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Abstract

Background: Explaining how the brain processing is so fast remains an open problem (van Hemmen JL, Sejnowski T.,
2004). Thus, the analysis of neural transmission (Shannon CE, Weaver W., 1963) processes basically focuses on
searching for effective encoding and decoding schemes. According to the Shannon fundamental theorem, mutual
information plays a crucial role in characterizing the efficiency of communication channels. It is well known that this
efficiency is determined by the channel capacity that is already the maximal mutual information between input and
output signals. On the other hand, intuitively speaking, when input and output signals are more correlated, the
transmission should be more efficient. A natural question arises about the relation between mutual information and
correlation. We analyze the relation between these quantities using the binary representation of signals, which is the
most common approach taken in studying neuronal processes of the brain.

Results: We present binary communication channels for which mutual information and correlation coefficients
behave differently both quantitatively and qualitatively. Despite this difference in behavior, we show that the
noncorrelation of binary signals implies their independence, in contrast to the case for general types of signals.

Conclusions: Our research shows that the mutual information cannot be replaced by sheer correlations. Our results
indicate that neuronal encoding has more complicated nature which cannot be captured by straightforward
correlations between input and output signals once the mutual information takes into account the structure and
patterns of the signals.

Keywords: Shannon information, Communication channel, Entropy, Mutual information, Correlation, Neuronal
encoding

Background
Huge effort has been undertaken to analyze neuronal
coding, its high efficiency and mechanisms governing
them [1]. Claude Shannon published his famous paper on
communication theory in 1948 [2,3]. In that paper, he for-
mulated in a rigorousmathematical way intuitive concepts
concerning the transmission of information in commu-
nication channels. The occurrences of inputs transmitted
via channel and output symbols are described by random
variables X (input) and Y (output). An actual important
task is determination of an efficient decoding scheme;
i.e., a procedure that allows a decision to be made about
the sequence (message) input to the channel from the
output sequence of symbols. This is the essence of the
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fundamental Shannon theorem, in which a crucial role
is played by the capacity of the channel that is given
by the maximum of mutual information over all possi-
ble probability distributions of input random variables.
The theorem states that the efficiency of a channel is
better when the mutual information is higher [4,5]. Ana-
lyzing a relation between data, in particular the input and
response of any system, experimentalists apply the most
natural tools; i.e., different types of correlations [6-14].
Correlation analysis has been used to infer the connec-
tivity between signals. The standard correlation measure
is the Pearson correlation coefficient commonly exploited
in data analysis [15,16]. However, there are a number of
correlation-like coefficients dedicated to specific biologi-
cal and experimental phenomena [6]. Therefore, besides
the Pearson correlation coefficient, in this paper, we also
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consider the correlation coefficient based on the spike
train that is strongly related to the firing activity of neu-
rons transmitting information. A natural question arises
about the role of correlation coefficients in the description
of communication channels, especially in effective decod-
ing schemes [17,18]. Recently, interesting result has been
shown [19], analytically and numerically, concerning the
effects of correlations between neurons in encoding pop-
ulation. It turned out that decorrelation does not imply an
increase in information. In [20] it was observed that the
spike trains of retinal gangolin cells were indeed decore-
lated in comparison with the visual input. The authors
conjecture that this decorrelation would enhance coding
efficiency in optic nerve fibers of limited capacity. We
begin a conversation about whether mutual information
can be replaced in some sense by a correlation coefficient.
In this paper we consider binary communication chan-
nels. It seems that the straightforward idea holds true:
there is a high correlation between output and input; i.e.,
in the language of neuroscience, by observing a spike in
the output we guess with high probability that there is
also a spike in the input. This finding suggests that the
mutual information and correlation coefficients behave
in a similar way. In fact, we show that this is not always
true and that it often happens that the mutual information
and correlation coefficients behave in completely different
ways.

