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Abstract 
The paper presents an application of modeling acoustic waves propagation in a carbon fiber reinforced plastic (CFRP) plates for 

damage detection. This task is a part of non-destructive testing (NDT) methods which are very important in many industry 

branches. Propagation of Lamb waves is modeled using three-dimensional finite element method by means of commercial 

software. In the paper three different cases of plate structures with and without flaws are considered to present review of selected 

methods for the detection of defects in time and frequency domain. These are comparisons of: A-scans, B-scans, dispersion 

curves, spectrograms, scalograms and energy plots. Developed numerical model first has been validated by means of analytical 
solution for isotropic plate. 
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1. INTRODUCTION 

Many of construction elements are made of composite 

materials (e.g. plane's wings, components of cars 

coachwork, boats, wind turbines blades [1]) and because of 

importance of these elements they must be tested by means 
of NDT techniques during manufacturing and exploitation. 

The main reason to do that is to ensure the reliability of the 

whole constructions made of CFRP materials. One of the 

ways to detect flaws in plate structures are techniques based 

on so called Lamb wave propagation [2]. The mathematical 

background for this phenomenon was developed by Horace 

Lamb in 1917 [3] and since 1980s Lamb waves have been 

successfully used in Structural Health Monitoring and 

Nondestructive evaluation [4]. Theoretical models and 

experimental methods are still being developed mainly 

because of their advantages. In his classical paper Lamb  

developed only equations for waves propagation in isotropic 
objects of simplified geometries [3]. CFRP belongs to a 

class of anisotropic materials and very often structures made 

of it have complicated geometry (curved shape, presence of 

stiffeners or joints). Due to the complexity there is no 

analytical solution in such cases. Moreover these 

phenomena become more complex with the presence of a 

flaw, because defects in a structure interfere with 

propagating waves. To deal with these problems many 

algorithms have therefore been developed for the effective 

damage detection with the aid of advanced signal processing 

and identification approaches [4], viz. Fourier transform, 
wavelet analysis, dispersion curves, A and B-scans 

comparisons, etc. Furthermore due to lack of the analytical 

solution for a better understanding of Lamb waves 

phenomena in layered materials there is need to develop 

accurate numerical models. A number of different numerical 

computational techniques have been developed and can be 

used for this type of analysis bearing in mind their 

limitations. For example according to the literature 

following algorithms can be used: finite difference method 

(FDM) [5], finite element method (FEM) [6], finite strip 

method (FSM) [7], boundary element method (BEM) [8], 

global matrix approach [9], spectral element method (SEM) 
[10], mass-spring lattice model [11]. The most commonly 

used technique seems to be a higher order FEM, which 

utilizes Lagrangian shape functions on a Gauss-Lobatto-

Legendre grid (it is called spectral-element method in the 

literature). But SEM is also limited. For example algorithm 

developed by Ostachowicz et.al. [10] gives very good 

approximation only for fundamental modes of Lamb waves. 

For example for a 1mm thick plate made of aluminum alloy 

both the s0 and a0 modes can be well represented in the 

frequency range up to about 500 kHz, which constitutes the 

upper limit of practical application of the Reissner–Mindlin 

theory [10]. In this paper standard FEM is used because of 
its versatility and wide availability of both commercial and 

free software. The advantages of FEM include the ability to 

study Lamb wave propagation almost in any kind of the 

structure including geometry inhomogeneities, defects, etc. 

But main limitation of this method is long calculation time 

and also FEM puts a heavy workload on the CPU and 

memory. Problems increases with frequency increment 

(frequencies are in hundreds of kilohertz range [12]), 

because sampling step in space should be not greater than 

20λ (λ is a wave lengths) [13] and sampling step in time 

should satisfy Nyquist-Shannon sampling theorem [14]. 
 

