
CMM-2011 – Computer Methods in Mechanics 9–12 May 2011, Warsaw, PolandCMM-2011 – Computer Methods in Mechanics 9–12 May 2011, Warsaw, PolandCMM-2011 – Computer Methods in Mechanics 9–12 May 2011, Warsaw, Poland

Finite-element modelling of fully-coupled active systems
involving poroelasticity, piezoelectricity, elasticity, and acoustics

Tomasz G. Zieliński
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Abstract

The paper discusses some issues concerning fully-coupled finite-element modelling of active-passive systems for vibroacoustic attenu-
ation, involving porous, piezoelectric, and elastic materials, as well as “acoustic” (inviscid) fluids. For porous materials, the advanced,
bi-phasic model of poroelasticity is used, which allows to consider elastic vibrations of solid skeleton important at lower frequencies
and for porous composites with active inclusions. A discrete finite-element model suitable for analysis of such multiphysics problems
is briefly explained. The model is derived (using the Galerkin method) from the variational formulation of coupled problems of poroe-
lasticity, piezoelectricity, elasticity, and acoustics. Finally, some relevant results obtained from a numerical analysis of a disk of active
sandwich panel with poroelastic core, fitted into an acoustic waveguide, are presented.
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Figure 1: An axially-symmetric disk of active sandwich panel
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Figure 2: Discrete model for coupled problems involving
poroealsticity, piezoelectricity, elasticity, and acoustics

1. Introduction

An advanced modelling to study hybrid, active/passive vi-
broacoustic attenuators have been recently proposed [5, 14, 19].
Such attenuators are smart acoustic panels (see Fig. 1), liners and
composites which utilize an active approach as a remedy for lack
of performance at low frequency, and provide excellent passive
absorption at medium and high frequencies, possibly exploiting
also the effect based on the combination of both approaches. This
paper discusses some issues concerning a fully-coupled finite-
element modelling of such active-passive systems for vibroacous-
tic attenuation, involving poroelastic, piezoelectric, and elastic
materials, as well as “acoustic” (inviscid) fluids. The correspond-
ing fully-coupled multiphysics system which will be briefly re-
called here, has been recently proposed in [19]. Finally, some
relevant results obtained from a numerical analysis of a disk of
active sandwich panel with poroelastic core, fitted into an acous-
tic waveguide, will be presented. The complete results and dis-
cussion are going to be published in [20].

2. Fully-coupled finite-element model for active/passive vi-
broacoustic attenuation

Figure 2 shows a diagram of the discrete system of equations
(derived using the Galerkin method) [19] suitable for problems of
active/passive vibroacoustics. It combines the following relevant
theoretical models: (a) the Biot’s theory of poroelasticity [2] –
to model the vibroacoustic transmission and passive dissipation
of acoustic waves in porous layers, (b) the linear acoustics –
to model the propagation of acoustic waves in the surrounding
air, air-gaps and waveguides, (c) the linear elasticity – to model
the vibrations of elastic faceplates and inclusions, (d) the theory
of piezoelectricity [6] – to model the piezoelectric actuators and
active control of low-frequency vibrations. For porous materials,
the advanced, bi-phasic model of poroelasticity [2] is used, which
allows to consider elastic vibrations of solid skeleton important
at lower frequencies and for porous composites with active inclu-
sions. The mixed displacement-pressure time-harmonic formula-
tion [3] of poroelasticity is used – which requires only 4 DOFs per
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node (instead of 6 required by the original formulation) – in an
enhanced version of its weak integral form, which allows to han-
dle easily some boundary and interface-coupling conditions [3].
Some fundamentals of the Biot’s theory of poroelasticity will be
explained in Sec. 3. The summation convention will be used for
(dummy) indices i, j, k, l = 1, 2, 3, and the (invariant) differen-
tiation symbol which, in the Cartesian coordinate system, simply
reads: (.)|i = ∂(.)

