of the differential equation

∂f

∂n
=

1

2

∂2f

∂x2
(3)

which describes process of diffusion (or heat) propagation [16–18].

1.2. Mark Kac’s approach

Systematic deduction of the diffusion equation from the random walk
(the non-symmetric case included) we owe to Kac [19].

Consider a walker which moves along the x-axis by steps. Each step has
the length h and time duration τ . The walker in each step can move either h
to the right (event R) or h to the left (event L). At each step, the probability
of moving to the right and moving to the left is the same, and equals 1/2.

The probability that among n events the events R are produced in num-
ber k and events L in number n− k, is given by Bernoulli’s distribution

Pn(k) =
n!

k!(n− k)!
· 1
2n

with
n∑
k=0

Pn(k) = 1 . (4)

Arriving the particle at position x = mh after time t = nτ needs m =
k − (n − k) = 2k − n steps. Notice that m + n = 2k what means that m
and n are both simultaneously even or uneven, cf. Fig. 1.

Fig. 1. One-dimensional random walk in successive tosses, numbered by n. All
possible random walk position outcomes are denoted by m. Unit of distance is h,
unit of time is τ .
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Let at time t = 0 the particle be at x = 0. Let fn(m) denote the
probability of the event that after time t = nτ the particle will be at x = mh.
Because k = (n+m)/2 and n− k = (n−m)/2

fn(m) =
n!

n+m
2 !n−m2 !

· 1
2n
. (5)

This implies, otherwise obvious iterative relation given by Eq. (1). Equa-
tion (2) can be written as

fn+1(m)− fn(m)

τ
=
h2

2τ

fn(m+ 1)− 2fn(m) + fn(m− 1)

h2
(6)

or after substitution

D =
h2

2τ
(7)

to the form

fn+1(m)− fn(m)

τ
= D

fn(m+ 1)− 2fn(m) + fn(m− 1)

h2
. (8)

Its differential analog takes the form of diffusion (heat) equation

∂f

∂t
= D

∂2f

∂x2
. (9)

Of course, Eq. (3) is a specific case of Eq. (9), when h = 1 and τ = 1.

Fig. 2. One-dimensional random walking scheme. Numbers in round brackets are
the position-time coordinates of relevant points in [h, τ ] units, respectively.
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Be aware, however, that at the given time moment n, the distance be-
tween neighbouring positions is 2h and that to the given position m, the
walker can return from neighbouring position after time 2τ . Thus, the point
(m,n+1) is inaccessible for the walker being in (m,n) in the time period τ ,
and in Eq. (2) or (8) the subtrahend function fn(m) is not determined, as
the point m,n is omitted in the random walk, cf. Fig. 2.

It is also important to notice that the diffusion Eq. (9) was obtained after
the limits h→ 0 and τ → 0 were taken in such a way that the coefficient D
given by Eq. (7) was kept constant.

2. Random walk and wave equation

As the fn(m) appearing in (6) does not exist in a real random walk
process, cf. Fig. 2, at the end of the previous section, we have indicated an
apparent inconsistency of the Rayleigh–Kac scheme. It can be easily verified
that the realistic scheme reads

fn+1(m)− fn−1(m)

2τ
=
h2

2τ

fn−1(m+ 2)− 2fn−1(m) + fn−1(m− 2)

4h2
(10)

and differs from Eqs. (2) or (8) by taking as the difference step for the space
and time instead h and τ the quantities 2h and 2τ , respectively.

Indeed, the iteration (1) written in the form

fn+1(m) = 1
2 {fn(m+ 1) + fn(m− 1)}

implies analogical relations

fn(m+ 1) = 1
2 {fn(m+ 2) + fn(m)}

and
fn(m− 1) = 1

2 {fn−1(m) + fn−(m− 2)}

what, after combination, gives

fn+1(m) = 1
4 {fn−1(m+ 2) + 2fn−1(m) + fn−1(m− 2)} . (11)

Hence, we get Eq. (10), which can be transformed into Fick’s diffusion equa-
tion, after Rayleigh–Kac’s prescription.

However, this prescription is not a priori unique. Let us introduce the
continuous function f(x, t) which in nodal points (mh, nτ), m, n — integer,
takes values

{f(x, t)}(mh,nτ) = f(mh, nτ) = fn(m) .
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Applying Taylor’s expansion about the point (mh, (n − 1)τ) and keeping
consequently terms including the second order, we get the following approx-
imation of the finite forward difference

fn+1(m)− fn−1(m) = 2τ
∂f

∂t
(mh, (n− 1)τ) + 1

2 (2τ)
2 ∂

2f

∂t2
(mh, (n− 1)τ) .

