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Summary 

The Ultrasonix SonixTouch scanner with the special RF block was used to collect B-
mode images together with appropriate RF echoes from the pathological and healthy 
breasts regions of patients with diagnosed malignant and benign breast lesions. The RF 
data were processed for the statistics of the backscattered echo signals assessment (K 
distribution and effective density of scatterers – M and Nakagami distribution and its 
shape parameter m).  The comparison of signals recorded from malignant and healthy 
tissues showed, that in 80% of examined cases the values of the statistical parameters M 
were higher for carcinomas tissues than for healthy tissue. Beside of that in the case of 
benign lesions obtained results was able to distinguish the fibroadenoma from the other 
with probability of 75%.  
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1. Introduction  
 
Breast cancer is the most frequently diagnosed 
cancer among women between 40 and 60 years 
old. According to the report of the World Health 
Organization WHO, 0.5 million women die each 
year because of it. Breast cancer is the second – 
after lung cancer – cause of death of polish 
women.  
In Poland, data from 2010 indicate that there were 
15 784 new cases of breast cancer, and 5226 
deaths of women [1]. In the world the breast 
cancer is also considered as the most widespread 
neoplasm – based on the reports, as much as 34% 
of women with neoplasm is suffering because of 
breast cancer. This number puts the breast cancer 
in the first place among the causes of mortality in 
middle-aged women. Lowering a scale of disease 
incidences can be achieved by prevention, early 
detection of lesions as well as proper treatment [2]. 
According to the American Cancer Society, the 
mammographic examination is now one of the 
main non-invasive imaging methods used for 
diagnosis of breast cancer. Mammography (MMG) 

is a screening method, its use reduced mortality of 
women with breast cancer. However, the 
sensitivity of MMG in the breast glandular 
structure is 30-48 % and 80-90 % in women with 
fatty breast [3, 4]. About 50 % of women under 50 
years old and 30 % of women over 50 years old 
have glandular breasts. In addition, this type of 
breast structure quadruples the risk of breast 
cancer compared to women with fatty breasts 
construction. 
At present, a growing importance of tissue 
imaging on the basis of the ultrasound techniques 
is being noted. The main trend of the ultrasound 
research refers to the improvement of images in 
order to identify pathologically altered areas. For 
example Zhang et al. and Shi et al. [5,6] have 
proposed a number of algorithms for improving 
the quality of the B-mod images. Then, on the 
sonograms generated by this method many 
research groups [7,8,9] applied different 
techniques, such as EPSO (Eliminating Particle 
Swarn Optimalization) [10] or MFPCT (Modified 
Fuzzy Possibilistic C-Means
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Technique) [11] algorithms to provide an 
improvement in detecting the boundaries of the 
tissue regions affected by cancer.  
Nevertheless, only a small part of information 
contained in the ultrasound echoes is used in the 
imaging of tissues. Up to now the only one 
extended clinical trial is dated from 1995, [12]. 
The authors have analyzed seven hundred fifty 
ultrasound images in order to determine whether 
the “raw” ultrasound images enable accurate 
distinguishing between benign breast tumors of an 
undefined character or malignant nature, and 
whether these differences can be determined at a 
level which ensures avoiding thin-needle biopsy. 
The results confirmed that the method based on 
the imaging only, does not always enable an 
adequate classification of lesions as well as a 
correct diagnosis. Due to limitations of the 
diagnostics resulting from the fact that only the B-
mode images are analyzed, the quantitative 
ultrasound techniques (QUS-Quantitative 
Ultrasounds) for parameterization of tissues, gain 
a special significance, mostly assessing breast 
lesions using a parameter called backscatter 
coefficient (BSC), in particular for identification 
of differences between three types of tissues: 
adipose tissue, breast parenchyma and invasive 
ductal carcinoma of breast. The obtained results 
revealed differences in values of the BSC 
parameter and its frequency dependencies. In the 
case of the analysis of breast parenchyma the 
backscatter coefficient reached one order higher 
values than the values obtained in the case of the 
adipose tissue or carcinoma. This coefficient 
exhibited increased frequency dependence as well. 
There is another approach to characterization of 
breast tissue besides analyzing the frequency 
dependence - a method based on modeling the 
tissue as a medium of stochastically variable 
function of probability density. Molthen et al., 
[13] showed that the Rayleigh distribution 
commonly used in statistical analysis of 
ultrasound signals is not appropriate for the breast 
tissue. Shankar et al., [14, 15, 16] applied the K 
and the Nakagami distributions in order to 
distinguish benign changes from the malignant 
lesions occurring in breasts.  The Nakagami 
distribution has been the most frequently adopted 
model in the context of tissue characterization, 
probably due to its simplicity. 
The Nakagami model was then systematically 
used in various medical ultrasound imaging fields; 
ophthalmology [17], vascular [19, 20, 21], and 
breast cancer [22]. The K-distribution was used in 
the context of breast cancer and skin lesions [23] 