∂xi
.

The discrete multiphysics system was constructed using the
following weak integral [19]:

WF =WF p +WF e +WF pz +WF a + CI , (1)

where WF p, WF e, WF pz, WF a are the weak forms of poroe-
lasticity, elasticity, piezoelectricity, and acoustics, respectively,
whereas CI is the coupling integral on the interfaces between var-
ious media; all the weak forms are presented below in Sec. 4, and
in [19], where the coupling integral is also discussed.

Different materials and media are supposed to interact in
the considered class of problems and the wave propagation may
change drastically between various subdomains, because the
wavelengths are different. Moreover, in poroelastic media there
are three types of waves that propagate with different velocities:
two compressional waves and a shear wave. The propagation ve-
locities may also strongly depend on frequency since porous ma-
terials are dispersive. Thus, generally speaking, different finite
element meshes are required for various subdomains with suffi-
cient densities to satisfy a common requirement of several ele-
ments per wavelength, and this should be done for the shortest
waves and so for the highest frequency of interest. It is obvious
though, that the required size of elements will vary drastically for
subdomains of various media and for some, let us say, “longer-
wavelegth” subdomains, the elements in the vicinity of the inter-
faces with “shorter-wavelegth” subdomains may need to be sig-
nificantly smaller than the required size, in order to maintain the
geometrical quality of the mesh. Another important issue is the
approximation order. Generally speaking, for poroelastic sub-
domains, which require rather dense meshes, the second-order
approximation is usually much more advantageous than linear
shape functions possible in case of very dense discretizations. For
subdomains of air coarse meshing and linear shape functions can
be used, whereas for the elastic and (usually thin) piezoelectric
subdomains the second-order (quadratic Lagrange) polynomials
should be preferred as shape functions for all the component-
fields of displacement, as well as for the scalar field of electric
potential. The second-order approximation of electric potential
is quite important for accurate estimation of voltage amplitudes
used in active control since the first-order interpolation would re-
sult in a linear through-thickness variation of the electric potential
and that would neglect the induced potential and the electrome-
chanical coupling would be partial [6].

3. Biot’s theory of poroelasticity

The Biot’s theory of poroelasticity [7, 1, 2] provides a bipha-
sic model of porous media: the so-called solid phase is used to
describe the behavior of the (“smeared”) elastic skeleton whereas
the fluid phase pertains to the fluid in the pores. Both phases
are two coupled homogeneous continua. The most frequently-
used version of poroelasticity assumes besides that both phases
are isotropic. Moreover, the fluid is modelled as inviscid, though
viscous forces, are taken into account but only when modeling
interaction between the fluid and the solid frame.

In the classical formulation [7, 1, 8, 2] a state of poroelastic
medium is described by the displacements of solid, u = {ui},
and fluid phase, U = {Ui}. The Biot’s equations for a local dy-
namic equilibrium of poroelastic material link partial stress ten-
sors associated with the skeleton particle (σs

ij) and the macro-
scopic fluid particle (σf

ij) with the solid and fluid macroscopic

displacements. In the case of harmonic oscillations (with angular
frequency ω) these equations read

σs
ij|j + ω2%̃ss ui + ω2%̃sf Ui = 0 ,

σf
ij|j + ω2%̃ff Ui + ω2%̃sf ui = 0 ,

(2)

where the frequency-dependent effective densities, %̃ss, %̃sf, and
%̃ff, are introduced. These densities are responsible not only for
the inertia of solid or fluid phase particles but also for the com-
bined inertial and viscous coupling (interaction) of both phases.
They depend on the viscous drag coefficient, b̃, and the normal ef-
fective densities, %ss, %ff, %sf. The latter quantities in turn depend
on the porosity, φ, the tortuosity of pores, α∞, the density of the
material of skeleton, %s, and the density of saturating fluid, %f.
The adequate formulas may be found in [1, 2].