(12)
In the similar manner, we get

fn−1(m+ 2) = fn−1(m) + 2h
∂f

∂x
(mh, (n− 1)τ) 1

2 (2h)
2 ∂

2f

∂x2
(mh, (n− 1)τ)

and

fn−1(m−2) = fn−1(m)−2h
∂f

∂x
(mh, (n− 1)τ)+ 1

2 (2h)
2 ∂

2f

∂x2
(mh, (n−1)τ) .

Addition of two least equations by sides and arranging of terms gives the
following expression for the second order central difference

fn−1(m− 2)− 2fn−1(m) + fn−1(m+ 2) = (2h)2
∂2f

∂x2
(mh, (n− 1)τ) . (13)

We substitute relations (12) and (13) into (10). Thus, by proceeding in the
similar manner as it was done by Rayleigh and Kac, but keeping the second
derivatives in both, spatial and temporary variables, we get

τ
∂2f

∂t2
+
∂f

∂t
=
h2

2τ

∂2f

∂x2
(14)

or
∂2f

∂t2
+

1

τ

∂f

∂t
= c2

∂2f

∂x2
, (15)

where we have denoted

c2 =

(
h

τ

)2

. (16)

Equation (15) has the form of wave equation of diffusion (or heat) propa-
gating with the velocity c, discussed in [20–25]. We have also

τ =
D

c2
. (17)

In this derivation, the quantity τ is small but finite, and is known as the
relaxation time for a phenomenon described by Eq. (15).

Notice also that, as a result of many-body stochastic interactions, the
velocity c is

√
2 times smaller then the velocity of singular step equal to h/τ .

Analogical diminishing of velocity is presumed in three dimensions [25].
The reason of obtaining different results (9) and (15) based on the same

difference algorithm (1) lies in admission of the second time derivative in
the substitution of finite difference equation by a differential one.
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3. Wave equation of diffusion

Macroscopic derivation of the wave equation of diffusion is based on the
assumption that the stream of the particles j is not generated by the den-
sity gradient instantaneously (as in process described by the Fick’s diffusion
equation), but it is delayed by a time τ0, called a relaxation time.

The continuity relation links temporal variation of the density of parti-
cles f(x, t) with the spatial variation of the particle stream j, and in one
dimension it reads

∂f

∂t
= −∂j(x, t)

∂x
, (18)

and if combined with Fick’s law of diffusion

j = −D ∂f

∂x
, (19)

where D stands for the diffusion coefficient, the classical diffusion equa-
tion (9) is obtained.

However, if there exists a certain time delay, τ0, between change of the
density gradient and the stream generated by it

j(x, t+ τ0) = −D
∂f

∂x

then, under assumption of a sufficiently small τ0, after expansion of the
left-hand side of the last equation into power series of τ0, one gets

j(x, t) + τ0
∂j(x, t)

∂t
= −D∂f

∂x
. (20)

Hence, after applying the (one-dimensional) divergence operator

∂j(x, t)

∂x
+ τ0

∂

∂t

∂j(x, t)

∂x
= −D∂

2f

∂x2
,

and after using the continuity equation (18), one obtains

τ0
∂2f

∂t2
+
∂f

∂t
= D

∂2f

∂x2
(21)

what is known as the wave or hyperbolic diffusion equation, cf. Eq. (15), in
distinction of the parabolic diffusion equation (9).

Equation (21) is the telegrapher’s type equation, cf. [26, 27]. It is worth
to notice that such an equation was obtained also by Kac [24] after adopt-
ing another scheme of interpretation of the non-symmetric random walk.
Namely, Kac considered a particle starting from the original x = 0 and al-
ways moving with the speed v. It can move either in positive direction or in
the negative direction. Each time the particle arrives at a lattice point, there
is a probability of reversal of direction. With these assumptions, Eqs. (15)
or (21) can be obtained.
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4. Entropy of the system

To answer which way of interpretation of random walk, either this which
leads to parabolic diffusion or to hyperbolic one, the entropy growth of two
processes should be compared.

4.1. Entropy

Let as assume that the distribution density f is positive. After [28, 29],
for the continuum limit of the Shannon entropy of our problem is accepted

S = −
∫
Ω

f(x, t) ln f(x, t)dx . (22)

Here, Ω denotes the infinite one-dimensional interval in which the diffusion
is considered. We find by differentiation

dS

dt
= −

∫
Ω

∂f(x, t)

∂t
ln f(x, t)dx−

∫
Ω

∂f(x, t)

∂t
dx , (23)

or after using the continuity relation (18)

dS

dt
=

∫
Ω

ln f(x, t)
∂j(x, t)

∂x
dx+

∫
Ω

∂j(x, t)

∂x
dx . (24)

By the (one-dimensional) divergence theorem, the second term at right-hand
side is zero, if there are no particle flows at infinity, and

dS

dt
= −

∫
Ω

ln f(x, t)
∂j(x, t)

∂x
dx .

