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Abstract We present a Lagrangian numerical technique
for the analysis of flows incorporating physical particles of
different sizes. The numerical approach is based on the par-
ticle finite element method (PFEM) which blends concepts
from particle-based techniques and the FEM. The basis of the
Lagrangian formulation for particulate flows and the proce-
dure for modelling the motion of small and large particles
that are submerged in the fluid are described in detail. The
numerical technique for analysis of this type of multiscale
particulate flows using a stabilized mixed velocity-pressure
formulation and the PFEM is also presented. Examples of
application of the PFEM to several particulate flows prob-
lems are given.

Keywords Lagrangian analysis · Multiscale particulate
flows · Particle finite element method

E. Oñate (B) ·M. A. Celigueta · S. Latorre · G. Casas · R. Rossi
Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE),
Campus Norte UPC, Barcelona 08034, Spain
e-mail: onate@cimne.upc.edu

M. A. Celigueta
e-mail: maceli@cimne.upc.edu

S. Latorre
e-mail: latorre@cimne.upc.edu

G. Casas
e-mail: gcasas@cimne.upc.edu

R. Rossi
e-mail: rrossi@cimne.upc.edu

J. Rojek
Institute of Fundamental Technological Research,
Polish Academy of Sciences, Warsaw, Poland
e-mail: jrojek@ippt.pan.pl

1 Introduction

The study of fluid flows containing particles of different
sizes (hereafter called particulate flows) is relevant to many
areas of engineering and applied sciences. In this work we
are concerned with particulate flows containing small to
large particles. This type of flows is typical in slurry flows
originated by natural hazards such as floods, tsunamis and
landslides, as well as in many processes of the bio-medical
and pharmaceutical industries, in the manufacturing indus-
try and in the oil and gas industry (i.e. cuttings transport in
boreholes), among other applications [1,2,6,7,13,14,16,21–
23,26,47,50,51,55,61,62].

Our interest in this work is the modelling and simula-
tion of free surface particulate quasi-incompressible flows
containing particles of different sizes using a particular
class of Lagrangian FEM termed the Particle Finite Ele-
ment Method (PFEM, www.cimne.com/pfem) [4,5,8,11,
17–20,25,27,28,35,36,38,40,42–46,52]. The PFEM treats
the mesh nodes in the fluid and solid domains as particles
which can freely move and even separate from the main fluid
domain. A mesh connects the nodes discretizing the domain
where the governing equations are solved using a stabilized
FEM.

In Lagrangian analysis procedures (such as the PFEM) the
motion of fluid particles is tracked during the transient solu-
tion. Hence, the convective terms vanish in the momentum
equations and no numerical stabilization is needed. Another
source of instability, however, remains in the numerical solu-
tion of Lagrangian flows, that due to the treatment of the
incompressibility constraint which requires using a stabilized
numerical method.

In this work we use a stabilized Lagrangian formula-
tion that has excellent mass preservation features. The suc-
cess of the formulation relies on the consistent deriva-
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tion of a residual-based stabilized expression of the mass
balance equation using the Finite Calculus (FIC) method
[29–33,37–39].

The lay-out of the paper is the following. In the next
section we present the basic equations for conservation of
linear momentum and mass for a quasi-incompressible par-
ticulate fluid in a Lagrangian framework. The treatment of
the different force terms for micro, macro and large parti-
cles are explained. Next we derive the stabilized FIC form
of the mass balance equation. Then, the finite element dis-
cretization using simplicial element with equal order approx-
imation for the velocity and the pressure is presented and
the relevant matrices and vectors of the discretized prob-
lem are given. Details of the implicit transient solution of
the Lagrangian FEM equations for a particulate flow using
a Newton-Raphson type iterative scheme are presented. The
basic steps of the PFEM for solving free-surface particulate
flow problems are described.

The efficiency and accuracy of the PFEM for analysis of
particulate flows are verified by solving a set of free surface
and confined fluid flow problems incorporating particles of
small and large sizes in two (2D) and three (3D) dimensions.
The problems include the study of soil erosion, landslide
situations, tsunami and flood flows, soil dredging problems
and particle filling of fluid containers, among others. The
excellent performance of the numerical method proposed for
analysis of particulate flows is highlighted.

2 Modelling of micro, macro and large particles

Figure 1 shows a domain containing a fluid and particles of
different sizes. Particles will be termed microscopic, macro-
scopic and large in terms of their dimensions. Microscopic
and macroscopic particles will be assumed to have a cylin-
drical (in 2D) or spherical (in 3D) shape. These particles

Fig. 1 Microscopic, macroscopic and large particles within a fluid
domain

are modelled as rigid objects that undergo interaction forces
computed in terms of the relative distance between parti-
cles (for microscropic particles) or via the physical contact
between a particle and its neighbors (for macroscopic par-
ticles), as in the standard discrete element method (DEM)
[2,16,34].

In this work microscopic and macroscopic particles are
assumed to be spherical and submerged in the fluid (Fig. 2).
Fluid-to-particle forces are transferred to the particles via
appropriate drag and buoyancy functions. Particle-to-fluid
forces have equal magnitude and opposite direction as the
fluid-to-particle ones and are transferred to the fluid points
as an additional body force vector in the momentum equa-
tion (Fig. 3). These equations, as well as the mass balance
equations account for the percentage of particles in the fluid,
similarly at it is done in standard immersed approaches for
particulate flows [53,54,56].