2. MATHEMATICAL BACKGROUND 

The wave propagation in stress-free isotropic and 

anisotropic bulk media can be adequately described using 

theory based on linear stress-strain relationships. The stress 

equation of motion [15]: 

 

iijij uf  ,  (1) 
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Hooke’s law: 

 

klijklij C    (2) 

 

And linear strain-displacement relationship: 
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where σ is the Cauchy stress tensor, ε is the Cauchy strain 

tensor, ρ is the material density, u is the displacement, f is a 

vector of the external force, C is fourth-order stiffness tensor 

and two dots over a letter denote the second order derivative 

with respect to time. Einstein summation convention and a 

comma derivative notation are used. Combining the Eqs. 1-3 

one can write the following system of equations: 

 

ijlkijkl uuC ,  (4) 

 

Differential equations of motion given by Eq. 4 with 
associated boundary conditions can be solved analytically 

only for limited number of cases. On the whole the 

geometry, boundary conditions and potential defects 

complicate the situation, that the only possible solution is to 

use the numerical model. One of the example where a semi-

analytical solution exists is the propagation of Lamb waves 

in thin isotropic plate (for example made of aluminum). In 

this case the elastic oscillations are described by the 

Rayleigh-Lamb equations: 
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k is the wave number, ω is the angular frequency, cL is the 

longitudinal phase velocity, cT is the shear phase velocity 

and d is a half thickness of the plate. Eq. 5 can be solved by 

means of numerical software according to the algorithm 

proposed in [15]. The solution of Eq. 5 is the dispersion 

relation between the wave number and angular frequency. 

Fig. 1 presents dispersion curves (symmetrical modes s0, s1, 

s2 and antisymmetric modes: a0, a1) in k-ω representation for 

3mm thick aluminum plate. To plot result in more common 

than k-ω form one need to perform transformation to fd-vp 

representation by calculating the phase velocity vp, which is 
defined as the following quotient: 

 

k

f
v p   (8) 

 

Where f = 2πω – frequency and k is a wave number. 

 

3. NUMERICAL MODEL 

3.1 Model Details 

The plate was modelled by means of Structural Mechanic 

Module in COMSOL Multiphysics software as a linear 

elastic material. To achieve good numerical accuracy at least 

 

 
Fig- 1: Calculated dispersion curves (symmetrical and antisymmetric modes) - k-ω representation. 
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5 second-order mesh elements per wavelength are required 

[16] (some authors propose more rigorous condition [13]). 

So the maximum allowed mesh element size becomes: 

 

0
0

Nf

c
h   (9) 

 

where c is the local speed of the wave, and N = 5 is the 

number of mesh elements per wavelength. Also time step is 
connected with the accuracy issue and element size. The 

relationship between mesh size and time step length is 

known as the Courant–Friedrichs–Lewy condition [17] and 

it can be expressed as: 

 

h
tcCFL   (10) 

 

where Δt is the time step and h is the mesh size. In practice, 
with second order mesh elements, a CFL number of 0.2 is 

chosen as optimal. In discussed simulation time step Δt is 

equal 100ns and it makes that CFL condition is satisfied. As 

excitation sinusoidal signals with a rectangular window or 

Hanning window are usually used in nondestructive 

evaluation and structural health monitoring. These signals 

are usually called a tone burst. In this paper a 3-cycle tone 

burst at 200 kHz center-frequency is used. The Nc cycle 

Hanning windowed tone burst at given frequency can be 

expressed as: 

 

 t
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  (11) 

 
for time in the range of: 

 

0,0 fNt c  (12) 

 

Where: f0 – center frequency, Nc – number of cycles, ω0 – 

center angular frequency, t – time. 

 

Another remark refers to the excitation of a plate. In this 
work the properties of transmitter are ignored and 

interaction between transmitter and plate are modeled as 

surface load and distributed over the area of transmitter form 

of Gaussian distribution in this case is as follows: 

 

using Gaussian distribution (see Fig. 2). The mathematical 

 

 
Fig - 2: Schematic representation of the transmitter and emitted beam 
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By multiplying surface tone burst (given by Eq. 11) by 

function g in two directions (e.g. x and y) one can obtain 

desired pulse. For completeness of description it should be 

added that all boundary condition were set to free. It means 

that there are no constraints and no loads (except surface 

covered by the transmitter) acting on the boundary. And all 

initial values (displacements and velocities) were set to 0. 

