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The paper presents an overview of theoretical aspects of ultrasound image reconstruction techniques
based on the circular Radon transform inversion. Their potential application in ultrasonography in a
similar way as it was successfully done in the x-ray computer tomography is demonstrated. The meth-
ods employing Radon transform were previously extensively explored in the synthetic aperture radars,
geophysics, and medical imaging using x-ray computer tomography. In this paper the main attention is
paid to the ultrasound imaging employing monostatic transmit-receive configuration. Specifically, a single
transmit and receive omnidirectional source placed at the same spatial location is used for generation of a
wide-band ultrasound pulse and detection of back-scattered waves. The paper presents derivation of the
closed-form solution of the CRT inversion algorithms by two different approaches: the range-migration
algorithm (RMA) and the deconvolution algorithm (DA). Experimentally determined data of ultrasound
phantom obtained using a 32-element 5 MHz linear transducer array with 0.48 mm element pitch and
0.36 mm element width and 5 mm height, excited by a 2 sine cycles burst pulse are used for comparison of
images reconstructed by the RMA, DA, and conventional synthetic aperture focusing technique (SAFT).
It is demonstrated that both the RMA and SAFT allow better lateral resolution and visualization depth
to be achieved as compared to the DA approach. Comparison of the results obtained by the RMA method
and the SAFT indicates slight improvement of the lateral resolution for the SAFT of approximately 1.5
and 1.6% at the depth of 12 and 32 mm, respectively. Concurrently, however, the visualization depth
increase for the RMA is shown in comparison with the SAFT. Specifically, the scattered echo amplitude
increase by the factor of 1.36 and 1.12 at the depth of 22 and 32 mm is demonstrated. It is also shown
that the RMA runs about 30% faster than the SAFT and about 12% faster than the DA method.

Keywords: synthetic aperture focusing method, circular Radon Transform, delay-and-sum beamforming,
range migration algorithm.

1. Introduction

In past few decades medical ultrasound imaging
has become one of the more prevalent techniques.
This is mainly due to its accessibility and lower cost
in comparison with computed tomography (CT). For
instance, CT scan costs range from 1200 to 3200 $,
whereas the ultrasound procedures cost from 100 to
1000 $. Moreover, ultrasound exams do not use ioniz-
ing radiation (x-ray) and allow the images to be cap-
tured in real-time (rather than after an acquisition or
processing delay), showing the structure and move-
ment of the body’s internal organs, as well as blood
flowing through blood vessels. Ultrasound imaging is
usually a painless and portable (it can be brought to a

sick person’s bedside) medical test that helps physi-
cians diagnose and treat medical conditions. Mod-
ern ultrasound scanners employ transducer arrays and
advanced beamforming techniques to enhance image
quality. Specifically, given the operating frequency, the
axial (longitudinal) resolution of the imaging system
is defined as half of the spatial pulse length (number
of cycles of the emitted pulse times the wavelength).
Therefore, the short pulses are usually used (2–3 sine
cycles of operating frequency). The axial resolution is
depth-independent. On the other hand, the lateral res-
olution is determined by the width of the emitted wave-
beam and directly depends on the transducer aper-
ture size and applied focusing (at specified depth or
several depths). The lateral resolution, therefore, is
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depth-dependent. Adequate focusing at the whole im-
age space is done at a large cost of slowing the frame
rate. Often, this refresh rate is reduced to below 15 fps.
Synthetic aperture (SA) imaging methods offer

a solution to this problem. Initially implemented in
remote sensing/imaging by radars (Moreira, 1992;
Perry, Martinson, 1978) and in sonar imaging
(Stergiopoulos, Sullivan, 1989; Yen, Carey,
1989) later they found their application in the ul-
trasound imaging (Corl et al., 1978; Nagai, 1985;
Ozaki et al., 1988), where they are also known as
synthetic aperture focusing techniques (SAFT). In
SAFT imaging, at each time a single array element
acts as a point source emitting a spherical wave
to the acoustic medium and as a receiver of the
echo signal back-scattered from the inhomogeneities
(O’Donnell, Thomas, 1992; Thomson, 1984). To
increase emitted energy (which results in signal-to-
noise ratio enhancement), a multi-element synthetic
aperture focusing (M-SAF), as an alternate to the
SAFT method, was proposed (Karaman et al., 1995;
Nikolov et al., 1999). A group of elements transmits
and receives signals simultaneously. Further improve-
ment of the ultrasound image quality was delivered
by the synthetic transmit aperture methods (STA)
(Cooley, Robinson, 1994; Lockwood et al., 1998).
At each time a single array element (or several ele-
ments comprising transmit sub-aperture) transmits an
ultrasound pulse and all elements receive the echo sig-
nals. The advantage of this approach is that dynamic
focusing can be applied in both transmit and receive
modes.
The common approach to the synthetic aperture

methods is considering the transmit and receive ele-
ments (sub-apertures) as point sources. This allows the
delay-and-sum (DAS) beamforming technique, based
on coherent summing of delayed back-scattered echoes,
to be applied. The round-trip echo delays generated
by a propagating pulse deliver information about the
properties of the media along the path of propagation.
Specifically, the received echo signal at each time in-
stant τ (counted from the emission) and receiver spa-
tial position yields an average (integral) of the reflec-
tivity of the media at all spatial points where this
wavefront reaches at the specified time instant τ/2
(accounting for the round trip). The time duration
and shape of the transmit pulse is usually ignored for
simplicity (δ-function approximation). Assuming the
spherical wavefront radiating from the transmit ele-
ment in the case of SAFT imaging (transmit and re-
ceive elements coincide) the received signal at each in-
stant is an average of media reflectivity over circular
arcs (for STA imaging an elliptical curve path should
be considered instead because transmit and receive el-
ements are separated in space). In other words, each
pixel of a reconstructed 2D image contains average in-
formation about media properties along certain (circu-