Large particles, on the other hand, can have any arbitrary
shape and they can be treated as rigid or deformable bodies.
In the later case, they are discretized with the standard FEM.
The forces between the fluid and the particles and viceversa
are computed via fluid-structure interaction (FSI) procedures
[31,60].

The following sections describe the basic governing equa-
tions for a Lagrangian particulate fluid and the computation
of the forces for microscopic, macroscopic and large parti-
cles.

3 Basic governing equations for a Lagrangian
particulate fluid [1, 22, 23, 61]

3.1 Conservation of linear momentum

ρ f
Dvi

Dt
= ∂σi j

∂x j
+ bi + 1

n f
f p f
i , i, j = 1, · · · , ns in V

(1)

In V is the analysis domain, ns is the number of space dimen-
sions (ns = 3 for 3D problems), ρ f is the density of the fluid,
vi and bi are the velocity and body force components along
the i th cartesian axis, respectively, σi j are the fluid Cauchy

stresses, f p f
i are averaged particle-to-fluid interaction forces

for which closure relations must be provided and n f is the
fluid volume fraction defined for each node j as

n f j = 1− 1

Vj

n j∑

i=1

V i
j (2)

where Vj is the volume of the representative domain asso-
ciated to a fluid node j , V i

j is the volume of the i th particle
belonging to Vj and n j is the number of particles contained
in Vj . Note that n f j = 1 for a representative fluid domain
containing no particles (Fig. 2).
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Fig. 2 a Particles of different
sizes surrounding the nodes in a
FEM mesh. b Representative
volume for a node (in shadowed
darker colour)

Fig. 3 Immersed approach for
treating the motion of physical
particles in a fluid [61]

The fluid volume fraction n f in Eq. (1) is a continuous
function that is interpolated from the nodal values in the finite
element fashion [41,58–60].

Summation of terms with repeated indices is assumed in
Eq. (1) and in the following, unless otherwise specified.

Remark 1 The term Dvi
Dt in Eq. (1) is the material deriva-

tive of the velocity vi . This term is typically computed in a
Lagrangian framework as

Dvi

Dt
=

n+1vi − nvi

�t
(3a)

with

n+1vi := vi (
n+1x, n+1t) , nvi := vi (

nx, nt) (3b)

where nvi (
nx, nt) is the velocity of the material point that has

the position nx at time t = nt , where x = [x1, x2, x3]T is the
coordinates vector of a point in a fixed Cartesian system. Note
that the convective term, typical of Eulerian formulations,
does not appear in the definition of the material derivative
[3,9,60].

3.2 Constitutive equations

The Cauchy stresses σi j in the fluid are split in the deviatoric
(si j ) and pressure (p) components as

σi j = si j + pδi j (4)

where δi j is the Kronecker delta. In this work the pressure is
assumed to be positive for a tension state.

The relationship between the deviatoric stresses and the
strain rates has the standard form for a Newtonian fluid [9],

si j = 2με′i j with ε′i j = εi j − 1

3
εvδi j and εv = εi i (5)

In Eq. (5) μ is the viscosity, ε′i j and εv are the deviatoric and
volumetric strain rates, respectively. The strain rates εi j are
related to the velocities by

εi j = 1

2

(
∂vi

∂x j
+ ∂v j

∂xi

)
(6)

3.3 Mass conservation equation

The mass conservation equation for a particulate flow is writ-
ten as

rv = 0 (7a)

with

rv := D(n f ρ f )

Dt
+ n f ρ f εv (7b)

Expanding the material derivative and dividing Eq. (7a) by
n f the expression of rv can be rewritten as

rv = − 1

κ

Dp

Dt
+ 1

n f

Dn f

Dt
+ εv (8)
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where κ = ρ f c2 and c = − ∂p
∂ρ

is the speed of sound in the
fluid.

Remark 2 For n f = 1 (i.e. no particles are contained in
the fluid) the standard momentum and mass conservation
equations for the fluid are recovered.

3.4 Boundary conditions

The boundary conditions at the Dirichlet (Γv) and Neumann
(Γt ) boundaries with Γ = Γv ∪ Γt are

vi − v
p
i = 0 on Γv (9)

σi j n j − t p
i = 0 on Γt i, j = 1, · · · , ns (10)

where v
p
i and t p

i are the prescribed velocities and prescribed
tractions on the Γv and Γt boundaries, respectively and n j

are the components of the unit normal vector to the boundary
[3,9,60].

At a free surface the Neumann boundary conditions typi-
cally apply.

4 Motion of microscopic and macroscopic particles

As mentioned early, microscopic and macroscopic particles
are assumed to be rigid spheres (in 3D). Their motion fol-
lows the standard law for Lagrangian particles. For the i th
spherical particle

mi u̇i = Fi , Ji ẇi = Ti (11)

where ui and wi are the velocity vector and the rotation speed
vector of the center of gravity of the particle, mi and Ji are
the mass and the rotational inertia of the particle, respec-
tively and Fi and Ti are the vectors containing the forces
and the torques acting at the gravity center of the particle
[34].