Methods
The communication channel is a device that acts on the
input to produce the output [3,17,21]. In mathemati-
cal language, the communication channel is defined as a
matrix of conditional probabilities linking the transition
between input and output symbols possibly depending on
the internal structure of the channel. In neuronal commu-
nication systems of the brain, information is transmitted
by means of a small electric current and the timing of
the action potential (mV), also known in literature as a
spike train [1], plays a crucial role. Spike trains can be
encoded in many ways. The most common encoding pro-
posed in the literature is binary encoding, which is the
most effective and natural method [11,22-26]. It is phys-
ically justified that spike trains as being observed, are
detected with some limited time resolution �τ , so that in
each time slice (bin) a spike is either present or absent. If
we think of a spike as representing a "1" and no spike as
representing a “0”, then, if we look at some time interval
of length T , each possible spike train is equivalent to T

�τ

digit binary number. In [26] it was shown that transient
responses in auditory cortex can be described as a binary
process, rather than as a highly variable Poisson process.
Thus, in this paper, we analyze binary information sources
and binary channels [25]. Such channels are described by
a 2 × 2 matrix:

C =
[
p0|0 p0|1
p1|0 p1|1

]
, (1)

where

p0|0 + p1|0 = 1 and p0|1 + p1|1 = 1 ,
p0|0, p0|1, p1|0, p1|1 ≥ 0 .

Symbol pj|i denotes the conditional probability of tran-
sition from state i to state j, where i = 0, 1 and j =
0, 1. Observe, that i and j are states of “different” neu-
rons. Input symbols 0 and 1 (coming from the information
source governed, in fact, by a random variable X) arrive
with probabilities pX0 and pX1 , respectively.
Having the matrix C, one can find a relation between

these random variables; i.e., one can find by applying the
standard formula p(Y = j|X = i) := p(X=i∧Y=j)

p(X=i) joint
probability matrixM(2x2), which in general is of the form

M =
[
p00 p01
p10 p11

]
, (2)

where

pji = p(X = i ∧ Y = j) for i, j = 0, 1 ,
p00 + p01 + p10 + p11 = 1 ,

p00, p01, p10, p11 ≥ 0 .

Using this notation, the probability distributions pXi and
pYj of the random variables X and Y are given by

pXi := p(X = i) = p0i + p1i for i = 0, 1 , (3)
pYj := p(Y = j) = pj0 + pj1 for j = 0, 1 .

The quantities pX1 and pY1 can be interpreted as the fir-
ing rates of the input and output spike trains. We will
use these probability distributions to calculate the mutual
information (between input and output signals), which is
expressed in terms of the entropies of the input itself, out-
put itself and the joint probability of input and output
(4). In the following, we consider two random variables
X (input signal to the channel) and Y (output from the
channel) both assuming only two values 0 and 1, for-
mally both defined on the same probability space. It is well
known that the correlation coefficient for any indepen-
dent random variables X and Y is zero [14], but in general
it is not true that ρ(X,Y ) = 0 implies independence of
random variables. However, for our specific random vari-
ables X and Y , which are of binary type, most common in
communication systems, we show the equivalence of inde-
pendence and noncorrelation (see Appendix). The basic
idea of introducing the concept of a mutual information
is to determine the reduction of uncertainty (measured
by entropy) of random variable X provided that we know
the values of discrete random variable Y . The mutual
information (MI) is defined as
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MI(X,Y ) := H(Y )−H(Y |X) = H(X)+H(Y )−H(X,Y ) ,
(4)

where H(X) is the entropy of X, H(Y ) is the entropy of Y ,
H(X,Y ) is the joint entropy of X and Y , andH(X|Y ) is the
conditional entropy [4,17,21,27-29]. These entropies are
defined as

H(X) := −�i∈Isp(X = i) log p(X = i) , (5)
H(Y ) := −�j∈Osp(Y = j) log p(Y = j) ,

H(X,Y ) := −�i∈Is�j∈Osp(X= i ∧ Y = j) log p(X = i ∧ Y = j) ,
H(Y |X) :=−�i∈Isp(X = i)H(Y |X = i) ,