lar or elliptical) paths. The scattered signals from the
reflectors (scatterers) located at these paths are spuri-
ously “transferred” into the focus point, and their in-
fluence can not be circumvented. To address this prob-
lem, the ultrasound image reconstruction may be for-
mulated in terms of Radon transform inversion. Specif-
ically, the Radon transform can be defined as a set of
projections (line integrals) of the function describing
certain properties of the object. The problem of de-
termining a function which describes certain proper-
ties of the media from knowledge of its line integrals
arises in widely diverse fields. These include medical
imaging, astronomy, geophysics, optics, electron mi-
croscopy, and material science. The general problem
of unfolding internal structure of an object by observa-
tions of its line integrals is also known as the problem of
reconstruction from projections. For example, in x-ray
computer tomography (CT) the measured data corre-
spond to projections along straight lines of the x-ray
linear attenuation coefficient (under the assumption
that x-ray beam consists of mono-energetic photons).
In the case of ultrasound imaging what is measured is
the back-scattered acoustic wave-field which contains
information about the reflectivity coefficient. As it was
mentioned above, the SAFT recorded data correspond
to the line integrals (projections) along circular arcs
and represent the circular Radon transform (CRT) of
the reflectivity function.
The aim of this paper is to give an overview of

methods related to the Radon transform inversion and
their potential application in ultrasonography in a sim-
ilar way as it was successfully done in the x-ray com-
puter tomography. In particular, the inversion of the
circular Radon transform and its application in ultra-
sound image reconstruction is in the main scope of
the present work. In this case the ultrasound image
reconstruction can be interpreted as inversion of the
CRT represented by recorded back-scattered echo sig-
nals. In this paper two imaging algorithms based on the
CRT inversion methods are presented. Specifically, the
range migration algorithm (RMA) (Cafforio et al.,
1991) and deconvolution algorithm (DA) (Norton,
1980) are discussed in detail. The measurement data
of tissue phantom and custom design wire phantom
obtained using 32-element 5 MHz linear transducer ar-
ray with 0.48 mm element pitch and 0.36 mm element
width and 5 mm height, excited by a 2 sine cycles burst
pulse are used for comparison of images reconstructed
by the RMA, DA and conventional SAFT methods.
The paper is organized as follows. In the next

section a brief review of the SA ultrasound imag-
ing method based on the delay-and-sum approach is
given. In Sec. 3 a general discussion regarding the lin-
ear Radon transform (LRT) is presented. The CRT
inversion algorithms and their relevance to the ultra-
sound imaging are discussed in Sec. 4. Some examples
of ultrasound image reconstruction using measurement



J. Tasinkevych, I. Trots – Circular Radon Transform Inversion Technique. . . 571

synthetic aperture data are shown in Sec. 5. Finally, in
Conclusions a brief summary and possible generaliza-
tion of the discussed methods of CRT inversion are
given.

2. Synthetic Aperture Method

2.1. Synthetic Transmit Aperture algorithm

Regarding the SA methods in ultrasound imag-
ing applications the STA approach is one of the most
promising because it enables dynamic focusing both
in transmit and receive modes. In the STA method
moment of time a single array element acts as a trans-
mitter and all elements receive back-scattered echoes
independently, as schematically shown in Fig. 1. For an
N -element array,N×N recordings are required to syn-
thesize a B-mode image. The depth of field is extended
without any reduction in frame rate. The focusing is
performed by finding the geometric distance from the
transmitting element to the imaging point and back
to the receiving element, as illustrated in Fig. 2. The
data are acquired simultaneously from all directions
over a number of emissions, and the full image can be
reconstructed from these data. When a short pulse (2–
3 sine cycles of operating frequency) is transmitted by

Fig. 1. Transmitting and receiving in the synthetic transmit
aperture method.

Fig. 2. Transmitting and receiving in the synthetic transmit
aperture method.

the element m and the echo signal is received by the
element n, as shown in Fig. 2, the round-trip delay is:

τm,n = τm + τn, (1)

where the pair of indexes (m,n) defines the transmit-
receive combination, 1 ≤ m, n ≤ N . Corresponding
delays for m-th and n-th elements relative to the imag-
ing point (r, θ) are:

τi =
1

c

(

r −
√

r2 + x2i − 2xir sin θ

)

,

i =m,n,

(2)

where xm, xn are the positions of m-th and n-th ele-
ments, respectively, and (r, θ) are the polar coordinates
of the imaging point with respect to the origin placed
in the centre of the transducer’s aperture. In the case
of an N -element array for each point in the image, the
final focused signal can be expressed as follows:

ASTA(r, θ) =

N
∑

n=1

N
∑

m=1

wm,n(r, θ)

· ym,n(2r/c− τm,n(r, θ)), (3)

where ym,n is the received echo signal corresponding
to (m,n) transmit-receive pair; τm,n is the round-trip
delay defined by Eq. (1), evaluated for (m,n) transmit-
receive pair at given imaging point (r, θ); wm,n(r, θ)
are the apodization weights (Tasinkevych et al.,
2013) accounting for the directivities of the trans-
mit and receive elements. They are evaluated for each
transmit-receive combination and each imaging points
using the approach for evaluation of the far-field radi-
ation pattern of a periodic array of hard acoustic baf-
fles which model the transducer array (Tasinkevych,
2010; Tasinkevych, Danicki, 2011):

wm,n(r, θ) = fT (θm)fR(θn),

θi = θi(r, θ), i = m,n.
(4)

In the above equation θi(r, θ), i = m,n are the obser-
vation angles corresponding for the transmit and re-
ceive elements, and fT (θm), fR(θn) are their directivity
functions, respectively. Note, that the angles θm and θn
depend on the spatial position of the focal point (r, θ).
In the case of STA algorithm (Tasinkevych et al.,
2012) the corresponding directivity function of single-
element transmit and receive apertures, which is used
for evaluation of weights wmn, can be calculated in the
far-field approximation using an analytical expression:

f(θ) =
sin (πd/λ sin θ)

πd/λ sin θ
cos θ, (5)

where d is the element width, and λ is the wavelength.
An extra cos θ term in the directivity function, Eq. (5),
is caused by use of the proper interpretation of the
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Rayleigh-Sommerfeld theory (Selfridge et al., 1980).
In the case of MSTA method using several elements in
transmit mode, however, the analytic formula given by
Eq. (5) cannot be used for evaluation of the directivity
function. In this case the apodization weights can be
successfully evaluated using the approach discussed in
detail in (Tasinkevych, Danicki, 2011).