classification More recently, the homodyned K-
distribution was used for cardiac tissue 
characterization [24] and cancerous lesion  
classification [25,26,27,28] and a model of 
mixtures of Rayleigh distributions was adopted for 
liver  fibrosis quantification [29]. The Nakagami 
distribution besides providing purely quantitative 
information was applied also as a tool for the 
development of the so-called Nakagami’s images. 
Procedures for developing the images of this type 
were presented by Tsui et al.[22]. This tool was 
applied by Liao et al. [30] as a method providing 
more precise determination of the contours of 
lesions. In recent paper Shankar [31] is developing 
a new model for tissue with microcalcifications. 
He modified the Nakagami model to the McKay 
type I density function for speckle factor 
exceeding 2, so for situation approaching breast 
calcification. This hypothesis was not as yet 
verified in in vivo examinations. 
In diagnostic process of breast diseases, the basic 
role is attributed to unification of examination 
reports both mammographic and 
sonomammographic. The crucial role in this 
regard is attributed to BIRADS classification that 
has been already implemented by Polish 
Ultrasound Society. BIRADS classification, based 
on morphological features of breast structures and 
pathological lesions, enables the sharp 
demarcation of benign lesions from malignant 
ones and constitutes the group of suspicious 
lesions. It evaluates in % the risk of malignancy 
and precisely forms the recommendations for 
subsequent follow up and diagnostic procedures. 
In BIRADS classification category 3 denotes 
lesions probably benign with probability of 
malignancy to approximately 2% and the 
recommends the choice of biopsy of imaging 
follow up. The group 4 denotes the suspicious 
lesions with probability of malignancy in the 
range from 2% to 95%. In this group the 
procedure of choice is biopsy of the lesion.  
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The optimal solution would lead to to eliminate 
the biopsies completely or to a large degree.  
However, the classical ultrasound in B-mode 
enriched with evaluation of blood flow using 
power Doppler and even with elastography, is not 
accurate enough to differentiate between benign 
and malignant breast lesions and cannot replace 
biopsy, which is an invasive procedure with error 
burden. 
The goal of this study was to find the quantitative 
measure of the breast tissue backscattering 
properties for differentiating the changes of tissue 
structure induced by benign and malignant breast 
lesions. 
Presented approach constitutes the progress that is 
hoped to bring new solutions in ultrasound 
diagnostics of breast masses. The description of 
relation of characteristics of ultrasound echo 
signals to the structure of the tissue under 
examination will eventually enable objective and 
reproducible characterization. 