(6)

where

H(Y |X = i) := −�j∈Osp(Y = j|X= i) log p(Y = j|X = i) ,
(7)

Is and Os are, in general, sets of input and output sym-
bols, p(X = i) and p(Y = j) are probability distributions
of random variables X and Y , and p(X = i ∧ Y = j) is
the joint probability distribution of X and Y . Estimation
of mutual information requires knowledge of the prob-
ability distributions, which may be easily estimated for
two-dimensional binary distributions, but in real applica-
tions it possesses multiple problems [30]. Since, in prac-
tice, the knowledge about probability distributions is often
restricted, more advanced tools must be applied, such as
effective entropy estimators [24,30-33].
The relative mutual information RMI(X,Y ) [34]

between random variables X and Y is defined as the ratio
of MI(X,Y ) and the average of information transmitted
by variables X and Y :

RMI(X,Y ) := H(X) + H(Y ) − H(X,Y )

[H(X) + H(Y )] /2
. (8)

RMI(X,Y ) measures the reduction in uncertainty of X,
provided we have knowledge about the realization of Y ,
relative to the average uncertainty of X and Y .
It holds true that [34]

1. 0 ≤ RMI(X,Y ) ≤ 1;
2. RMI(X,Y ) = 0 if and only if X and Y are

independent;
3. RMI(X,Y ) = 1 if and only if there exists a

deterministic relation between X and Y .

Adopting the notation (2, 3), the relative mutual infor-
mation RMI can be expressed as

RMI(X,Y ) = −�1
i=0p

X
i log pXi − �1

j=0p
Y
j log pYj + �

i,j=1
i,j=0pji log pji[

−�1
i=0p

X
i log pXi − �1

j=0p
Y
j log pYj

]
/2

.

(9)

The standard definition of the Pearson correlation coef-
ficient ρ(X,Y ) of random variables X and Y is

ρ(X,Y ) := E[ (X − EX) · (Y − EY )]√
V (X) · √

V (Y )

= E(X · Y ) − EX · EY√
E[ (X − EX)2]

√
E[ (Y − EY )2]

,
(10)

where E is the average over the ensemble of elementary
events, and V (X) and V (Y ) are the variations of X and Y .
Adopting the communication channels notation, we get

ρ(X,Y )= p11 − (p01 + p11) · (p10 + p11)√
(p01+p11)−(p01+p11)2

√
(p10+p11)−(p10+p11)2

= p11 − pX1 p
Y
1√

pX0 p
X
1 ·

√
pY0 p

Y
1

.

(11)

It follows that the Pearson correlation coefficient
ρ(X,Y ) is by no means a general measure of dependence
between two random variables X and Y . ρ(X,Y ) is con-
nected with the linear dependence of X and Y . That is, the
well-known theorem [15] states that the value of this coef-
ficient is always between -1 and 1 and assumes -1 or 1 if
and only if there exists a linear relation between X and Y .
The essence of correlation, when we describe simul-

taneously the input to and the output from neurons,
may be expressed as the difference in the probabilities of
coincident and independent spiking related to indepen-
dent spiking. To realize this idea, we use a quantitative
neuroscience spike-train correlation (NSTC) coefficient:

NSTC(X,Y ) := p11−pX1 · pY1
pX1 · pY1

= p11− (p01 + p11) · (p10+ p11)
(p01 + p11) · (p10 + p11)

.

(12)

Such a correlation coefficient with this normalization
seems to be more natural than the Pearson coefficient
in neuroscience. A similar idea was developed in [35]
where raw-cross-correlation of simultaneous spike trains
was referred to the square root of the product of firing
rates. Moreover, it turns out that NSTC coefficient has an
important property: i.e., once we know the firing rates pX1
and pY1 of individual neurons and the coefficient, we can
determine the joint probabilities of firing:

p00 = (
1 − pX1

) · (
1 − pY1

) + NSTC · pX1 · pY1 ,
p01 = (

1 − pY1
) · pX1 − NSTC · pX1 · pY1 ,

p10 = pY1 · (
1 − pX1

) − NSTC · pX1 · pY1 ,
p11 = pX1 · pY1 + NSTC · pX1 · pY1 .