The partial solid and fluid stress tensors are linearly related
to the partial strain tensors prevailing in the skeleton and the in-
terstitial fluid. This is given by the following linear and isotropic
constitutive equations of the Biot’s theory of poroelasticity:

σs
ij = µs (ui|j + uj|i) +

(
λ̃s uk|k + λ̃sf Uk|k

)
δij ,

σf
ij =

(
λ̃f Uk|k + λ̃sf uk|k

)
δij .

(3)

Four material constants are involved here, namely µs, λ̃s, λ̃f,
and λ̃sf. The first two of them resemble the two Lamé coeffi-
cients of isotropic elasticity. Moreover, µs is the shear modu-
lus of the poroelastic material and consequently the shear mod-
ulus of the frame since the fluid does not contribute to the shear
restoring force. The three dilatational constants, λ̃s, λ̃f and λ̃sf

are frequency-dependent and are functions of Kb, Ks, and K̃f

(λ̃s depends also on µs), where: Kb is the bulk modulus of the
frame at constant pressure in the fluid, Ks is the bulk modulus of
the elastic solid from which the frame is made, and K̃f is the bulk
modulus of the fluid in porous medium. The adequate formulas to
compute the poroelastic material constants can be found in [1, 2].
Finally, the total stress tensor of poroelastic medium is defined as
a simple sum of the partial, i.e. phasic, stress tensors, whereas
the total displacement vector sums up porosity-dependent contri-
butions of the displacements of both phases:

σt
ij = σs

ij + σf
ij , ut

i = (1− φ)ui + φUi . (4)

The equations of equilibrium (2) together with the consti-
tutive relations (3) form the displacement formulation of linear,
isotropic poroelasticity for harmonic oscillations. Notice that the
first equations from both pairs refer to the solid phase whereas
the second ones to the fluid phase. Nevertheless, both phases are
strongly coupled by the viscous-inertial coupling coefficient, %̃sf,
and the constitutive coupling constant, λ̃sf. In this classical for-
mulation the unknown fields are the solid and fluid phase dis-
placements, which means 6 degrees of freedom in every node of
a three-dimensional model.

The fluid phase stress tensor can be expressed as

σf
ij = −φ p δij , (5)

where p is the pressure of fluid in the pores (it should not be mis-
taken for the pressure of fluid phase which equals φp). By using
this relation for the time-harmonic version of Biot’s poroelastic-
ity, the fluid phase displacements can be expressed as functions of
the pressure in the pores, and thus eliminated from the equations
(replaced by p); such derivation can be found in [19]. This results
in the mixed displacement–pressure formulation [4, 9, 2] where
the dependent variables are the three solid phase displacements
and the pore-fluid pressure. Therefore, three-dimensional models
have now only 4 degrees of freedom in a node.
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4. Weak forms of poroelasticity, elasticity, piezoelectricity,
and acoustics

4.1. Weak form for the mixed formulation of poroelasticity

Let Ωp be a domain of poroelastic material and Γp its bound-
ary with ni being the components of the unit vector normal to the
boundary and pointing outside the domain. The harmonic poroe-
lasticity problem can be described in this domain by the mixed
formulation which uses as dependent variables the solid phase
displacements, ui, and pore-fluid pressure, p. The correspond-
ing weak form [3, 2] reads as follows (for every admissible δui

and δp)

WF p = −
∫
Ωp

σss
ij δui|j +

∫
Ωp

ω2%̃ ui δui −
∫
Ωp

φ2

ω2%̃ff
p|i δp|i

+

∫
Ωp

φ2

λ̃f
p δp+

∫
Ωp

φ

(
1 +

%̃sf

%̃ff

)
δ(p|i ui)

+

∫
Ωp

φ

(
1 +

λ̃sf

λ̃f

)
δ(p ui|i) + BIp ,

(6)

where

σss
ij = µs (ui|j +uj|i) +

(
λ̃s−

λ̃2
sf

λ̃f

)
uk|k δij and %̃ = %̃ss−

%̃2
sf

%̃ff
,

(7)

BIp is the boundary integral

BIp =

∫
Γp

σt
ij nj δui +

∫
Γp

φ (Ui − ui)ni δp , (8)

whereas δui and δp are test (or weighting) functions, that is, ar-
bitrary yet admissible virtual displacements and pressure. Below,
the two most relevant boundary conditions of poroelastic medium
are discussed [9, 3, 2].