3.2 Model Validation 

As it was mentioned the implemented model was validated 

by means of analytical solution for thin isotropic plate. The 

thickness of the plate was 3mm and for the purposes of 
calculations the material constants for aluminum were 

adopted. The results of FEM calculation can be presented in 

many ways. One of it, so called B-scan, is presented in 

Fig. 3. 
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Fig - 3: B-Scan for isotropic aluminum plate 

 

In the B-scan presentation wave amplitudes excited by the 
same source are recorded at equidistant points lying along a 

straight line and are displayed with respect to time (x axis) 

and receivers positions (y axis). Based on data stored in 

matrix like in B-scan presentation dispersion curves can be 

calculated by means of double Fourier transform: first along 

“time direction” (transformation from time domain to 

frequency domain) and next along “space direction” 

(transformation from spatial domain to wave number 

domain) [4, 18]. Result is shown in Fig. 4. Comparing the 

obtained result with the analytical solution shown in Fig. 1 it 

can be observed that both a0 and s0 modes are reproduced 
with good accuracy. The angular frequency–wavenumber 

representation shows also clear distinction among basic 

Lamb wave modes. The transformation of result to fd-vp 

representation is depicted in Fig. 5. Calculated a0 and s0 

modes are plotted on the determined analytically curves. 

Maximum intensity of the energy is around 600Hzm, which 

is equal to the product of the excitation frequency and plate 

thickness. Compliance of the model with the analytical 

solution allows to use it as a tool for the calculation of wave 

propagation in plates made of CFRP. 

 

 
Fig - 4: Dispersion curves for aluminum plate - k-ω representation 
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Fig- 5: Dispersion curves for aluminum plate - fd-v representation 

 

4. RESULT 

4.1 Numerical Simulation Details 

The results of full-scale models for CFRP T800/913 

(unidirectional) plates are presented. The comparison of 

three cases will be discussed: 

 plate without defect – Fig. 6, it is a reference plate, 

 plate with small hole located 50mm from the middle 

of the plate in x direction – Fig. 7, 

 plate with defect (cavity) located 50mm from the 

middle of the plate in x direction on the bottom 

surface – Fig. 8. 

 

The thickness of each plate is 1mm, and the length of edge 

is 400mm (plates are square). Due to the symmetry only one 

quarter of each plate was analyzed by means of FEM 

simulation. The excitation pulse was three cycle tone burst 

modulated by Hanning window with central frequency 

200000Hz. The load was put on the top surface in the 

middle of the plate. Because of symmetric boundary 
conditions in case 2 and 3 there are two symmetrically 

placed flaws. The elastic properties used for FEM 

simulations were as follows [19]: 
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Time of simulation was set to 100μs and time step to 100ns. 

In each case different meshes were used: 

 case 1 (Fig. 6): Number of degrees of freedom solved 

for: 1447209. Complete mesh consisted of 40000 
hexahedral elements. Minimum element quality is 1, 

 case 2 (Fig. 7): Number of degrees of freedom solved 

for: 1693791. Complete mesh consisted of 93698 

prism elements. Average element quality is 0.99 and 

minimum element quality is 0.6, 

 case 3 (Fig. 8): Number of degrees of freedom solved 

for: 2173890. Complete mesh consisted of 399056 

tetrahedral elements. Average element quality is 0.65 

and minimum element quality 0.09. 

 

Where mesh quality is a dimensionless quantity between 0 

and 1, where 1 represents a perfectly regular element, and 0 
represents a degenerated element. 

 

 
Fig - 6: CFRP plate without damage, hexahedral mesh 
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Fig - 7: CFRP plate with damage (hole), prism mesh 

 

 
Fig - 8: CFRP plate with damage (cavity), tetrahedral mesh 

 

It is clearly seen that hexahedral elements are the best one in 

this case. First of all number of degrees of freedom is lower 

for that type of elements. Also mesh quality, which 

measures the regularity of the mesh elements’ shapes, is the 

best for case 1. But it is important to bear in mind that not 

every geometry (topology) can be meshed with this type of 

elements and as a result one has to use tetrahedral elements, 

which are more flexible. 

 

4.2 A-Scans 

A convenient way to show differences between recorded 

(modeled) signals is amplitude representation (so called 

A-scan). In Fig. 9 such comparison is shown for signals 

recorded in point x=0mm, y=100m (measured from the 

middle of the plate) on the top surface. Curves plotted in 

Fig. 9 allow to distinguish between reference plate and plate 

with defect (in this case whole). But during numerical 

experiments it was noticed that the choice of location of the 

sensor has a big impact on the possibility of a detection of 

defect. So to increase the probability of flaw detection many 

measurements should be made at different receiver 

positions. 
 