(13)

Since p11 ≥ 0, by formula (12) we have the lower
bound NSTC ≥ −1. The upper bound is unlimited for
the general class (2) of joint probabilities. In the important
special case when the communication channel is effective
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enough, i.e. p11 is large enough so the input spikes with
high probability pass through the channel, one has the
following practical upper bound of NSTC < 1

p11 − 1.
We present realizations of a few communication chan-

nels that show that the relative mutual information, the
Pearson correlation coefficient and neuroscience spike-
train correlation coefficient may behave in different ways,
both qualitatively and quantitatively. Each of these real-
izations constitutes a family of communication channels
parameterized in a continuous way by a parameter α from
some interval. For each α, we propose, assuming some
relation between neurons activities, the joint probability
matrix of input and output signals and the information
source distributions. These communication channels are
determined by 2 × 2 matrixes of conditional probabili-
ties (1). Next the joint probability is used to evaluate both
the relative mutual information and correlation coeffi-
cients. Finally, we plot the values of the relative mutual
information and both correlation coefficients against α to
illustrate their different behaviors.

Results and discussion
We start with a communication channel in which the rel-
ative mutual information monotonically increases with α

whileNSTC and Pearson correlation coefficients are prac-
tically constant. Moreover, RMI has large values which,
according to the fundamental Shannon theorem, result
in high transmission efficiency, while the Pearson corre-
lation coefficient ρ is small. To realize these effects, we
consider the situation described by the joint probability
matrix (14) where the first neuron becomes more active
(i.e., the probability of firing increases) with an increase
in the parameter α while simultaneously the activity of
the second neuron is unaffected by α. Thus, the joint
probability matrixM(α) reads

M(α) =
⎡
⎣ 7

15 − α 1
5 + α

2
15 − α 1

5 + α

⎤
⎦ . (14)

In this case, the family of the communication channels
for each parameter 0 < α < 2

15 is given by the conditional
probability matrix C(α):

C(α) =

⎡
⎢⎢⎣

7
15−α
3
5−2α

1
5+α
2
5+2α

2
15−α
3
5−2α

1
5+α
2
5+2α

⎤
⎥⎥⎦ . (15)

We assume that the input symbols coming from an
information source arrive according to the random vari-
able X with probability distribution pX0 = 3

5 − 2α and
pX1 = 2

5 + 2α. The behaviors of RMI, ρ and the NSTC
coefficient are presented in Figure 1.
Now consider the case for which the probability of fir-

ing of the first neuron decreases with parameter α while

Figure 1 Communication channels family, Eq. (14). Course of the
relative mutual information RMI (red dotted line), ρ (blue dotted line)
and NSTC coefficient (green solid line) versus communication
channels parameter α. The left y-axis corresponds to the correlation
measures ρ and NSTC while the right y-axis corresponds to RMI.

the second neuron behaves in the opposite way. The joint
probability matrixM(α) we propose is

M(α) =
⎡
⎣ 1

4
7
20 − α

1
20 + 2α 7

20 − α

⎤
⎦ , (16)

and the information source probabilities are pX0 = 3
10 +

2α and pX1 = 7
10 − 2α for 0 < α < 7

20 . Here the
communication channels C(α) are of the form

C(α) =

⎡
⎢⎢⎣

1
4

3
10+2α

7
20−α
7
10−2α

1
20+2α
3
10+2α

7
20−α
7
10−2α

⎤
⎥⎥⎦ . (17)

For this family of communication channels, the NSTC
coefficient strongly decreases from positive to negative
values, while ρ and RMI vary non-monotonically around
zero. Moreover, ρ exhibits one extreme and RMI two
extremes. Additionally, for α = 0.35, the RMI is close
to zero while the NSTC coefficient is approximately -0.32
(Figure 2).We point out these values to stress that, accord-
ing to the fundamental Shannon theorem, the transmis-
sion is not efficient (RMI is small), although at the same
time, the activity of neurons described by the NSTC coef-
ficient is relatively well correlated. Figure 2 shows the
behaviors of RMI, ρ and the NSTC coefficient. Finally, we
present the situation (18) in which one neuron does not
change its activity with α and the activity of the other neu-
ron increases with α. Additionally, in contrast to the first
case, the second neuron changes its activity only when the
first neuron is active.