Once again, the integration by parts gives

dS

dt
=

∫
Ω

1

f(x, t)

∂f(x, t)

∂x
j(x, t)dx

or
dS

dt
=

∫
Ω

1

f(x, t)

1

D

{
j(x, t) + τ0

∂j(x, t)

∂t

}
j(x, t)dx , (25)

where the relation (20) was exploited.
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4.2. Entropy growth

The last result can be written as

dS

dt
= J2 +

1

2
τ0
dJ2

dt
, (26)

where
J2 ≡

∫
Ω

1

f(x, t)D
j(x, t)2dx . (27)

In the limiting case, when the entropy production rate vanishes (dS/dt = 0),
we get by Eq. (26)

J2 = J2
0 e
−2t/τ0 . (28)

On the other hand, for τ0 = 0, the entropy production rate according to
Eq. (26) is always non-negative. For τ0 6= 0, by integration of Eq. (26), we
find

J2 − J2
0 e
−2t/τ0 =

2t

τ0
e−2t/τ0

t∫
0

dS

dt′
e2t
′/τ0dt′ . (29)

If
J2 > J2

0 e
−2t/τ0 , (30)

then also dS/dt > 0.
In general, however, the criterion (26) is too weak to judge whether

the process is thermodynamically consistent [28]. One can argue that for
sufficiently small τ0, this inequality may be satisfied, and the wave equation
of diffusion seems to be affirmed in some experiments [30, 31].

4.3. Density distribution

Mathematical form of Eq. (21) is identical with the telegrapher’s equa-
tion, which describes the voltage or current on an electrical transmission line
with distance and time [26, 27]. Its Green’s function reads

f(x, t) = 2π c e
− t

2τ0J0
(

1

2
√
Dτ0

√
x2 − c2t2

)
η(ct− x) , (31)

where
c2 ≡ D

τ0

denotes square of the velocity of diffusive wave and η(x) is the unit step
function (equal 1 for x non-negative, and zero for x negative).
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This solution achieves non-zero values for finite x only, x ≤ ct, but, in
spite of the definition of probability, it admits also the negative values due
to the properties of Bessel function J0, and for this reason it cannot be
adequate for the problem of diffusion.

For the same reason, one cannot look for the solution of Eq. (21) in form
of a damped wave

f = f0 e
i(kx−ωt)

which is typical to the telegrapher’s equation.

5. Fick’s diffusion

Green’s function for the one-dimensional diffusion equation (9) reads

f(x, t) =
1

2
√
πDt

e−
x2

4Dt . (32)

From this formula, we deduce that if in a region whose dimension is of the
order of length `, a non-uniform distribution is introduced, the order of mag-
nitude tR of the time required for the distribution to become approximately
the same throughout the region is

tR ≈
`2

D
. (33)

The time tR may be called the relaxation time for the density equalisation
process [17].

The diffusion process described by formula (32) has the property that
for any t > 0, the function f(x, t) > 0 in the whole space, it is the effect
of the initial perturbation, is propagated instantaneously through all space.
Some authors interpret this property as an admission of the infinite speed of
mass distribution and hence, the violation of the rules of physics. To avoid
such contradiction, called a paradox, they use a hyperbolic diffusion equa-
tion (15), instead of the parabolic (9). For example, they use the hyperbolic
diffusion equation to study the transport process of electrolytes in media
such as gels and porous media [30, 31].

However, the paradox is only apparent and does not object to the phys-
ical reality. The mass of substance which is to be found at time t further
from the source, then a is

∞∫
a

f(x, t)dx =

∞∫
a

1

2
√
πDt

e−
x2

4Dtdx (34)

and as a→∞, it becomes negligibly small.
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6. Arising of the paradox

From Bernoulli’s distribution results that the probability of event to
achieve after n steps the distance nh is 1/2n, and in one-dimensional random
walk, the probability density is not zero in the region, [−nh,+nh], while
is vanishing outside of it. An example of the progress of diffusion front
is shown in Fig. 3. After the time (n + 1)τ , the range of the region is
[−(n+ 1)h,+(n+ 1)h]. Thus the front moves with the velocity

vf =
h

τ
. (35)