4.3 B-Scans 

By making several measurements along a straight line one 

can obtain mentioned earlier B-scan. In such presentation it 

is easier to observe the reflection from obstacles than in case 

of A-scan. The comparison of the three discussed cases of 

propagation of Lamb waves in anisotropic CFRP plates with 

and without defects is depicted in Fig. 10. Reflections from 

obstacles are visible in second and third column (plate with 

hole and cavity, respectively) for time greater than 40μs. 

Obviously reflections are definitely better visible in case 2, 

because of the size of hole. Based on such graphical 

presentation a surveyor, besides the information that there is 
any fault, can also determine the position of the flaw. 

 

 

 
Fig - 9: Comparison of amplitudes for reference plate and plate with hole. Receiver position x=0mm, y = 100mm 
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4.4 Dispersion Curves 

Another advantage of multiple measurements is a possibility 

to calculate dispersion curves, which also require a series of 

measurement from equispaced sensors along the straight 

line. Fig. 11 presents a comparison of selected model results 

for CFRP plates. In the left column results for undamaged 

plate were depicted and in the right column results for plate 
with hole (case 2) are shown. Angles denote the slope of the 

line along which the virtual sensors were arranged relative 

to the coordinate system. It can be observed that pictures for 

damaged plate (for each angle) are ragged. Unfortunately by 

means of this type of analysis there is no possibility to 

identify position of flaw – the spatial information is lost 

during 2D Fourier transformation. One can only conclude 

that there is any defect in the structure. But the main 

advantage of this method from numerical point of view is 

the fact that to obtain this type of graphs there is no need to 
perform time consuming transient analysis, but only 

frequency analysis, which significantly reduces the 

computation time. 

 

 

 
Fig - 10: Comparison of displacement field in CFRP plates with and without flaws. 
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Fig - 11: Dispersion charts for undamaged and damaged CFRP plate for different angles 
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4.5 Spectrogram Method 

One further approach to detect damages in composite plates 

by means of ultrasonic testing is time–frequency analysis. In 

this paper a short-time Fourier transform and wavelet 

analysis will be briefly discussed. The short-time Fourier 

transform allows to represent recorded amplitude signal in 

both time and frequency domain through time windowing 
function. Based on obtained A-scans for different sensor 

locations one can calculate so called spectrogram. As in 

earlier presented methods the sensitivity of this technique is 

linked with the position of the sensor. Series of figures show  

selected results for undamaged and damaged (with hole) 

plates: 

 Fig. 12 shows results for sensor position: x=0mm, 

y=0mm, z=1mm (sensor is located on the top surface 

in the middle of the plate and it coincide with the 

position of excitation area), 

 Fig. 13 shows results for sensor position: x=200mm, 

y=0mm, z=1mm (in this case flaw is located on the 
line, which connects the middle of the plate and 

sensor), 

 Fig. 14 shows results for sensor position: x=100mm, 

y=100mm, z=1mm (flaw is not situated on the line 

connecting transmitter and receiver), 

 Fig. 15 shows results for sensor position: x=0mm, 

y=200mm, z=1mm (ditto). 

 

Spectrograms were calculated by means of MATLAB 

function spectrogram with Hamming window of length 256 

samples. The number of samples that each segment overlaps 

was set to 250, the FFT length was set to 256 samples and 

the sampling frequency was 10MHz. Again, one can see that 

the possibility that fault is detected depends on the location 
of the sensor. In first case (Fig. 12), where receiver position 

was the same as transmitter position, the reflection from the 

defect is sharp and it is very easy to distinguish between 

damaged and undamaged plate. For the second presented 

results (Fig. 13), where flaw is located on the line 

connecting transmitter and receiver, in case of undamaged 

plate first maximum of spectrogram intensity comes from 

symmetric Lamb mode s0 and second comes from the 

antisymmetric Lamb mode a0. In the case of damaged plate 

such distinction cannot be easily made. In two next cases 

(Figs. 14 and 15) the interpretation of the result is not so 
straightforward. Results depicted in Fig. 14 are obtained on 

the basis of signal received in point (100mm, 100mm, 

1mm). The additional maximum of intensity for frequency 

approximately equal to 1MGHz for damaged plate is visible. 

Also distribution of spectrogram intensity is different in 

these two cases. Similar, non-trivial to interpret results were 

obtained in fourth case of sensor location (Fig. 15), which 

confirms that the efficiency of detection of damages 

depends on the relative position of the transmitter and 

receiver. 