The forces Fi acting on the i th particle are computed as

Fi = Fw
i + Fc

i + F f p
i (12)

Fw
i , Fc

i and F f p
i are the forces on the particle due to self-

weight, contact interactions and fluid effects. These forces
are computed as follows.

4.1 Self-weight forces

Fw
i = ρi
i g (13)

where ρi and 
i are the density and the volume of the i th
particle, respectively and g is the gravity acceleration vector.

4.2 Contact forces

Fc
i =

ni∑

j=1

Fc
i j (14)

where ni is the number of contact interfaces for the i th par-
ticle.

Fc
i j = Fi j

n + Fi j
s = Fi j

n ni + Fi j
s (15)

where Fi j
n and Fi j

s are the normal and tangential forces acting
at the i th interface connecting particles i and j (Fig. 4). These
forces are computed in terms of the relative motion of the
interacting particles as in the standard DEM [2,16,34].

For microscopic particles the tangential forces Fi j
s are

neglected in Eq. (15).
Fluid-to-particle forces: F f p

i = Fd
i + Fb

i , where Fb
i and

Fd
i are, respectively, the buoyancy and drag forces on the i th

particle. These forces are computed as:

4.3 Buoyancy forces

Fb
i = −
i∇∇∇ p (16)

4.4 Drag forces

Fd
i = fd

i n−(χ+1)
f

where χ = χ(Re) is a coefficient that depends on the local
Reynolds number for the particle Re [1,6,15,22,23] and

fd
i =

1

2
ρ f Ai Cd‖v fi − vi‖(v fi − vi ) (17)

In Eq. (17) v f i and vi are respectively the velocity of the
fluid and of the particle center, Ai is the area of the particle
surface with radius ri (2πri or 4πr2

i for a circle or a sphere,
respectively) and Cd is a drag coefficient that depends on the
particle geometry and the rugosity of its surface [22,23].

The force term f p f
i in the r.h.s. of the momentum equa-

tions [Eq. (1)] is computed for each particle (in vector form)
as f p f = −f f p with vector f f p computed at each node in
the fluid mesh from the drag forces Fd

i as

f f p
j =

1

Vj

n j∑

i=1

Fd
i , j = 1, N (18)

A continuum distribution of f f p is obtained by interpolat-
ing its nodal values over each element in the FEM fashion.

We note that the forces on the particles due to lift effects
have been neglected in the present analysis. These forces can
be accounted for as explained in [22].
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(a)

(b)

Fig. 4 Interacting forces between microscopic (a) and macroscopic
(b) particles. a Contact between microscopic particles. Forces between
two microscopic particles act in the direction of the line connect-

ing their radii. b Contact “a la DEM” between macroscopic particles
[34]. Fi j

n = Knui j
n +Cn u̇i j

n ui j
n , ui j

s relative displacements in the normal
and Fi j

s = Ksui j
s tangential directions to a contact interface

5 Motion of large particles

As mentioned earlier, large particles may be considered as
rigid or deformable bodies. In the first case the motion follows
the rules of Eq. (11) for rigid Lagrangian particles. The con-
tact forces at the particle surface due to the adjacent interact-
ing particles are computed using a frictional contact interface
layer between particles as in the standard PFEM (Sect. 10.2).

The fluid forces on the particles are computing by
integrating the tangential (viscous) and normal (pressure)
forces at the edges of the fluid elements surrounding the
particles.

Large deformable particles, on the other hand, behave
as deformable bodies immersed in the fluid which are dis-
cretized via the standard FEM. Their motion can be fol-
lowed using a staggered FSI scheme, or else by treating the

deformable bodies and the fluid as a single continuum with
different material properties. Details of this unified treatment
of the interaction between fluids and deformable solids can
be found in [12,18,46].

6 Stabilized FIC form of the mass balance equation

The modelling of incompressible fluids with a mixed finite
element method using an equal order interpolation for the
velocities and the pressure requires introducing a stabilized
formulation for the mass balance equation.

In our work we use a stabilized form of the mass balance
equation obtained via the Finite Calculus (FIC) approach
[29–33,37–39]. The FIC stabilized mass balance equation is
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written as

rv + τ
∂ r̄mi

∂xi
= 0 in V (19)

where

r̄mi =
∂σi j

∂x j
+ bi + 1

n f
f p f
i (20)

is a static momentum term and τ is a stabilization parameter
computed as

τ =
(

8μ

h2 +
2ρ f

δ

)−1

(21)

where h is a characteristic distance of each finite element and
δ is a time parameter.

The derivation of Eq. (19) for an homogeneous quasi-
incompressible fluid is presented in [45].

The stabilization parameter τ is computed in practice for
each element e using h = le and δ = �t as

τ =
(

8μ

(le)2 +
2ρ

�t

)−1

(22)

where �t is the time step used for the transient solution
and le is a characteristic element length computed as le =
2(V e)1/ns where V e is the element area (for 3-noded tri-
angles) or volume (for 4-noded tetrahedra). For fluids with
heterogeneous material properties the values of μ and ρ in
Eq. (22) are computed at the element center.