2. Materials and methods 

2.1 Data Acquisition  

The ultrasound radio-frequency signals were 
acquired using a ultrasound scanner (Ultrasonix 
SonixTouch), with the raw RF data digitalized at 
the sampling frequency 40MHz. The linear array 
with the central frequency 10MHz and 128 
elements was used.  
Breast tissues were examined in vivo. A group of 
women with diagnosed benign and malignant 
breast lesions participated in this study (30 and 13 
cases, respectively).  Three types of data: 
traditional B-mode image set of RF echo-lines, 
TGC gain curve were stored for the breast regions 
where the tumors were localized. For all cases, the 
data were recorded from two perpendicular 
sections (vertical and horizontal). For all the 
patients the reference data from the  healthy 
fragments of the breast tissues were also recorded.  
The examples of B-mode images of breast lesions 
in two sections: horizontal and vertical are shown 
in Fig. 1.   
The received sequences were first logcompressed 
and next envelope detected and displayed. The 
compressed RF data were stored separately, 
together with TGC (Time Gain Control) curve that 
was used to increase the quality of breast images. 
One image consists of to 500 RF echo lines. The 
number of samples in every RF signal was 
depending on the choice of the depth of 
examination. Once the RF data were collected the 

further processing and analysis was done off-line 
Mathcad (Mathsoft PTC, USA) software.  
 

 Figure 1. B-mode images of the lobular tumor 

2.2 Quantitative parameters –Attenuation 
coefficient  

The attenuation coefficients  of the breasts 
tissues were  determined using the spectral 
difference technique based on a comparison of the 
power spectra of the backscattered signals 
recorded at two different depths and denoted as 

 and  respectively, where i stands for 
the number of considered echo line and f denotes 
frequency. Only the RF data from selected regions 
of interest (ROI) were used. The procedure was as 
follows: first, from the selected part of the 
scattered echo-signal, two segments, 0.45 µs long 
and separated by distance , were weighted, 
using a Hanning window. These segments were 
next Fourier transformed and the power spectra 
were calculated. The spectra from the same depth 
were averaged over all echo lines within the ROI 
(not less than 25 lines) yielding two averaged 
spectra and  and  the attenuation 
coefficients  were estimated from their log-
ratio. The longitudinal wave velocity of 1540m/s 
was assumed. The following formula was used to 
determine the attenuation coefficient: 
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where N is the number of echo lines in ROI. 

2.3 Data preprocessing  

Attenuation in the examined tissue results in the 
decay of the wave amplitude with depth. The latter 
is reduced by a TGC system of the receiving 
amplifier, what is useful for B-mode imaging, but 
disturbs the estimation of quantitative parameters. 
The influence of the system TGC on RF echoes 
was compensated prior to the processing that was 
carried out in order to determine the attenuation 
coefficient of the breast and the statistical 
properties of the breast backscatter. 
The acquired echoes, first corrected for TGC, were 
subsequently compensated for attenuation. A 
method proposed by Litniewski et al [40] was 
implemented. For each measured RF line the 
following attenuation compensating algorithm was 
applied. First, the spectrum of the recorded RF 
signal was calculated. The amplitude of each 
spectral component was individually compensated 
by increasing its value along with an increase of 
the pulse penetration and value of the frequency-
dependant attenuation ����. Next, a compensated 
signal ���  on the basis of compensated spectral 
components was constructed. The process is 
described by the formula: 

���� !� � ∑ ��"#exp ����#� !�exp ��2)*�#+!�,#-�   (2)                      

where k stands for the index of the spectral 
component, �# denotes the spectrum frequency 
component, ��" is a complex spectrum of 
backscattered signal.  ! � +! · / where / denotes 
velocity of the longitudinal wave in skin, and +! � 01+ stands for time while 1+ is sampling interval. 
The summation is carried over the whole range of 
frequency components of the transmitted signal 
(from 0 to M). The real part of ��� is the desired 
backscattered signal compensated for attenuation. 
 