 

 

 
Fig - 12: Spectrograms for CFRP plates. Sensor position: x=0mm, y=0mm, z=1mm 
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Fig - 13: Spectrograms for CFRP plates. Sensor position: x=200mm, y=0mm, z=1mm 

 

 
Fig - 14: Spectrograms for CFRP plates. Sensor position: x=100mm, y=100mm, z=1mm 
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Fig - 15: Spectrograms for CFRP plates. Sensor position: x=0mm, y=200mm, z=1mm 

 

4.6 Energy Plots 

Comparing the results for different receiver positions one 

can observe that the intensity of spectrograms, which is 
proportional to the energy of the signal, is different. To 

show this relation the normalized maximum energy of wave 

amplitude for different angles (angles between fibers 

direction and receiver position) can be plotted in polar 

coordinates for undamaged and damaged plates: Fig. 16 and 

Fig. 17, respectively. Due to the flaw the curve shown in 
Fig. 17 is disturbed in relation to the curve for undamaged 

CFRP plate. Thus, by comparing obtained results with the 

reference graph (Fig. 16) one can assessed whether the 

tested structure is damaged. 

 

 
Fig - 16: Normalized maximum energy of wave or FFT amplitude for different angles – undamaged plate 
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Fig - 17: Normalized maximum energy of wave or FFT amplitude for different angles – damaged plate (with hole) 

 

4.7 Wavelet Analysis 

Second mentioned time-frequency analysis is wavelet 

transform. The wavelet transform allows to represent 

recorded signal in both time and frequency domain. The 

wavelets were found to be more sensitive damage detection 

method than other techniques (Fourier transform, amplitude 

response, etc.) [20]. Many authors use Morlet and 

Daubechies wavelet bases for decomposition of a Lamb-
wave response [21, 22]. In this case based on recorded 

A-scans one can calculate so called scalograms. In the 

course of numerical studies scalograms were calculated by 

means of MATLAB function cwt, which performs 

continuous 1-D wavelet transform. The continuous wavelet 

coefficients of the signal were computed at real, positive 

scales 1, 2, …, 256, using fourth order Daubechies wavelet. 

The scalograms are presented in Fig. 18 for reference CFRP 

plate and in Fig. 19 for damaged CFRP plate (case with the 

whole). Comparing obtained results with spectrograms 

depicted in Fig. 13 one can observe, that wavelets transform 

gives better localization in time than Fourier transform. In 

case of undamaged plate two Lamb wave modes can be 

easily observe. Furthermore, as in the case of spectrograms 
(for sensor position: x=200mm, y=0mm, z=1mm) the 

distinction between damaged and undamaged plate is 

straightforward. Also in the case of the plate with flaw 

reflections from the failure are clearly visible. It shows the 

potential of wavelet transform and possible applications in 

field of nondestructive testing of composite materials. 

 

 
Fig - 18: Scalogram for reference CFRP plate. Sensor position: x=200mm, y=0mm, z=1mm 
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Fig - 19: Scalogram for CFRP plate with flaw (hole). Sensor position: x=200mm, y=0mm, z=1mm 

 

5. CONCLUSION 

The paper has presented a numerical aspects of selected 

issues associated with Lamb waves propagation in CFRP 

plates for damage detection. Firstly it was shown that 

implemented finite element model gives an accurate results 

for isotropic material. Theoretical and numerical results 

agree well. It can therefore be argued that the model gives 

accurate results also in the case of plates made of CFRP, 

especially that transition between isotropic and anisotropic 

case is straightforward from software point of view. First 
obtained result for CFRP plates with simple geometry show 

the potential of proposed method in damage identification. 

Postprocessing of model’s results by means of short-time 

Fourier transform and wavelet transform facilitates detection 

of flaws. It should, however, be admitted that the finite 

element method is not the most efficient method in case of 

ultrasonic wave propagation in solid materials. To achieve 

high accuracy of numerical results for high excitation 

frequency the time step and spatial resolution of mesh 

should be extremely fine from point of view of FEM. This 

leads to a huge load of computer workstations and 
sometimes results in unacceptable computation time. 

However, the development of computers and increasing the 

efficiency of numerical algorithms allows believing that in 

the near future, these problems will be overcome. One of the 

promising method is a hybrid spectral-element/finite-

element time-domain method for multiscale simulations. 
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