7 Variational equations for the fluid

The variational form of the momentum and mass balance
equations is obtained via the standard weighted residual
approach [9,60]. The resulting integral expressions after inte-
gration by parts and some algebra are:

7.1 Momentum equations

∫

V

wiρ
Dvi

Dt
dV +

∫

V

[
δεi j 2με′i j + δεv p

]
dV

−
∫

V

wi

(
bi + 1

n f
f p f
i

)
dV −

∫

Γt

wi t
p
i dΓ = 0 (23)

7.2 Mass balance equation
∫

V

q

κ

Dp

Dt
dV −

∫

V

q

(
1

n f

Dn f

Dt
+ εv

)
dV

+
∫

V

τ
∂q

∂xi

(
∂

∂xi
(2μεi j )+ ∂p

∂xi
+ bi

)
dV

−
∫

Γt

qτ

[
ρ

Dvn

Dt
− 2

hn
(2μ

∂vn

∂n
+ p − tn)

]
dΓ = 0 (24)

The derivation of Eq. (23) and (24) for homogeneous fluids
can be found in [45].

8 FEM discretization

We discretize the analysis domain containing Np micro-
scopic and macroscopic particles and a number of large parti-
cles into finite elements with n nodes in the standard manner
leading to a mesh with a total number of Ne elements and
N nodes. In our work we will choose simple 3-noded linear
triangles (n = 3) for 2D problems and 4-noded tetrahedra
(n = 4) for 3D problems with local linear shape functions
N e

i defined for each node i of element e [41,58]. The veloc-
ity components, the weighting functions and the pressure
are interpolated over the mesh in terms of their nodal values
in the same manner using the global linear shape functions
N j spanning over the elements sharing node j ( j = 1, N )
[41,58].

The finite element interpolation over the fluid domain can
be written in matrix form as

v = Nv v̄ , w = Nvw̄ , p = Npp̄ , q = Npq̄ (25)

where

v̄ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

v̄1

v̄2

...

v̄N

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
with v̄i =

⎧
⎨

⎩

v̄i
1

v̄i
2

v̄i
3

⎫
⎬

⎭ , w̄ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

w̄1

w̄2

...

w̄N

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

with w̄i =
⎧
⎨

⎩

w̄i
1

w̄i
2

w̄i
3

⎫
⎬

⎭ , p̄ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p̄1

p̄2

...

p̄N

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
and q̄ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

q̄1

q̄2

...

q̄ N

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

Nv = [N1, N2, · · · , NN ]T , Np = [N1, N2, · · · , NN ]
(26)

with N j = N j Ins where Ins is the ns × ns unit matrix.
In Eq. (26) vectors v̄, (w̄, q̄) and p̄ contain the nodal veloc-

ities, the nodal weighting functions and the nodal pressures
for the whole mesh, respectively and the upperindex denotes
the nodal value for each vector or scalar magnitude.

Substituting the approximation (25) into the variational
forms (23) and (24) gives the system of algebraic equations
for the particulate fluid in matrix form as

M0 ˙̄v +Kv̄ +Qp̄− fv = 0 (27a)

M1 ˙̄p−QT v̄ + (L+Mb)p̄− fp = 0 (27b)

The different matrices and vectors in Eq. (27b) are shown in
Table 1 for 2D problems.
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Table 1 Element form of the
matrices and vectors in Eq.
(27b) for 2D problems

Me
0i j
=

∫

V e
ρN e

i N e
j I2dV , Ke

i j =
∫

V e
BeT

i DBe
j dV , Qe

i j =
∫

V e
BeT

i mN e
j dV

Me
1i j
=

∫

V e

1

κ
N e

i N e
j dV , Me

bi j
=

∫

Γ e
t

2τ

hn
N e

i N e
j dΓ

Le
i j =

∫

V e
τ(∇∇∇T N e

i )∇∇∇N e
j dV , fe

vi
=

∫

V e
Ne

i

(
b+ 1

n f
f p f

)
dV +

∫

Γ e
t

Ne
i t pdΓ

f e
pi
=

∫

Γ e
t

τ N e
i

[
ρ

Dvn

Dt
− 2

hn
(2μ

∂vn

∂n
− tn)

]
dΓ −

∫

V e

(
τ∇∇∇T N e

i b− N e
i

1

n f

Dn f

Dt

)
dV

with i, j = 1, n.

D = 2μ

⎡

⎣
2/3 −1/3 0
−1/3 2/3 0

0 0 1/2

⎤

⎦ , Be
i =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

∂ N e
i

∂x1
0

0
∂ N e

i

∂x2
0 0
∂ N e

i

∂x2

∂ N e
i

∂x1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

Ne
i = N e

i I2 and ∇∇∇ =

⎧
⎪⎨

⎪⎩

∂

∂x1
∂

∂x2

⎫
⎪⎬

⎪⎭
, m =

⎧
⎨

⎩

1
1
0

⎫
⎬

⎭

N e
i : Local shape function of node i of element e [41,58–60]

Remark 3 The boundary terms of vector fp can be incorpo-
rated in the matrices of Eq. (27b). This, however, leads to a
non symmetrical set of equations. For this reason we have
chosen to compute these boundary terms iteratively within
the incremental solution scheme.