2.4 Statistics of echo envelope 

The statistics of echo signals backscattered by a 
medium depends on both medium structure and 
spatial resolution of the scanning system that is 
defined by the size of the resolution cell. This size 
varies with pulse length and acoustic beam cross-
section.  
The soft tissue is often modeled as a collection of 
spatially distributed small scatterers [32, 33]. It 
can be shown that for the large number of 
scatterers within the resolution cell, the signal 

amplitude statistics follows the Rayleigh 
distribution. However in biological tissue the 
spatial distribution of scattering elements is not 
uniform. Also, the scatterer density and size vary 
throughout the tissue. Thus, the effective number 
of scatterers in the resolution cell may not fulfill 
Rayleigh statistics condition, particularly when the 
resolution cell is small. In this case non-Rayleigh 
statistics are considered [34].   
Jakeman and Tough [35] pointed out that for the 
low effective density of scatterers, the PDF 
(Probability Density Function) of the backscatter 
amplitude is given by the K distribution. More 
recently, it was shown that the K distribution 
describes well the statistics of the skin backscatter 
[36]. The K distribution is defined by:                                           

2�3� � 2 45
67, 89:�

;�,� <,=��>3�      (3) 

where 3 is amplitude, 2�3� is probability density,   

> � ? �,
@A5BC , )(⋅βK  is the modified Bessel 

function of the second kind of order β , )(⋅Γ  is 
the standard Gamma function, E[  ] is the 
expectation operator,  M � N�1 G v� is the 
effective density of scatterers within the resolution 
cell, N is the number of scatterers and  v is the 
constant, depending on scatterer characteristic 
[37].  
The effective density of scatterers estimated from 
the K distribution model, depends on the actual 
number of scattering sites per resolution cell as 
well as the uniformity of backscatter coefficient. 
The type and distributions of scatterers are 
intrinsically related to the type of tissues that the 
ultrasound beam is passing through. Therefore, the 
M parameter can be used to distinguish between 
regions differing in spatial density of scatterer or 
between regions of varying scatterer’s cross-
section, and in consequence can be used as a 
parameter for tissue characterization. 
The effective density of scatterers (M) can be 
estimated from the fourth normalized moment (r4) 
of the K-distribution [38]:  

M � 6
IJ=6                             (4) 

where  

 r� � @A5JC
L@A5BCMB                            (5) 

The moments EA3OC were directly computed from 
the envelops of RF signals enclosed in ROI. Next 
the r�  was determined, and the M parameter was 
calculated using Eq. (5).  
In the case when coherent component is present  
the K distribution is not able to model the statistics 
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of envelope of signal well. In that case simple but 
nonetheless extremely versatile solution seems to 
be the use of the Nakagami distribution, which 
enables to emulate several other distributions such 
as Rayleigh, Rician or homodyned K-distribution 
[39]. 
The probability density function of the Nakagami 
distribution 2�3� calculated from the backscatter 
envelopes is given by: 

2�3� � 6PQ5BQR�
;�P�SQ T4=QU VB7           (6) 

Where )(⋅Γ  is the standard Gamma function. Two 
of the parameters, the Nakagami parameter W and 
scaling parameter  Ω, can be calculated using: 

Y � Z@L5BMB[
Z@L5B=@A5BCM[B                    (7) 

and Ω � \A36C                         (8) 
where \A]C is the statistical mean. 
The Y parameter is particulary useful for 
characterizing the probability distributions of 
ultrasonic backscattered envelopes, including the 
statistical conditions for pre-Rayleigh, Rayleigh, 
and post-Rayleigh distributions. 
The correct estimation of the shape parameters of 
probability density functions requires a large 
number of data samples.  To find the size of ROIs 
that gives the ROI-size-independent parameters M 
and m, the RF data recorded from homogeneous 
tissue-mimicking phantom was used. 

 
Figure 2. The example of ROIs  
 
A set of concentric ROI squares was selected, and 
each square was analyzed for their respective M 
and m parameters. It was found that a 4 mm × 4 
mm ROI box, corresponding to a 3.75µs long time 

window and averaging over 35 adjacent scan lines, 
is sufficient to obtain reliable results. 
For every lesion the ROIs were chosen in that way 
to cover all pathological fragment of tissue. The 
number of ROIs was dependent on the size of the 
changes. The statistical analysis was done for 
every ROI separately. These steps were done for 
every lesion in two dimensions. At the end results 
obtained for all ROIs were averaged. In the same 
way the results for the healthy surroundings were 
calculated. 