2.2. Synthetic Aperture Focusing Technique

In this Section a special example of the SA method
– the SAFT, is briefly discussed. It can be viewed as
a particular case of the STA method discussed above.
SAFT is a classical synthetic aperture method origi-
nating from the early 1960th when it was used for ter-
rain imaging by aircraft-based radars. In this method
only a single element acts as both transmitter and re-
ceiver on a full array. The active element transmits
a short pulse. The back-scattered echo signals are re-
ceived at the same element and stored in memory for
further processing. The same process repeats at all N
elements, and an N -element array is synthesized, see
Fig. 3. The final synthesized image is obtained by sum-
ming of properly delayed and weighted echoes signal.
The round trip delays are determined by geometric
distance from the active element to imaging point, as

Fig. 3. Transmitting and receiving in synthetic aperture
focusing method.

Fig. 4. Transmitting and receiving in synthetic aperture
focusing method.

illustrated schematically in Fig. 4. Similarly as in the
STA, Eqs. (3), the final focused signal can be written
as follows:

ASAFT(r, θ) =

N
∑

n=1

wn(r, θ)

· yn(2r/c− 2τn(r, θ)), (6)

where the round trip delay 2τn(r, θ) is given by Eqs. (1)
and (2), and the apodization weights wn(r, θ) can be
determined from Eqs. (4), (5) (see. Fig. 4).
The SAFT algorithm implements the concept of

monostatic aperture – the same element in the aper-
ture is used both in transmit and receive modes (in
contrast to the STA which is a bistatic one – differ-
ent elements act as transmitter/receiver pairs). As it
will be explained in Sec. 3, the data acquisition scheme
realized in the SAFT is directly related to the CRT.
Therefore, the image reconstruction may be performed
by CRT inversion. In the next section a brief theoreti-
cal introduction to the Radon transform is given.

3. Fundamentals of Radon Transform

Before proceeding to the CRT fundamentals it
would be helpful to review the basics of the normal
Radon transform which represents a set of integrals
along straight lines (projections) of certain function
describing the object properties. This case will be re-
ferred to as the linear Radon transform (LRT) because
it is usually written using equation for the line, as
explained below. The CRT is a generalization of the
LRT and many of the concepts relevant to the CRT
may be efficiently explained in the context of the well-
established theory of the LRT.

3.1. Linear Radon transform

It was Cormack who in his earlier works
(Cormack, 1963; 1964) started a new age in medi-
cal diagnostics by applying the inverse of the Radon
transform to reconstruct internal images of the body
by non-invasive measurements taken from outside the
one. He stated that by measuring the intensity of x-
ray propagating through the body one obtains the line
integrals (projections) of the absorption function. In
a simplified form, the measured intensity of the x-ray
can be written as follows:

I(θ, ν) = I0 exp



−
B
∫

A

f(x, z)ds



, (7)

and therefore:

− ln

(

I(θ, ν)

I0

)

=

B
∫

A

f(x, z)ds ≡ pθ(ν)

= R[f ](θ, x′), (8)
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where pθ(ν) represents a projection of unknown func-
tion f(x, z) at the point x′ = ν of the x′-axis rotated
by the angle θ; I0 denotes the emitted x-ray intensity.
It should be noted that Eq. (8) holds under assumption
of a monoenergetic (in the general case the x-ray linear
attenuation coefficient is a function of photon energy)
photon beam of an infinitesimal width. The right-hand
side of Eq. (8) precisely constitutes a ray (path) inte-
gral in that case. The set of projections pθ(ν) is equiv-
alent to the Radon transform of the function f(x, z).
Hence, the inverse can be used to reconstruct the orig-
inal absorption function from the measured data.
Typical definition of the normal Radon transform

of the function f(x, z), x, z ∈ R is given as its path
integral along the straight lines (therefore, it is referred
to as linear Radon transform here):

g(θ, x′) ≡ R[f ](θ, x′)

=

∞
∫

−∞

f(x′cos θ−z′sin θ, x′sin θ+z′cos θ)dz′. (9)

Integration in Eq. (9) is performed along the lines par-
allel to the z′-axis in the Cartesian coordinate system
x′0z′, rotated by the angle θ with respect to the initial
coordinate system x0z, see Fig. 5. It is often conve-
nient to rewrite the line integral in Eq. (9) in the form
of a double integral as follows:

g(θ, x′) ≡ R[f ](θ, x′) =

∞
∫∫

−∞

f(x, z)

· δ(x′ − x cos θ − z sin θ)dxdz, (10)

where δ(·) is the Dirac delta function. Figure 5 illus-
trates how the set of line integrals of a certain func-
tion f(x, z) which represents unknown absorption in

Fig. 5. Radon transform of the function f(x, z) is a set of
its path integrals along the straight lines in the rotated

Cartesian coordinate system x′0z′.

the body can be measured by changing the observa-
tion angle θ.
Different approaches of the Radon transform inver-

sion were described in the literature. One of the most
elucidated and usually used for image reconstruction in
CT is a filtered back-projection approach (Opieliński,
Gudra, 2001) which illustrates well the use of the
Radon transform and its application. The method
employs the projection-slice theorem (Ehrenpreis,
2003), stating that the one-dimensional Fourier trans-
form of any projection pθ(x

′) ≡ g(θ, x′) equals the two-
dimensional Fourier transform with respect to the po-
lar coordinates of the unknown function f(x, z):

F (̺ cos θ, ̺ sin θ) = Pθ(̺), (11)

where the two-dimensional Fourier transform is defined
as follows:

F (kx, kz) =

∞
∫∫

−∞

f(x, z)ej(kxx+kzz) dxdz (12)

and the Fourier transform of the projection pθ(x
′) is:

Pθ(̺) =

∞
∫

−∞

pθ(x
′)ej̺x

′

dx′. (13)