Remark 4 Matrix Mb in Eq. (27b) allows us to compute the
pressure without the need of prescribing its value at the free
surface. This eliminates the error introduced when the pres-
sure is prescribed to zero in free boundaries, which may lead
to considerable mass losses [20,45].

9 Incremental solution of the discretized equations

Equation (27b) are solved in time with an implicit Newton-
Raphson type iterative scheme [3,9,58,60]. The basic steps
within a time interval [n, n + 1] are:

– Initialize variables: (n+1x1, n+1v̄1, n+1p̄1, n+1ni
f ,

n+1r̄1
m) ≡ {

nx, n v̄, n p̄, nn f ,
n r̄m

}
.

– Iteration loop: k = 1, · · · , N I T E R. For each iteration.

Step 1. Compute the nodal velocity increments �v̄
From Eq. (27ba), we deduce

n+1Hi
v�v̄ = −n+1r̄k

m → �v̄ (28a)

with the momentum residual r̄m and the iteration matrix
Hv given by

r̄m=M0 ˙̄v+Kv̄+Qp̄−fv, Hv = 1

�t
M0 +K+Kv

(28b)

with

Ke
v =

∫

n V e

BT mθ�tκmT BdV (28c)

Step 2. Update the velocities

Fluid nodes: n+1v̄k+1 = n+1v̄k +�v̄ (29a)

Rigid particles:

{
n+1/2u̇ j = n−1/2u̇ j + n ük+1

j �t

u̇ j = 1
m j

nFk+1
j , j = 1, Np

(29b)

Step 3. Compute the nodal pressures n+1p̄k+1

From Eq. (27b) we obtain

n+1Hi
p

n+1p̄k+1 = 1

�t
M1

n+1p̄i

+QT n+1v̄k+1 + n+1 f̄ i
p → n+1p̄k+1 (30a)

with

Hp = 1

�t
M1 + L+Mb (30b)

Step 4. Update the coordinates of the fluid nodes and
particles

Fluid nodes: n+1xk+1
i = n+1xk

i +
1

2
(n+1v̄k+1

i + n v̄i ) �t ,

i = 1, N (31a)

Rigid particles:

{
n+1uk+1

i = nuk+1
i + n+1/2u̇k+1

i �t
n+1xk+1

i = nxi + n+1uk+1
i , i = 1, Np

(31b)
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Fig. 5 Sequence of steps in the
PFEM to update a “cloud” of
nodes representing a domain
containing a fluid and a solid
part (in darker color) from time
n (t =n t) to time n + 2
(t =n t + 2�t) (Color figure
online)

n+1  ,
n+1  , n+1 , n+1  ,n+1εε , n+1ε , n+1σ 

→

→

→

→

→

→

Solid node 

Fixed boundary node 
Fluid node 

Initial “cloud” of nodes 

Domain

Flying Sub-domains

Fixed 
boundary 

n

Γ

Mesh

n  ,
n  , n , n  ,nε , nε , nσ 

.
.

Cloud

Domain
Fixed 
boundary 

nΓ

Mesh

Cloud 

.

etc…

Fig. 6 a Large particles (in
dark color) surrounded by a
finite element mesh. The contact
interface is shown in red color.
b Contact interface between two
objects treated as large particles
and between an object and a
wall (Color figure online)

Step 5. Compute the fluid volume fractions for each node
n+1nk+1

fi
via Eq. (2)

Step 6. Compute forces and torques on particles: n+1

Fk+1
i , n+1Tk+1

i , i = 1, Np

Step 7. Compute particle-to-fluid nodes: (n+1f p f
i )k+1 =

−(n+1f f p
i )k+1 , i = 1, N with f f p

i computed by Eq. (18)
Step 8. Check convergence

Verify the following conditions:

‖n+1v̄k+1 − n+1v̄k‖ ≤ ev‖n v̄‖
‖n+1p̄k+1 − n+1p̄k‖ ≤ ep‖n p̄‖ (32)

where ev and ep are prescribed error norms for the nodal
velocities and the nodal pressures, respectively. In the exam-
ples solved in this work we have set ev = ep = 10−3.

If both conditions (32) are satisfied then make n← n+ 1
and proceed to the next time step.

Otherwise, make the iteration counter k ← k + 1 and
repeat Steps 1–8.

Remark 5 In Eq. (28)–(32) n+1(·) denotes the values of a
matrix or a vector computed using the nodal unknowns at
time n + 1. In our work the derivatives and integrals in the
iteration matrices Hv and Hp and the residual vector r̄m are
computed on the discretized geometry at time n (i.e. V e =
n V e) while the nodal force vectors fv and fp are computed
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Fig. 7 PFEM results for the motion of large particles submerged in a
tank containing water in sloshing motion

on the current configuration at time n+ 1. This is equivalent
to using an updated Lagrangian formulation [3,12,44,59].

Remark 6 The tangent “bulk” stiffness matrix Kv in the iter-
ation matrix Hv of Eq. (28b) accounts for the changes of
the pressure due to the velocity. Including matrix Kv in Hv

has proven to be essential for the fast convergence, mass
preservation and overall accuracy of the iterative solution
[11,45,48].