3. Results 

The shape parameters of the K and Nakagami 
distributions  were calculated including the 
compensation of the TGC and the attenuation. The 
results, obtained for the benign and maligned 
lesions, for K and Nakagami distributions are 
presented in Fig. 3 and Fig. 4 respectively. 
For 11 patients (from 13 participated in our 
research), the values of M parameter calculated for 
malignant lesions were significantly higher than 
for healthy tissues.  
Similarly (like in the case of the M 
parameter), the values of the m parameter for 
the Nakagami distribution for the malignant 
lesions were higher than the value of m 
measured for the breast with no pathological 
changes  
In the case of benign lesions the relationships 
between the state of the tissue and the values 
of the m and M parameters were not observed. 
In the case of use of the only one parameter it 
was possible to distinguish malignant lesions 
and healthy breast tissue with the diagnostic 
accuracy of  80%. In order to characterize 
tumors two parameters were explored: 

^_
VP`	!�ab � ,cdefgch,giQjk                    (9) 

and Y_
VP`	!�ab � PcdefgchPgiQjk                (10) 

The result of M_mormalized and 
m_normalized is shown in Fig. 5. The red and 
blue points denote the values of parameters 
obtained for the benign and malignant  
lesions, respectively.  
 

ROI_tumor

ROI_healthy
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Figure 3. The value of the M parameter obtained for healthy breast tissues and malign d ant anbenign lesions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. The value of the m parameter obtained for healthy breast tissues and malignant and benign lesions
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Figure 5. Normalized values of M_mormalized and 
m_normalized parameters for malignant (red points) 
and benign (blue points) lesions. 
 

4. Conclusions 

As it was said, the breast cancer is the most 
common cancer among women. The imaging 
techniques that will increase the effectiveness of 
breast cancer diagnostics are continuously sought. 
We propose a novel method based on statistical 
processing of the raw, unprocessed RF echoes 
signals backscattered in tissue These data can 
provide the important information enabling better 
detection and distinguishing the breast cancer. 
Hence, it would enable a significant reducing the 
thin needle and thick-needle biopsies which are 
invasive procedures with the possibility of errors, 
as well.  
The goal of our study was answering the question 
whatever the healthy breast tissue, benign lesions  and 

malignant tumors can be differentiated using, the 
backscattered properties of breast tissue. 
Although the number of 13 malignant and 30 benign  
cases is rather small to draw definite conclusions, it is 
worth pointing out that in the 80% of the considered 
cases we have obtained higher M and m values for 
malignant lesions than the values obtained for healthy 
reference breast tissues. The increases sensitivity of   
gives a chance to distinguishing the malignant cases 
from surrounding healthy tissues, what is significant, 
especially when the lesions are small and in the 
standard USG images they look like a lumps of fat. 
In the second approach the two normalized parameters 
were used. The results obtained are very promising. 
The malignant lesions were localized very close to the 
origne of the coordinate system. Only two cases were 
localized outside of the region marked in the Fig. 5 by 
the dotted lines. In the both cases the cause of that 
were the specific changes in the microstructure of 
tumor (it was ascertained by an anatomical 
pathology), which makes the malignant tumor similar 
to benign lesions. 
We also decided to check various types of benign 
lesions. The analysis which was carried out showed 
that 75% of the fibroadenoma (the most common type 
of benign lesions) cases were localized  outside of 
regions in which were localized malignant tumors. 
In conclusion, the two combined normalized statistical 
parameters together allow to distinguish between 
malignant lesions from the group of all tumors 
with diagnostic accuracy of  80%. Within the 
benign lesions 75% were correctly statistically 
estimated. However 25% of the tumors were false 
pointed as a malignant lesions (Fig. 5) The 
presented approach to  is very promising, 
introducing new information about tumor 
structure. 
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