To derive the inversion formula one starts from the
inverse two-dimensional Fourier transform of the un-
known function f(x, z):

f(x, z) =

∞
∫∫

−∞

F (kx, kz)e
−j(kxx+kzz) dkx dkz (14)

which in polar coordinates is:

f(x, z) =

2π
∫

0

∞
∫

−∞

̺F (̺ cos θ, ̺ sin θ)

· e−j̺(x cos θ+z sin θ) d̺ dθ. (15)

Using Eqs. (11) and (13), the above Eq. (15) can be
also written in a slightly different form:

f(x, z) =

π
∫

0

∞
∫

−∞

|̺|







∞
∫

−∞

pθ(x
′)ej̺x

′

dx′







· e−j̺(x cos θ+z sin θ) d̺ dθ. (16)

The above inversion algorithm given by Eq. (16) can
be decomposed into two parts. The first step is a high-
pass filtering in the spectral domain:

ĝ(x′, θ)=

∞
∫

−∞

|̺|







∞
∫

−∞

pθ(x
′)ej̺x

′

dx′







e−j̺x
′

d̺, (17)
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followed by integration of the filtered projections
ĝ(x′, θ):

f(x, z) =

π
∫

0

ĝ(x cos θ+z sin θ, θ)dθ =

π
∫

0

∞
∫

−∞

ĝ(x′, θ)

· δ(x′−x cos θ−z sin θ, θ)dx′ dθ. (18)

In the literature Eq. (18) is known as a back-projection
and can be regarded as integration along the sinusoidal
paths of the filtered projections ĝ(x′, θ).

3.2. Circular Radon Transform

The CRT can be defined in a similar manner as the
LRT, Eq. (9) (Agranovsky, Quinto, 1966):

g(x0, r) ≡ Rc[f ](x0, r) =

∫

Lc

f(x, z)dl, (19)

where the path of integration Lc(x0, r) is a circle of
radius r centered at (x0, 0), as illustrated in Fig. 6.
The path integral in Eq. (19) can be rewritten in the
form of a double integral employing the delta function
in a similar manner as in the case of LRT, see Eq. (10):

g(x0, r) ≡ Rc[f ](x0, r) =

∞
∫∫

−∞

f(x, z)

· δ(r −
√

z2 + (x− x0)2)dxdz. (20)

The geometry of CRT shown in Fig. 6 is the most suit-
able for the SAFT imaging method. Specifically, con-
sider a surface of a two-dimensional reflecting medium
z > 0 and the unidirectional source of ultrasound
waves located on the surface at the point (x0, 0) which
emits a short pulse wave into the medium and then

Fig. 6. Circular Radon transform of the function f(x, z)
is a set of its path integrals along the circles of radius r

centered at (x0, 0).

is switched to the receive mode and acts as a detec-
tor of reflected (back-scattered) waves. Assume an in-
finitesimal time duration of the emitted pulse which
means that the source radiates outward expanding cir-
cular wavefronts into the media z > 0. At the time
instant r/c, c being the speed of sound in the media,
the wavefront reaches the points lying along the circle
of radius r and after the further delay of r/c the back-
scattered waves arrive back simultaneously at the de-
tector. Therefore, the output signal is proportional to
the line integral of the reflectivity function f(x, z) over
the semicircular path as shown in Fig. 7a. Moreover,
as the radiated circular wavefront continues to propa-
gate into the media, and as the resulting back-scattered
echo data are continuously recorded as a function of
time, one obtains the family of line integrals of the un-
known reflectivity function f(x, z) over an entire fam-
ily of concentric circles centred at the source location
on the surface (x0, 0). Next, the source is translated
along the boundary (along the straight line if the linear
array transducer is emulated) to the next spatial posi-

a)

b)

Fig. 7. Geometry of the circular Radon transform relevant
to the synthetic aperture focusing imaging method: a) at
a given source location on the surface (x0, 0) the received
signal at each instant of time is proportional to line inte-
grals of f(x, z) along concentric circles centered at (x0, 0);
b) to obtain information about the function f(x, z) over
the entire region of interest the source is moved along the
boundary and transmit/receive process is repeated.
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tion and the transmit-receive process is repeated (see
Fig. 7b). Continuing in this way the two-dimensional
function g(x0, r) defined by Eq. (19) is obtained. The
transmit-receive process described above corresponds
to the SAFT method described in Subsec. 2.2 (see
Fig. 3) and the generated set data described by the
function g(x0, r) is the CRT of the unknown reflectivity
function f(x, z). Before proceeding to the inversion of
the CRT it is worthwhile to remind the main assump-
tions that were made in the CRT formulation relevant
to the SAFT. The speed of sound c and absorption
in the medium are assumed constant over the entire
region of interest (isotropic and non-dispersive propa-
gating media). Moreover, the generated pulse signal is
regarded as a delta function (infinitesimal time dura-
tion). This allows a recorded signal at a given time in-
stant τ to be considered as originating from the reflect-
ing objects lying along the semicircular path of the ra-
dius r = cτ/2. Finally, the linear dependence between
the object function f(x, z), which is related to the char-
acteristics of the reconstructed object, and measured
back-scattered field g(x0, r) is assumed. This approx-
imation, usually applied in the classical image recon-
struction problems, means that the multiple-scattering
effect in the media is ignored. It always holds in the
case of soft biological tissues (and the ultrasound phan-
tom studied in Sec. 5). In the above formulation the
image reconstruction problem is obtained by solving
the integral equation given by Eq. (19) or its modi-
fied version Eq. (20), for unknown reflectivity function
f(x, z) in terms of physically recorded data g(x0, r).
This corresponds to the CRT inversion. In the SA ul-
trasound imaging methods the transducer is usually
located on the boundary surface of the acoustic me-
dia. Therefore, it is usually reasonable to assume that
f(x, z) = 0 for z < 0 (see Fig. 7).