Remark 7 The parameter θ in Kv (0 < θ ≤ 1) has the role
of preventing the ill-conditioning of the iteration matrix Hv

for very large values of the speed of sound in the fluid that
lead to a dominant role of the terms of the tangent bulk stiff-
ness matrix Kv . An adequate selection of θ also improves the
overall accuracy of the numerical solution and the preserva-
tion of mass for large time steps. Details of the derivation of
Eq. (28c) can be found in [45].

Remark 8 The iteration matrix Hv in Eq. (28a) is an approxi-
mation of the exact tangent matrix in the updated Lagrangian
formulation for a quasi/fully incompressible fluid [44]. The
simplified form of Hv used in this work has yielded very good
results with convergence achieved for the nodal velocities and
pressure in 3–4 iterations in all the problems analyzed.

Remark 9 The time step within a time interval [n, n + 1]
has been chosen as �t = min

( nle
min|nv|max

,�tb
)

where nle
min

is the minimum characteristic distance of all elements in the
mesh, with le computed as explained in Sect. 6, |nv|max is the
maximum value of the modulus of the velocity of all nodes
in the mesh and �tb is the critical time step of all nodes
approaching a solid boundary [45].

10 About the particle finite element method (PFEM)

10.1 The basis of the PFEM

Let us consider a domain V containing fluid and solid sub-
domains. Each subdomain is characterized by a set of points,

hereafter termed virtual particles. The virtual particles con-
tain all the information for defining the geometry and the
material and mechanical properties of the underlying subdo-
main. In the PFEM both subdomains are modelled using an
updated Lagrangian formulation [3,44,59].

The solution steps within a time step in the PFEM are as
follows:

1. The starting point at each time step is the cloud of points
C in the fluid and solid domains. For instance nC denotes
the cloud at time t = nt (Fig. 5).

2. Identify the boundaries defining the analysis domain n V ,
as well as the subdomains in the fluid and the solid. This is
an essential step as some boundaries (such as the free sur-
face in fluids) may be severely distorted during the solu-
tion, including separation and re-entering of nodes. The
Alpha Shape method [10] is used for the boundary defi-
nition. Clearly, the accuracy in the reconstruction of the
boundaries depends on the number of points in the vicinity
of each boundary and on the Alpha Shape parameter. In
the problems solved in this work the Alpha Shape method
has been implementation as described in [17,35].

3. Discretize the the analysis domain n V with a finite
element mesh n M.We use an efficient mesh genera-
tion scheme based on an enhanced Delaunay tesselation
[17,35].

4. Solve the Lagrangian equations of motion for the over-
all continuum using the standard FEM. Compute the
state variables in at the next (updated) configuration for
nt + �t : velocities, pressure and viscous stresses in
the fluid and displacements, stresses and strains in the
solid.

5. Move the mesh nodes to a new position n+1C where n+1
denotes the time nt +�t , in terms of the time increment
size.

6. Go back to step 1 and repeat the solution for the next time
step to obtain n+2C .

Note that the key differences between the PFEM and the
classical FEM are the remeshing technique and the identifi-
cation of the domain boundary at each time step.

The CPU time required for meshing grows linearly with
the number of nodes. As a general rule, meshing consumes
for 3D problems around 15 % of the total CPU time per time
step [43].

Application of the PFEM in fluid and solid mechanics
and in fluid-structure interaction problems can be found in
[4,5,8,11,17–20,25,27,28,35,36,38,40,42–46,52], as well
in www.cimne.com/pfem.
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10.2 Treatment of contact conditions

Known velocities at boundaries in the PFEM are prescribed
in strong form to the boundary nodes. These nodes might
belong to fixed external boundaries or to moving bound-
aries linked to the interacting solids. Surface tractions are
applied to the Neumann part of the boundary, as usual in the
FEM.

Contact between fluid particles and fixed boundaries is
accounted for by adjusting the time step so that fluid nodes
do not penetrate into the solid boundaries [45].

The contact between two large particles (and between two
bodies, in general) is treated by introducing a layer of contact
elements between the two interacting particles. This contact
interface layer is automatically created during the mesh gen-
eration step by prescribing a minimum distance (hc) between

Fig. 8 Modeling of bed erosion
with the PFEM. The mass of the
eroded domain is assigned to the
fluid node k

Fig. 9 Nodal algorithm for
tracking the motion of particles
submerged in a fluid. a Particle i
is coincident with a fluid node.
b Update the position of the
particle and the adjacent nodes.
c Regeneration of the fluid mesh
consistent with the new particle
position
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Fig. 10 Cylindrical particles
falling in a water container. 2D
PFEM solution using the nodal
algorithm for tracking the
particle motion. a Mesh and
particle at a certain instant.
b Contours of the vertical
velocity module. c Evolution of
the vertical velocity of the
particle until a steady state
solution is found [6,15]
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Fig. 11 Motion of ascending
and descending particles of
different density in a fluid
domain. PFEM results using the
nodal algorithm for tracking the
particles motion

two interacting particles. If the distance exceeds the mini-
mum value (hc) then the generated elements are treated as
fluid elements. Otherwise the elements are treated as contact
elements where a relationship between the tangential and nor-
mal forces and the corresponding displacement is introduced
[35,40,43] (Fig. 6).