M(α) =
⎡
⎣ 1

10
1
20 − α

4
5

1
20 + α

⎤
⎦ (18)
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Figure 2 Communication channels family, Eq. (16). Course of the
relative mutual information RMI (red dotted line), ρ (blue dotted line)
and NSTC coefficient (green solid line) versus communication
channels parameter α. The left y-axis corresponds to the correlation
measures ρ and NSTC while the right y-axis corresponds to RMI.

In this case, the communication channel C(α) is given
by

C(α) =

⎡
⎢⎢⎣

1
9

1
20−α

1
10

8
9

1
20+α

1
10

⎤
⎥⎥⎦ , (19)

and the information source probabilities are pX0 = 9
10 and

pX1 = 1
10 for 0 < α < 1

20 . It turns out that NSTC coef-
ficient increases linearly from large negative values below
-0.4 to a positive value of 0.1. Simultaneously, ρ is practi-
cally zero and RMI is small (below 0.1) but varies in a non-
monotonic way having a noticeable minimum (Figure 3).
Moreover, observe that for small α the RMI (equal to 0.1)

Figure 3 Communication channels family, Eq. (18). Course of the
relative mutual information RMI (red dotted line), ρ (blue dotted line)
and NSTC coefficient (green solid line) versus communication
channels parameter α. The left y-axis corresponds to the correlation
measures ρ and NSTC while the right y-axis corresponds to RMI.

is visibly larger than zero what suggests that the commu-
nication efficiency is relatively good, while at the same
time the Pearson correlation coefficient ρ (equal to -0.03)
is very close to zero, indicating that the input and output
signals are almost uncorrelated (independent for binary
channels). It suggests that these measures describe differ-
ent qualitative properties. Figure 3 shows the behaviors of
RMI, ρ and the NSTC coefficient.

Conclusions
To summarize, we show that the straightforward intu-
itive approach of estimating the quality of communication
channels according to only correlations between input
and output signals is often ineffective. In other words, we
refute the intuitive hypothesis which states that the more
the input and output signals are correlated the more the
transmission is efficient (i.e. the more effective decoding
scheme can be found). This intuition could be supported
by two facts:

1. for not correlated binary variables (ρ(X,Y ) = 0),
(which are shown in the Appendix to be
independent) one has RMI = 0,

2. for fully correlated random variables (|ρ(X,Y )| = 1)
(which are linearly dependent) one has RMI = 1. We
introduce a few communication channels for which
the correlation coefficients behave completely
differently to the mutual information, which shows
this intuition is erroneous.

In particular, we present the realizations of channels
characterized by high mutual information for input and
output signals but at the same time featuring very low
correlation between these signals. On the other hand, we
find channels featuring quite the opposite behavior; i.e.,
having very high correlation between input and output
signals while the mutual information turns out to be very
low. This is because the mutual information, which in fact
is a crucial parameter characterizing neuronal encoding,
takes into account structures (patterns) of the signals and
not only their statistical properties, described by firing
rates. Our research shows that neuronal encoding has a
much more complicated nature that cannot be captured
by straightforward correlations between input and output
signals.

Appendix
The theorem states that independence and noncorrela-
tion are equivalent for random variables that take only two
values.

Theorem 1. Let X and Y be random variables, which
take only two real values ax, bx and ay, by, respectively. Let
M be the joint probability matrix
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M =
[
p00 p01
p10 p11

]
, (20)

where
p00 = p(X = ax ∧ Y = ay) ,
p01 = p(X = bx ∧ Y = ay) ,
p10 = p(X = ax ∧ Y = by) ,
p11 = p(X = bx ∧ Y = by) ,

and
p00 + p01 + p10 + p11 = 1 ,

p00, p01, p10, p11 ≥ 0 .