4. Methods for Inverting the Circular Radon

Transform

In this section two examples of CRT inversion algo-
rithms are discussed which are the most relevant to the
image reconstruction problem employing the SAFT
approach. Both these methods are used in Sec. 5 to
obtain the phantom images. Specifically, the range mi-
gration algorithm (RMA), considered in Subsec. 4.1, is
carried out in the frequency-wavenumber domain thus
bringing the benefit of computational efficiency result-
ing from the use of the fast Fourier transform (FFT)
algorithm. It was first introduced as a seismic data
processing scheme (Cafforio et al., 1991). Later it
was extensively used in the synthetic aperture radars
(Milman, 1993), where it is known as the ω−k mi-
gration method. Nowadays it is usually used in geo-
physics for seismic signal processing, in synthetic aper-
ture radar signal processing, in imaging lidar systems,

etc. In Subsec. 4.2 a deconvolution algorithm (DA) of
the CRT inversion is discussed (Norton, 1980). The
method provides a closed-form analytical solution of
the ultrasound image reconstruction problem express-
ing the reflectivity function in terms of the measured
back-scattered field. Specifically, the CRT inversion is
reduced to two-dimensional convolution of the mea-
sured data with certain kernel function given by an ex-
plicit formula. The DA method was chosen because it
illustrates well the theoretical foundations of the CRT
inverse derivation in the context of the SAFT ultra-
sound imaging.

4.1. Range Migration Algorithm

The RMA is discussed in this Section following Mil-
man (Milman, 1993). It is convenient to start devel-
opment of the reconstruction algorithm by rewriting
the direct CRT, Eq. (19) as follows:

g(x0, r) =

∫∫

(x−x0)2+z2=r2

f(x, z)dxdz, (21)

where the same notation as in Fig. 6 is assumed. To
simplify integration in Eq. (21), the following variable
transformation can be applied:

x = r tanhψ + x0, z = r sechψ, (22)

where the parameter ψ ∈ R is defined by the following
expression:

sinhψ =
x− x0
z

. (23)

Eq. (23) together with Eq. (22) yield the parametric
representation (z sinhψ+ x, z coshψ) of the conjugate
hyperbola in the (x0, r) plane:

− (x− x0)
2

z2
+
r2

z2
= 1, (24)

which is the rearranged expression of the circle path
integration in Eq. (21). In new variables, defined by
Eq. (22), the CRT defined by Eq. (21) can be trans-
formed as follows (note, the Jacobian of the transfor-
mation is −r sechψ):

g(x0, r)=

∞
∫

−∞

f(r tanhψ+x0, r sechψ)r sechψ dψ, (25)

Further transformation of Eq. (25) is performed in the
spectral domain. To this end the ‘range-scaling’ of the
recorded data is done first:

g0(x0, r) =
g(x0, r)

r
. (26)
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Then, the two-dimensional Fourier transform of
g0(x0, r) is evaluated:

G0(k, v) ≡ F [g0](k, v)

=

∞
∫∫∫

−∞

{f(r tanhψ + x0, r sechψ)r sechψ dψ}

· ej(kx0+vr) dx0 dr, (27)

where (k, v) is a pair of spectral variables correspond-
ing to the (x0, r). Noting that (see Eq. (22)):

x0 = x− z sinhψ, r = z coshψ (28)

and
dx0 = dx, dr sechψ = dz, (29)

integration in Eq. (27) can be performed in terms of
(x, z) spatial variables, as follows:

G0(k, v) =

∞
∫∫∫

−∞

f(x, z)ej(vz coshψ−kz sinhψ)

· ejkx dψ dxdz. (30)

Applying the Stolt transform (Stolt, 1978) in the
Fourier domain: k2z = v2 − k2 and introducing a new
variable ϕ as follows:

coshϕ =
v

kz
, sinhϕ =

k

kz
, ϕ ∈ R, (31)

the two-dimensional Fourier transform, Eq. (30), af-
ter a straightforward rearrangement of terms can be
rewritten as:

G0(k, kz) =

∞
∫∫∫

−∞

f(x, z)ejkzz cosh(ψ−ϕ)

· ejkx dψ dxdz. (32)

Using the integral representation of the Hankel func-
tions (Lebedev, 1957a):

H
(1)
0 (z) =

1

jπ

∞
∫

−∞

ejz cosh β dβ,

H
(2)
0 (z) = − 1

jπ

∞
∫

−∞

e−jz cosh β dβ,

(33)

in Eq. (32) one obtains:

G0(k, kz) = jπ

∞
∫∫

−∞

H
(1)
0 (kzz)f(x, z)e

jkx dxdz, (34)

where H
(1)
0 is the Hankel function of the first kind of

order 0. Taking into account the definition of integral

transform using the Hankel function, Eq. (33), as a ker-
nel (Milman, 1993; Redding, Newsam, 2001):

F (s) =

∞
∫

−∞

H
(1)
0 (sr)f(r)r dr,

f(r) =

∞
∫

−∞

H
(2)
0 (sr)F (s)s ds,

(35)

it can be shown, that Eq. (34) is equivalent to the
Fourier transform with respect to the x0 spatial vari-
able and the Hankel transform of order zero with re-
spect to z of certain function f0(x, z) = f(x, z)/z.
Therefore, the inverse of the above two-dimensional
Hankel-Fourier transform yields:

f0(x, z) ≡ f(x, z)

z
=

∞
∫∫

−∞

H
(2)
0 (kzz)G0(k, kz)

· e−jkxkz dkz dk. (36)

Using the first term of asymptotic expansion of the

Hankel function H
(2)
0 (Lebedev, 1957b):

H
(2)
0 (z) ≈

√

2

πz
e−j(z−π/4), (37)

the stationary phase approximation of Eq. (36) can be
obtained:

f(x, z) ≈ C
√
z

∞
∫∫

−∞

G0(k, kz)e
−j(kx+kzz)

·
√

kz dkz dk, (38)

where C = j(1 + j)
√
π. Equation (38) yields the un-

known reflectivity function f(x, z) as the inverse two-
dimensional Fourier transform of the scaled spectrum√
kzG0(k, kz). The RMA can be summarized as fol-
lows:

1. Compute the two-dimensional Fourier transform
G0(k, v) of the ‘range-scaled’ measured data
g0(x0, r) = g(x0, r)/r.

2. Apply the Stolt transform k2z = v2 − k2 in the
spectral domain by interpolation and resampling
the variable v to obtain G0(k, kz).