If h = 1 and τ = 1, D = 1 and vf = 1. If h→ 0 and τ → 0, one should keep

h2

2τ
= D = constant . (36)

This means that τ → 0 one order more quickly than h. We find

h

τ
=

2D

h
→∞ if h→ 0 . (37)

Hence, comparing with the definition (35)

vf =
h

τ
→∞ . (38)

Fig. 3. Probability distribution in one-dimensional random walk after successive
tosses. Initial position of the wanderer is m = 0 (probability = 1). Position of the
diffusion front is visible after 4 (white circles, |m| = 4) and after 5 (black circles,
|m| = 5) tosses. Unit of distance is h, unit of time is τ .
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The range of the distribution after n steps is r = nh, and the time necessary
to build up such range is t = nτ . The height of the diffusion front diminishes,
however, with n as 1/2n. Hence

n =
t

τ
and r = nh =

t

τ
h = t vf .

For any finite time t, in the limit of τ → 0 and h → 0, the range r → ∞,
because of (38), the height of the front reduces to zero, and the paradox of
instantaneous propagation without front arises.

7. The diffusion coefficient

The diffusion coefficient (7) for the symmetric random walk

D =
h2

2τ
(39)

is similar to that given by the kinetic theory of gases [32]

D = 1
2 h

h

τ
. (40)

It reveals also an analogy with Einstein’s relation [4, 5]

D =

〈
x2
〉

2t
, (41)

where 〈x2〉 is an average squared deviation of a distinct particle in the Brow-
nian movement realised in the time t.

From Eq. (33), we obtain

D ≈ `2

tR
. (42)

It is worth mentioning that the last relation obtained from the macroscopic
theory has a similar form to relations (39)–(41), obtained from the micro-
scopical theories. This persistence of the form argues also for the parabolic
interpretation of the random walk.

8. Non-symmetric random walk

In this case, at each step, the probability of moving to the right (event R)
is p and moving to the left (event L) is q = 1−p. In symmetrical Rayleigh’s
case p = q = 1/2, while the general non-symmetric case of p 6= q was treated
by Kac [19].
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The probability that among n events the events R are produced in num-
ber k and events L in number n− k is given by Bernoulli’s distribution

Pn(k) =
n!

k!(n− k)!
pk(1− p)n−k with

n∑
k=0

Pn(k) = 1 . (43)

As in the symmetrical case, finding the particle at position x = mh after
time t = nτ needs m = k − (n− k) = 2k − n steps, cf. Fig. 1.

Let at time t = 0 the particle be at x = 0. Then,

fn(m) =
n!

n+m
2 !n−m2 !

p
n+m

2 (1− p)
n−m

2 (44)

denotes the probability of the event that after time t = nτ the particle will
be at x = mh. This implies, otherwise obvious iterative relation

fn+1(m) = (1− p)fn(m+ 1) + pfn(m− 1) (45)

instead of relation (1).
A positive quantity ε may be defined such that

p ≡ 1
2 + ε and 1− p = 1

2 − ε . (46)

Then, Eq. (45) may be written as

fn+1(m) =
(
1
2 − ε

)
fn(m+ 1) +

(
1
2 + ε

)
fn(m− 1) . (47)

For ε = 0, we get Rayleigh’s case (1).
In a similar manner as Eq. (45), two other iterative relations can be

written

fn(m− 1) =
(
1
2 + ε

)
fn−1(m− 2) +

(
1
2 − ε

)
fn−1(m) , (48)

and
fn(m+ 1) =

(
1
2 + ε

)
fn−1(m) +

(
1
2 − ε

)
fn−1(m+ 2) . (49)

Substituting (48) and (49) into (45), we get

fn+1(m) = 1
4 [fn−1(m− 2) + 2fn−1(m) + fn−1(m+ 2)]

+ ε [fn−1(m− 2)− fn−1(m+ 2)]

+ ε2 [fn−1(m− 2)− 2fn−1(m) + fn−1(m+ 2)] . (50)

Similarly, as in the symmetrical case, at the given time n, the distance
between neighbouring positions is 2h and that the return to the given posi-
tion m is possible after the time period 2τ , only, cf. Fig. 2.
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9. Difference equation of diffusion with drift

We subtract from both sides of (50) the quantity fn−1(m)

fn+1(m)−fn−1(m) =
(
1
4 + ε2

)
[fn−1(m− 2)− 2fn−1(m) + fn−1(m+ 2)]

+ ε [fn−1(m− 2)− fn−1(m+ 2)] , (51)

and transform it as follows

fn+1(m)− fn−1(m)