This algorithm allows us to model complex frictional con-
tact conditions between two or more interacting bodies mov-
ing in water in an a simple manner. The algorithm has been
used to model frictional contact situations between rigid and
elastic solids in structural mechanics applications, such as
soil/rock excavation problems [4,5]. The frictional contact
algorithm described above has been extended by Oliver et
al. [27,28] for analysis of metal cutting and machining prob-
lems.

Figure 7 shows an example of the analysis with the PFEM
of a collection of large particles submerged in a tank contain-
ing water in sloshing motion.

10.3 Treatment of surface erosion

Prediction of bed erosion and sediment transport in open
channel flows are important tasks in many areas of river and
environmental engineering. Bed erosion can lead to insta-
bilities of the river basin slopes. It can also undermine the
foundation of bridge piles thereby favouring structural fail-
ure. Modeling of bed erosion is also relevant for predict-
ing the evolution of surface material dragged in earth dams
inoverspill situations. Bed erosion is one of the main causes
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of environmental damage in floods.
Oñate et al. [36] have proposed an extension of the PFEM

to model bed erosion. The erosion model is based on the
frictional work at the bed surface originated by the shear
stresses in the fluid.

The algorithm for modeling the erosion of soil/rock par-
ticles at the fluid bed is briefly the following:

1. Compute at every point of the bed surface the tangential
stress τ induced by the fluid motion.

2. Compute the frictional work W f originated by the tan-
gential stress at the bed surface.

3. The onset of erosion at a bed point occurs when nW f

exceeds a critical threshold value Wc.
4. If nW f > Wc at a bed node, then the node is detached

from the bed region and it is allowed to move with the
fluid flow. As a consequence, the mass of the patch of bed
elements surrounding the bed node vanishes in the bed
domain and it is transferred to the adjacent fluid node.
This mass is subsequently transported with the fluid as
an immersed macroscopic particle.

5. Sediment deposition can be modeled by an inverse
process to that described in the previous step. Hence, a

Fig. 12 Motion of three macroscopic particles in a water sloshing prob-
lem within a tank. PFEM results obtained using the nodal algorithm for
particle tracking

suspended node adjacent to the bed surface with a veloc-
ity below a threshold value is attached to the bed surface.

Figure 8 shows an schematic view of the bed erosion algo-
rithm described. Details of the algorithm can be found in [36].

11 A nodal algorithm for transporting microscopic and
macroscopic particles within a finite element mesh

The fact that in the PFEM a new mesh is regenerated at each
time step allows us to make microscopic and macroscopic
particles to be coincident with fluid nodes. An advantage of
this procedure is that it provides an accurate definition of the
particles at each time step which is useful for FSI problems.

The algorithm to compute the position of the particles
using the nodal algorithm is as follows.

At each time step nt :

1. Compute the converged value of the position of the
fluid nodes (n+1xi , i = 1, . . . , N ) and the particles
(n+1x j , j = 1, . . . , Np) using the algorithm of Sect. 9.
The Np particles coinciding with Np fluid nodes (Np ≤
N ) will typically move to a different position than that of
the corresponding fluid nodes (Fig. 9).

2. Regenerate the mesh discretizing the fluid domain treat-
ing the Np particles as fluid nodes and ignore the fluid
nodes originally coinciding with the Np particles at n+1t .

3. Interpolate the velocity of the fluid nodes at the position
of the Np particles surrounding the fluid nodes.

The algorithm is schematically described in Fig. 9.
Figure 10 show an example of the application of the nodal

algorithm to the study of the motion of an individual particle
within a rectangular domain filled with water. The correct
end velocity for the individual particle is obtained as shown
in Fig. 10c. Figures 11, 12 and 13 show other examples of

Fig. 13 PFEM analysis of the
penetration of a collection of
spherical (macroscopic)
particles into a water container
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Fig. 14 Falling of a lorry into the sea by erosion of the underlying soil mass due to the action of waves

Fig. 15 Sliding of macroscopic
particles over an inclined wall
entering a container with water

Fig. 16 3D PFEM simulation
of a landslide falling on four
houses

application of the nodal algorithm to the motion of macro-
particles in water containers.

Other examples of application of this algorithm are shown
in the next section.

12 Examples

We present the study of a several problems involving the
transport of macroscopic and large particles in fluid flows.
The problems are schematic representations of particulate
flows occurring in practical problems of civil and environ-
mental engineering and industrial problems.

Most problems studied have been solved with the PFEM
using the nodal algorithm for the transport of macroscopic
particles described in the previous section. An exception are
the problems in Sect. 12.6 dealing with the vertical trans-
port of spherical particles in a cylinder where the stan-
dard immersed approach for the transport of macroparticles
described in Sects. 1–4 was used and the fluid equations
were solved with an Eulerian flow solver implemented in
the Kratos open-source software platform of CIMNE [24].

12.1 Erosion of a slope adjacent to the shore due to sea
waves

Figure 14 shows a representative example of the progressive
erosion of a soil mass adjacent to the shore due to sea waves
and the subsequent falling into the sea of a 2D object repre-
senting the section of a lorry. The object has been modeled as
a rigid solid. Note that the eroded soil particles accumulate
at the sea bottom.