3. Compute the inverse two-dimensional Fourier
transform of the scaled spectrum

√
kzG0(k, kz).

4. Rescale the result of the transformation by factor√
z to obtain the unknown reflectivity function

f(x, z).

4.2. Deconvolution Algorithm

The DA method is discussed below following Nor-
ton (Norton, 1980). By manipulating the Eq. (20)



J. Tasinkevych, I. Trots – Circular Radon Transform Inversion Technique. . . 577

through a proper change of variables, a closed-
form CRT inversion relation in the form of a two-
dimensional convolution integral can be derived.
A brief development of the inverse CRT is examined
below. As shown in (Norton, 1980) using the follow-
ing relation:

δ(r − a) = 2rδ(r2 − a2). (39)

Equation (20) after transformation of the δ-function
can be rewritten as:

g(x0, r)

r
=2

∞
∫∫

−∞

f(x, z)δ(r2−z2−(x−x0)2)dxdz. (40)

Next, introducing new variables:

̺ = r2, ξ = z2

the integral in Eq. (40) can be transformed as follows:

G(x0, ̺) =

∞
∫∫

−∞

F (x, ξ)δ(̺−ξ−(x−x0)2)dxdξ, (41)

where the new functions G(x0, ̺) and F (x, ξ) were in-
troduced to shorten the notations:

G(x0, ̺) =
g(x0,

√
̺)

√
̺

, F (x, ξ) =
f(x,

√
ξ)√

ξ
. (42)

Equation (41) is a two-dimensional convolution inte-
gral which can be also conveniently written using the
symbolic ‘∗∗’ notation:

G(x0, ̺) = F (x0, ̺) ∗ ∗δ(̺− x20). (43)

Further, the function F (x0, ̺) can be expressed as a
two-dimensional convolution:

F (x0, ̺) = G(x0, ̺) ∗ ∗R(x0, ̺), (44)

where the kernel function R(x0, ̺) is unknown and has
to be determined. Let G(x0, ν) and F (x0, ν) denote
the Fourier transforms of the functions G(x0, ̺) and
F (x0, ̺) with respect to the ̺. Then, taking into ac-
count that the Fourier transform of the δ-function in
Eq. (43) is an exponential function in the spectral do-
main, Eq. (43) can be rewritten as:

G(x0, ν) = F (x0, ν) ∗ ejνx
2
0 , (45)

where the convolution is evaluated with respect to
the x0. To solve Eq. (45) one first evaluates the

G(x0, ν) ∗ e−jνx
2
0 , which, using the δ-function relation

(Gel’fand, Shilov, 1964):

ejνx
2
0 ∗ e−jνx2

0 = δ(x0ν/π) =
πδ(x0)

|ν| +
πδ(ν)

|x0|

can be rewritten in a symbolic notation as follows:

G(x0, ν) ∗ e−jνx
2
0 =

πF (x0, ν)

|ν|

+ πδ(ν)

(

F (x0, ν) ∗
1

|x0|

)

. (46)

From the above equation, after a rearrangement of the
terms, the spectrum F (x0, ν) can be determined:

F (x0, ν) =
1

π
G(x0, ν) ∗

(

|ν|e−jνx2
0

)

(47)

(the second term in Eq. (46) multiplied by |ν| van-
ishes). It should be noted that the convolution in
Eq. (47) is with respect to the x0 variable. Comparison
of Eq. (47) and Eq. (44) allows the Fourier transform
of the function R(x0, ̺) with respect to the ̺ variable
to be written in the form:

R(x0, ν) = π|ν|e−jνx2
0 . (48)

Inverse Fourier transform of Eq. (48) yields the un-
known function R(x0, ̺) and allows the F (x0, ̺) to
be determined from Eq. (44), which solves the prob-
lem of CRT inversion. Usually, it can be assumed that
the physical data are band limited in the sense that
G(x0, ν) ≈ 0 for ν > νc, where νc is a certain upper
limit of the spectrum G(x0, ν). In this case, the Fourier
transform G(x0, ν) can be written as:

R(x0, ν) = π|ν|rect(ν/2νc)e−jνx
2
0 , (49)

where the rect(s) = 1 for |s| < 1/2 and 0 otherwise. It
can be shown that the closed-form analytical expres-
sion can be obtained for the inverse Fourier transform
of Eq. (49) as follows (Norton, 1980):

R(x0, ̺) = πνc
{

2sinc
(

2νc(̺+ x20)
)

− sinc2
(

νc(̺+ x20)
)}

, (50)

where sincu = sin(πu)/(πu) is the normalized sinc
function. On substitution of Eq. (50) into Eq. (42) and
recalling that ̺ = r2 and ξ = z2, the expression for
the reflectivity function f(x, z) can be written as the
two-dimensional convolution:

f(x, z) = πzν2c

∞
∫∫

−∞

g(x0, r)

·
{

2sinc
(

2νc(z
2−r2+(x−x0)2)

)

− sinc2
(

νc(z
2−r2+(x−x0)2)

)}

dr dx0. (51)

Therefore, the DA method discussed above can be
summarized as follows:

1. Apply the change of variable ̺ = r2 and range
scale the measured data:

G(x0, ̺) = g0(x0,
√
̺)/

√
̺.
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2. Compute the ’kernel’ R0(x0, ̺) using Eq. (50).

3. Compute the two-dimensional convolution:

F (x, ξ) =

∞
∫∫

−∞

G(x0, ̺)R0(x− x0, ξ − ̺)dx0 d̺.

4. Perform the change of variable and rescale the re-
sult by factor z to obtain the unknown reflectivity
function f(x, z) = zF (x, z2).

Usually, the two-dimensional convolution in step 3 is
computed using the convolution theorem applied to
the two-dimensional Fourier transforms ofG(x0, ̺) and
R0(x0, ̺).

