XXI FMC

XXI Fluid Mechanics Conference

AGH-UST, Krakow, Poland, 15 – 18 June 2014

Book of Abstracts

Editors:
J.S. Szmyd, E. Fornalik-Wajs, M. Jaszczur
ANALYSIS OF NANOPARTICLES HYDRODYNAMIC DIAMETERS IN BROWNIAN MOTION

S. Pawłowska, P. Hejduk, P. Nakielski, F. Pierini, K. Zembrzycki, T.A. Kowalewski
Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland

Keywords: nanoparticles, Brownian motion, hydrodynamic diameter

Brownian motion is the random movement of particles in the fluid. These movements are caused by collisions with molecules of the liquid. Speed of these movements is dependent on many factors like the particle size and temperature. Trajectories of individual particles (Particle Tracking technique) is an example of the direct measurement method of Brownian motion. It involves the measurement of light reflected from the particles, in these case nanoparticles, or emitted by fluorescent nanoparticles. Diffusion coefficient, calculated by means of Particle Tracking, allows to determine directly the hydrodynamic diameter of the particles [1]. The phenomenon of the relevant differences between the hydrodynamic diameter, determined on the basis of the diffusion coefficient of nanoparticles varies, and its physical value is fairly well known in the literature. It is mainly based on effects related to the influence of solvent surface interactions, which may have a significant impact on the size of the observed hydrodynamic diameter. Such factors as the ionic strength or the surface structure of the nanoparticles (associated with the presence of surfactants) will be discussed [2].

Fig. 1 Gold nanoparticle trajectories
Fig. 2 Hydrodynamic and physical diameter of nanoparticle

Project supported by NCN grant no 2011/03/B/ST8/05481

* Corresponding author: S.Pawłowska
Phone: (+48)228261281, Fax: +(48)-228269815
E-mail address: spaw@ippt.pan.pl