This example, although still quite simple and schematic,
evidences the possibility of the PFEM for modeling FSSI
problems involving soil erosion, transport and deposition
of soil particles, free surface waves and rigid/deformable
structures.

12.2 Landslide falling on houses

Figure 15 shows two instants of the 2D simulation with the
PFEM of the motion of a collection of macroscopic parti-
cles as they slide over an inclined wall and fall into a water
container.

123



98 Comp. Part. Mech. (2014) 1:85–102

Fig. 17 3D PFEM results for
the dragging of a collection of
large rocks by a water stream

Fig. 18 2D PFEM analysis of
the detachment and suction of
cohesive material submerged in
water. The last picture shows the
erosion of the bed material after
the impact of the mixture of
water and eroded particles
falling from within the tube

The PFEM is particularly suited for the modelling and
simulation of landslides and their effect in the surrounding
structures. Figure 16 shows an schematic 2D simulation of a
landslide falling on two adjacent constructions. The landslide
material has been assumed to behave as a pure viscoplastic
material modelled as a non-Newtonian viscous incompress-
ible fluid [57]. Other applications of the PFEM to the mod-
elling of landslides can be found in [8,49].

12.3 Dragging of rocks by a water stream

Figure 17 shows the dragging of a collection of rocks mod-
elled as large rigid particles of arbitrary shape by the action
of a water stream. The particles move due to the action of
the water forces on the particles computed by integrating the
pressure and the viscous stresses in the elements surrounding
each particle.
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Fig. 19 3D PFEM simulation
of the detachment, suction and
transport of submerged cohesive
material from one recipient to
another

Fig. 20 Filling of a container
by injecting water containing
macroscopic particles from two
holes. Water is allowed to exit
through a third hole at the upper
right hand side of the cylinder.
3D PFEM results at four instants

12.4 Suction of cohesive material submerged in water

Figures 18 and 19 show two examples of the detachment,
suction and transport of particles of a cohesive material sub-
merged on water. Figure 18 shows how the particles detatch
from the cohesive soil bed and are transported within the
suctioning tube (modelled as a 2D problem). The last pic-
ture shows the erosion in the soil as the mixture of water and
eroded particles falls down from within the tube and hits the
soil surface due to a stop in the suction pressure.

Figure 19 shows a similar 3D problem. The suction in
the tube erodes the surface of the soil bed in the right hand
container. The mixture of water and eroded particles is trans-
ported to the adjacent containers.

12.5 Filling of a water container with particles

Figure 20 shows a 3D example of the filling of a cylindrical
container with water containing macroscopic spherical par-
ticles. Water is allowed to exit the cylinder by a lateral hole
while particles enter from two other holes at different height
and fall down by gravity until they progressively fill the cylin-
der. The figures show different instants of the filling process.

12.6 Transport of spherical particles in a tube filled with
water

The example in Fig. 21 models the vertical transport of some
120.000 spherical particles to the surface of a tube filled
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Fig. 21 Transport of spherical
macroparticles up to the free
surface of a tube filled with
water. Particles move up with a
prescribed velocity until they
accumulate on the free surface.
Results obtained with a coupled
DEM-Eulerian CFD code [24]

Fig. 22 Interaction of eight jets of ascending air bubbles with a thick layer of 200.000 spherical particles that fall down within a cylinder filled
with water. Numerical results obtained with a coupled DEM-Eulerian CFD code [24]

Fig. 23 Dragging of cars and large and small objects in the Fukushima
tsunami (Japan)

with water and the subsequent deposition of the particles on
the free water surface at the top of the tube. Particles move
upwards within the tube due to a fluid velocity of 1 m/s. The
average size of the particles radius is 2 mm and their density
is 2,30 Kg/m3. Particles move vertically until they reach the
top of the fluid domain and accumulate there due to the com-
bined effect of their weight and the effect of theinteraction

Fig. 24 Dragging of large objects and macroscopic particles in a
tsunami type flow passing over a vertical wall. 3D PFEM results

force from the fluid. Figure 21 shows two instants of the
particles ascending process. The accumulation of particles
in the water free surface at the top of the tube is clearly
seen.

Figure 22 shows the interaction of eigth jets of ascending
air bubbles with 200.000 spherical solid particles that fall
down within a cylinder filled with water.
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12.7 Dragging of large objects and small particles in a
tsunami type flow

The last example is the dragging of cars, barrels and debris
(modelled as macroscopic particles) by a water stream
that flows over a vertical wall. The problem represents an
schematic study of a real situation corresponding to the
tsunami in Fukushima (Japan) on March 2011 (Fig. 23). Fig-
ures 24 show two snapshots of the PFEM solution of this
complex problem.

13 Concluding remarks

We have presented a Lagrangian numerical technique for
analysis of flows incorporating physical particles of differ-
ent sizes. The numerical approach is based on the PFEM
and a stabilized Lagrangian mixed velocity-pressure formu-
lation. The examples presented in the paper evidence the
possibilities of the PFEM for analysis of practical multiscale
particulate flows in industrial and environmental problems.
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