5. Numerical Results and Discussion

In this Section the CRT inversion algorithms, dis-
cussed in the previous Section (the RMA and DA
methods), are implemented and tested. Specifically,
the numerical examples of image reconstruction of
experimentally determined ultrasound phantom data
(Dansk Fantom Service, model 525 (Phantom, 525))
are illustrated in Figs. 8 and 9. All images are displayed
in logarithmic scale over 30 dB dynamic range which
approximately corresponds to the level of the noise-
like spatial fluctuations of the recorded back-scattered
echoes (as illustrated in Fig. 11 for the depths exceed-
ing 40 mm). A 32-element 5 MHz linear transducer ar-
ray with 0.48 mm element pitch and 0.36 mm element
width and 5 mm height, excited by 2 sine cycles burst
pulse, was used in the measurements. The RF data
collected on each of 32 receive channels were digitized
at a 12-bit resolution and 50 MHz temporal sampling

Fig. 8. Image reconstruction of the measurement synthetic
aperture data for the ultrasound phantom (Dansk Fantom
Service, model 525) and 5 MHz 32-element transducer ar-
ray with 0.48 mm pitch: a) deconvolution method, b) range
migration method, c) conventional synthetic aperture fo-
cusing method. All images are displayed over 30 dB dy-

namic range.

Fig. 9. Image reconstruction of the measurement synthetic
aperture data for the ultrasound phantom (Dansk Fantom
Service, model 525) and 5 MHz 32-element transducer ar-
ray with 0.48 mm pitch: a) deconvolution method, b) range
migration method, c) conventional synthetic aperture fo-
cusing method. All images are displayed over 30 dB dy-

namic range.

rate and transferred to a PC for further off-line pro-
cessing in Matlabr in order to test the image recon-
struction algorithms. The processing time in Matlabr

7.11 on a PC running Windows 7 x64 with Athlon 64
X2 Dual Core 5600+, core speed 2.8 MHz, was about
0.88 s for the SAFT, 0.69 s for DA, and 0.61 s for the
RMA method.
The two-dimensional direct and inverse Fourier

transforms in Eq. (27) and Eq. (38) in the RMA ap-
proach, as well as the two-dimensional convolution (us-
ing convolution theorem for Fourier transform) in the
DA method, Eq. (44), were evaluated by means of
the FFT algorithm. In the numerical examples shown
below the FFT2 Matlabr routine was used to this
end. The variable transforms were required in both
the RMA (range-scaling, Eq. (26), and Stolt transform,
Eq. (31)) and DA methods (geometrical distortion of
measured data and rescaling of a reconstructed func-
tion, Eq. (41)). This usually means that some inter-
polation scheme has to be implemented to evaluate
the corresponding functions on a uniformly sampled
rectangular grids, as required by the FFT2 routine.
In the numerical examples shown in this Section the
linear interpolation was employed using the Matlabr

INTERP2 routine.
By visual assessment of the image reconstruction

results illustrated in Fig. 8 and Fig. 9 one can conclude
that DA approach yields much worse lateral resolution
in comparison with the RMA and SAFT methods. This
is further illustrated in Fig. 10 where the resolution
capabilities of different approaches are indicated.
Specifically, in Fig. 10a and 10b the lateral cross-

sections of the images shown in Fig. 9 at the depths of
12 and 32 mm obtained using the range migration (the
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a)

b)

Fig. 10. Normalized lateral cross-sections of the image
shown in Fig. 9 for reflectors at different depths: a) 12 mm,
b) 32 mm; the green line – demonstrates shows corresponds
to the range migration method, the blue line – demon-
strates shows corresponds to the synthetic aperture focus-
ing method, the red line – demonstrates shows corresponds

to the deconvolution method.

green line), the synthetic aperture (the blue line) and
the deconvolution (the red line) methods can be found.
As illustrated in Fig. 10, for the RMA approach the lat-
eral resolution is slightly decreased in comparison with
the one obtained by using the SAFT. It is quantified
here by the full width at half maximum (FWHM). Ac-
cordingly, at the axial distance of 12 and 32 mm for the
RMA, the lateral resolution is 0.6943 and 0.9153 mm,
respectively. The corresponding data for the SAFT are
0.6833 and 0.9014 mm, which represent 1.5 and 1.6%
increase in the lateral resolution at the above identified
depths. In the case of the DAmethod the lateral resolu-
tion at the depth of 12 and 32 mm is equal to 2.33 and
2.26 mm, respectively. These represent the decrease by
the factor of 3.4 and 2.5 in comparison with the SAFT
and by the factor of 3.36 and 2.47 in comparison with
the RMA approach at the above depths.

In Fig. 11 the normalized axial cross-sections of the
central column of reflectors shown in Fig. 9 in a log-
arithmic scale are illustrated. The scattered echo am-
plitudes at the depth of 22 and 32 mm obtained us-
ing the SAFT method (the blue line) are decreased by
−8.76 and −15.3 dB in comparison with the reference
depth 12 mm. The corresponding data for the RMA
(the green line) are −6.17 and −14.27 dB, which re-
veals a slight improvement of visualization depth for
the RMA as compared to the SAFT. For the DA ap-
proach (the red line) the scattered echo amplitudes at
the specified depths are −5.17 and −17.7 dB, which
indicates the fastest decrease of the scattered ampli-
tude with depth. The already mentioned increase in
the visualization depth for the RMA method is fur-
ther illustrated in Fig. 12 where a detailed view of the
axial cross-sections (central column) showing the max-
ima of the scattered echo signals as a function of depth
are presented.

Fig. 11. Normalized axial cross-section (in logarithmic
scale) of the central column of reflectors shown in Fig. 9; the
green line – demonstrates shows corresponds to the range
migration method, the blue line – demonstrates shows cor-
responds to the synthetic aperture focusing method, the
red line – demonstrates shows corresponds to the deconvo-

lution method.