The probability distributions of random variables X and
Y are given by

pXax := p(X = ax) = p0i + p1i for i = 0 ,
pXbx := p(X = bx) = p0i + p1i for i = 1 ,

pYay := p(Y = ay) = pj0 + pj1 for j = 0 ,

pYby := p(Y = by) = pj0 + pj1 for j = 1 .

(21)

Adopting this notation, the condition ρ(X,Y ) = 0
implies that random variables X and Y are independent.

To prove this Theorem 1, we first show the following
particular case for binary random variables.

Lemma 1. Let X1 and Y1 be two random variables,
which take two values 0,1 only. Let M1 be the joint proba-
bility matrix

M1 =
[
p00 p01
p10 p11

]
, (22)

where
pji = p(X1 = i ∧ Y1 = j) for i, j = 0, 1 ,

p00 + p01 + p10 + p11 = 1 ,
p00, p01, p10, p11 ≥ 0 .

(23)

The probability distributions pX1
i and pY1j of these binary

random variables are given by

pX1
i = p(X1 = i) = p0i + p1i for i = 0, 1 ,

pY1j = p(Y1 = j) = pj0 + pj1 for j = 0, 1 .
(24)

Adopting this notation, ρ(X1,Y1) = 0 implies that X1
and Y1 are independent.

Proof. From (11), we have

ρ(X,Y )= p11−(p01+p11) · (p10+p11)√
(p01+p11)−(p01+p11)2

√
(p10+p11)−(p10+p11)2

= 0 .
(25)

Thus, we have p11 − (p01 + p11)(p10 + p11) = 0; i.e., p11
is factorized p11 = pX1

1 · pY11 . To prove the independence
of X1 and Y1, we have to show that

p00 = pX1
0 · pY10 , p01 = pX1

1 · pY10 , p10 = pX1
0 · pY11 .

We prove the first and second equality, and the third
equality can be proven analogously.
Making use of (23), we have

p01+p11=1−(p10+p00) , p10+p11=1−(p01+p00) ,
(26)

and (25)

0=p11−(p01+p11)(p10+p11)
= p11−[ 1 − (p10 + p00)] [ 1 − (p01 + p00)]

=p11−[ 1− (p01+ p00)− (p10 + p00)+(p10 + p00)(p01 + p00)]
= (p11 + p01 + p10 − 1) + 2p00 − (p10 + p00)(p01 + p00)

= −p00 + 2p00 − (p10 + p00)(p01 + p00) .
(27)

Thus, we have

p00 = (p10 + p00)(p01 + p00) = pX1
0 pY10 . (28)

Similarly, we have

0 = p11 − (p01 + p11)(p10 + p11)
= p11 − (p01 + p11)[ 1 − (p01 + p00)]

= p11−[ (p01 + p11) − (p01 + p11)(p01 + p00)]
= p11 − p01 − p11 + (p01 + p11)(p01 + p00) .

(29)

Thus, we have

p01 = (p01 + p11)(p01 + p00) = pX1
1 · pY10 . (30)

To generalize this Lemma 1, we consider the follow-
ing.

Lemma 2. Assuming the notation as in Lemma 1, let us
define the random variables: let X := (bx−ax)X1+ax and
Y := (by − ay)Y1 + ay.
Under these assumptions, ρ(X,Y ) = 0 implies that X

and Y are independent. In other words, divalent, uncorre-
lated random variables have to be independent.

Proof. The proof is straightforward and follows directly
(by the linearity of the average value) from the definition
of the correlation coefficient (10) and from the fact that
the joint probability matrices M1 for X1 and Y1 and M
for X and Y are formally the same. Since by Lemma 1 the
random variables X1 and Y1 are independent, the random
variables X and Y must also be independent.
Finally, observe that X takes the values ax, bx and Y

takes the values ay, by only. Therefore, Theorem 1 follows
immediately from Lemma 2.
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