2τ

=
(
1
4 + ε2

) (2h)2

2τ

fn−1(m− 2)− 2fn−1(m) + fn−1(m+ 2)

(2h)2

+ ε
4h

2τ

fn−1(m− 2)− fn−1(m+ 2)

4h
. (52)

After introducing the notation

D =
(
1 + 4ε2

) h2
2τ

and
D

T

∂V

∂x
=

2h

τ
ε , (53)

we get

fn+1(m)− fn−1(m)

2τ
= D

fn−1(m− 2)− 2fn−1(m) + fn−1(m+ 2)

(2h)2

+
D

T

∂V

∂x

fn−1(m− 2)− fn−1(m+ 2)

4h
. (54)

This can be regarded as a difference counterpart of the differential equa-
tion of Smoluchowski’s diffusion, known also as the diffusion equation with
drift [6, 7]. The exterior force (− ∂V/∂x) is the cause of the drift. The
quantity T is the temperature in units of the energy. Here, in contrast to
Kac’ results [19], the diffusion coefficient D is modified by the non-symmetry
indicator ε.

10. Differential equation of diffusion and wave equation

Despite of formal similitude of equations (52) and (10), the transition
h → 0 and τ → 0, necessary to obtain differential equation of diffusion,
is in the case of Eq. (52) more difficult. Namely, because according to
equation (53)

D ∝ h2

τ
while

D

T

∂V

∂x
∝ h

τ
, (55)
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it is impossible to keep simultaneously the diffusion coefficient

D ∝ h2

τ
= constant , (56)

and the drift force

− ∂V
∂x
∝ 1

h

h2

τ
(57)

non-singular. To avoid this singularity, Kac proposed to use the substitu-
tion [19]

ε = βh with β = constant (58)

which assures the non-singularity of the drift force. But this means, when
h → 0, then also ε → 0 and only the very small deviations from symmetry
of the random walk, and consequently very small drift forces in Eq. (54) are
permitted.

However, if instead of (56) and (57), we accept the following limit rela-
tions for h→ 0 and τ → 0

h

τ
∝ v = constant , (59)

then
h2

τ
∝ D → 0 , (60)

and Eq. (54) becomes

fn+1(m)− fn−1(m)

2τ
= v

fn−1(m− 2)− fn−1(m+ 2)

4h
(61)

with
v = ε

4h

2τ
. (62)

After passing to limit with h and τ , we get

∂f

∂t
= − v ∂f

∂x
. (63)

It is, the so-called advection equation, closely related to the wave equation.
The constant v is the speed of wave motion.

11. Conclusions

The description of diffusion as a random walking resembles the hopping
models proposed in [33], and by Grasselli and Streater [34].
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Notice also that for the non-symmetric walk when ε 6= 0, not only the
drift force, but also the diffusion coefficient depends on ε. This is conform
to the phenomenological description of the two-level diffusion, where the
change of the potential for external drift force is accompanied by the change
of diffusion coefficient [28].

Random walk is a certain mathematical tool, characterised by the iter-
ative relation (1) for the symmetric coin, and relation (45) for the non-
symmetric one. As every mathematical concept, it receives its physical
meaning after appropriate attribution of physical quantities to the mathe-
matical terms. In our case, the appropriateness denotes the agreement with
the laws of thermodynamics, and we must chose between different proposals
of interpretation.

It is widely accepted that the random walk is a simplified picture of
diffusion phenomena the most famous example of which is the Brownian
movement. However, another hyperbolic interpretations of the random walk
are possible.

If one assumes the fraction h2/(2τ) to be constant when the limits h→ 0
and τ → 0 are taken, then Fick’s diffusion equation is obtained, while as-
sumption that the quotient h/τ keeps constant leads to the wave diffusion
equation. It seems interesting that the same pattern appears at different
levels of the diffusion analysis. This is a strong support for the classical
(parabolic) interpretation of the random walk, cf. Section 7.

We indicated the controversies to which the hyperbolic equation of diffu-
sion is leading, especially the possibility of appearing of non-positive density
and decreasing entropy. The inconvenience of the classical diffusion man-
ifested in the so-called infinite speed paradox seems to be unimportant in
comparison. The infinite range of the classical distribution, for any time
t > 0, appears as a mathematical effect, in result of limit passage to in-
finitesimal increments, and corresponds to Einstein’s formula for Brownian
diffusion.

Between several possible interpretation of the random walk mathematical
process, one should choose those which are conform to the physical rules. In
our case, this role of Occam’s razor is realised by two laws: the positivity of
the probability density, and the entropy growth of free system.
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