As shown in Figs. 12a and 12b in comparison with
the SAFT, the scattered echo amplitudes at the depth
of 22 and 32 mm obtained using the RMA algorithm
are 1.36 and 1.12 times larger, respectively. On the
other hand, at the depth of 22 mm the DA method
yields increase of the scattered amplitude by the fac-
tor of 1.52 as compared to the SAFT and by the
factor of 1.12 as compared to the RMA. But at the
depth of 32 mm the corresponding amplitude is 1.3
and 1.46 times smaller in comparison with the SAFT
and RMA approaches, respectively. This indicates the
fastest scattered amplitude decrease and the lowest vi-
sualization depth achievable by the DA method.
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a)

b)

Fig. 12. Normalized axial cross-sections of the image line
coinciding with the central column of point reflectors (see
Fig. 9) at different depths: a) 22 mm, b) 32 mm; the green
line – demonstrates shows corresponds to the range mi-
gration method, the blue line – demonstrates shows corre-
sponds to the synthetic aperture focusing method, the red
line – demonstrates shows corresponds to the deconvolution

method.

6. Conclusions

In this paper the ultrasound imaging techniques
based on the CRT inversion were presented. The image
reconstruction problem discussed here is based on the
assumption that a short ultrasound pulse is transmit-
ted into the acoustic media and back-scattered echoes
are received by omnidirectional element. Moreover, the
spatial locations of the source and detector coincide.
In this case the measured data yield the line integrals
along circular arcs of an acoustic reflectivity function.
The reconstruction problem was formulated as a linear
integral relation between the measured data g(x0, r)
and unknown reflectivity f(x, z). Two different meth-
ods of the CRT inversion were considered: the range-
migration algorithm by Milman (1993) and deconvo-

lution algorithm by Norton (1980) and compared to
the standard monostatic SA method – the SAFT.
In the RMA method the recorded back-scattered

echo signals g(x0, r) were first range-scaled using
Eq. (26) yielding g0(x0, ̺). Then the two-dimensional
Fourier transform G0(k, v) was evaluated using the
FFT algorithm. The change of variable k2z = v2 − k2

in the Fourier domain allowed the unknown reflec-
tivity function f(x, z) to be obtained from the rela-
tion Eq. (38) which was then rescaled by a

√
z two-

dimensional inverse Fourier transform of the function√
kzG0(k, kz). In the DA approach the measurement
data g(x0, r) were first geometrically distorted using
Eq. (41) yielding G(x0, ̺). Then the function F (x, ξ)
was obtained from the two-dimensional convolution re-
lation Eq. (44), which was evaluated using the convolu-
tion theorem for the Fourier transform in the numerical
examples presented in Sec. 5. Finally, the reconstruc-
tion of the reflectivity function f(x, z) was obtained
from F (x0, ξ) through Eq. (41).
In the considered algorithms the main difficulties

were introduced by the variable transformation in the
spatial and spectral domains. The range-scaling of the
measured data g(x0, r) (normally sampled in uniform
increments in the radial direction) was done using IN-
TERP2 routine in Matlabr to evaluate g0(x0, ̺) in the
RMA using Eq. (26) and G(x0, ̺) in the case of DA
from Eq. (41) on a uniform grid. Moreover, in the case
of the RMA approach the same routine was called for
interpolation of the uniformly sampled spectrum func-
tionG0(k, v) in the Fourier domain to obtain the values
of the function G0(k, kz) at the nodes of the rectangu-
lar grid, so that the inverse FFT algorithm could be
applied in Eq. (38).
It was demonstrated, that the images of ultrasound

phantom (Phantom, 525) obtained using the RMA
as well as the SAFT methods provided a consider-
able improvement of the lateral resolution and a slight
improvement of the visualization depth in compari-
son with the DA method. Specifically, at the depth
of 12 and 32 mm the increase of the lateral resolu-
tion by the factor of 3.4 and 2.5 was demonstrated
for the conventional SAFT and by the factor of 3.36
and 2.47 for the RMA. Also, the visualization depth
was lower for the DA method in comparison with the
RMA and the SAFT. Specifically, the fastest decrease
of the scattered echo amplitude as a function of depth
was demonstrated. More specifically, at the depth of
32 mm the scattered amplitude was 1.3 times larger for
the SAFT and 1.46 times larger for the RMA methods
in comparison with the DA.
It was also shown that using the RMA algorithm

a slight increase of the visualization depth can be
achieved, as compared to the SAFT method. Specif-
ically, the scattered echo amplitude at the depth of 22
and 32 mm was 1.36 and 1.12 times larger for the im-
ages obtained using the RMA method in comparison
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with the SAFT. Moreover, the RMA ran about 30%
faster than the SAFT and about 12% faster than the
DA method. Concurrently, however, a slight degrada-
tion of the lateral resolution was observed; namely, at
the depth of 12 and 32 mm the SAFT method pro-
vided the lateral resolutions, which was 1.5 and 1.6%
better, respectively, than the one achieved with the
RMA method.
The image reconstruction algorithms based on the

CRT inversion considered in this paper correspond
to the monostatic SA imaging method – the SAFT.
To enable them to be applied in clinical applications
for real-time ultrasound imaging their further develop-
ment is required to obtain algorithms of reconstructing
the unknown reflectivity function given by its line in-
tegrals over elliptical paths. This corresponds to the
case of bistatic transmit-receive scheme appropriate
to the STA and MSTA ultrasound imaging methods
(Tasinkevych et al., 2012; 2013), which seems to be
promising to be employed in clinical examinations. In
this case the ultrasound image reconstruction problem
can be formulated in terms of the elliptic Radon trans-
form inversion (ERT) (Moon, 2014). The discussed in
this paper RMA method, which involves the Hankel
transform seems to be the most suitable to be general-
ized for development of the ERT inversion algorithm.
This is a subject for further research.
Finally, it should be outlined that the derivation

of the two-dimensional solution can be straightfor-
wardly generalized to three dimensions. In this case,
the line integrals over circles become surface integrals
over spheres, the double convolutions become triple
convolutions, and the data recording aperture be-
comes a two-dimensional matrix transducer (Danicki,
Tasinkevych, 2012) instead of a linear array trans-
ducer.
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