Brownian motion of nanofibers

S. Pawłowska*1, P. Nakielski1, P. Hejduk1, F. Pierini1, K. Zembrzycki1, T. A. Kowalewski1

1Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland

*E-mail address: spaw@ippt.pan.pl Phone: (+48)228261281, Fax: -(48)-228269815

Keywords: electrospinning, flexible nanorods, Brownian motion

First experiments on Brownian motion of single-DNA were described about twenty years ago. Since then, it is difficult to find literature, reports, regarding other nano-objects characterized similar flexibility as DNA, biomolecule [1]. Majority research on the dynamic properties of the elastic fibers is based on numerical models of fibers shown as a connection of solid spherical beads or DNA observation [2]. Deformability and elasticity of long DNA chains resembles properties of long polymer nanofibres. Recently, the bead-spring model developed at IPPT was used to simulate the dynamic behavior of fibers in Poiseuille flow surprising replicated some coiling-uncoiling sequences only due to hydrodynamic interactions. Presently, we describe our attempts to construct highly flexible nanorodsand to evaluate their dynamics. Short hydrogel nanorods (1-100 μm) with diameter about 500 nm were extracted from core-shell structure by the dissolution of poly(L-lactide-co-caprolactone) shell. Obtained fluorescent nanorods were used for the observation of Brownian motion and dynamics in Poiseuille flow. Understanding of the behavior of flexible nanofibers allows for the verification of previously existing models and can help elucidate physical phenomena responsible for folding and bending dynamics of long molecular objects.

Fig. 1: Fluorescence image of core-shell-nanofibers with polyacrylamide core and PLC shell

Fig. 2: Core polyacrylamide nanofiber observed during Brownian motion experiment

Project supported by NCN grant no. 2011/03/B/ST8/05481.
References