Relevant boundary conditions. Two types of boundary condi-
tions will be discussed here, namely: an imposed displacement
field and an imposed pressure field.

A displacement field, ûi, applied on a boundary of a poroe-
lastic medium describes, for example, a case of a piston in motion
acting on the surface of the medium. Here, it is assumed that the
solid skeleton is fixed to the surface of piston while the fluid ob-
viously cannot penetrate into the piston. Therefore, on Γu

p :

ui = ûi , (Ui − ui)ni = 0 . (9)

The first condition expresses the continuity between the imposed
displacement vector and the solid phase displacement vector. The
second equation expresses the continuity of between the normal
displacements of the solid phase and the fluid phase. Using these
conditions and the fact that the variations of the known solid dis-
placements are zero (δui = 0) the boundary integral reduces to
zero:

BIp = 0 on Γu
p . (10)

A harmonic pressure field of amplitude p̂ is imposed on the
boundary of a poroelastic domain which means that it affects at
the same time the fluid in the pores and the solid skeleton. There-
fore, the following boundary conditions must be met on Γp

p :

p = p̂ , σt
ij nj = −p̂ ni . (11)

The first condition is of Dirichlet type and must be applied explic-
itly. It describes the continuity of pressure in the fluid. It means

also that the pressure variation is zero (δp = 0) at the boundary.
The second condition expresses the continuity of the total normal
stress. All this, when used for Equation (8), leads to the following
boundary integral

BIp =

∫
Γp

σt
ij nj δui = −

∫
Γ
p
p

p̂ ni δui . (12)

4.2. Weak form for an elastic solid

Let Ωe be an elastic solid domain with mass density %e and
boundary Γe, and ne

i the components of unit vector normal to the
boundary and pointing outside the domain. Assuming zero body
forces and the case of harmonic oscillations the weak variational
form of the problem of elasticity expressing the principle of vir-
tual work reads [19] (for every admissible δue

i)

WF e = −
∫
Ωe

σe
ij δu

e
i|j +

∫
Ωe

ω2%e u
e
i δu

e
i +

∫
Γe

σe
ij n

e
j δu

e
i , (13)

where δue
i is the arbitral yet admissible variation of displace-

ments; the elastic stress tensor σe
ij = σe

ij(u
e) substitutes here

a linear function of elastic displacements ue = {ue
i}. In the case

of the linear isotropic elasticity it can be expressed as follows

σe
ij = µe (ue

i|j + ue
j|i) + λe u

e
k|k δij , (14)

where the well-known Lamé coefficients, the shear modulus µe
and the dilatational constant λe, appear.

Boundary conditions. For the sake of brevity, only von Neu-
mann and Dirichlet boundary conditions for an elastic solid will
be discussed. The Neumann (or natural) boundary conditions de-
scribe the case when forces t̂ei are applied on a boundary, that is

σe
ij n

e
j = t̂ei on Γt

e , (15)

whereas the displacements, ûe
i, are prescribed by the Dirichlet (or

essential) boundary conditions

ue
i = ûe

i on Γu
e . (16)

According to these conditions the boundary is divided into two
(directionally disjoint) parts, i.e. Γe = Γt

e ∪ Γu
e . There is an

essential difference between the two kinds of conditions. The
displacement constraints form the kinematic requirements for the
trial functions, ue

i, while the imposed forces appear in the weak
form; thus, the boundary integral, that is the last of the integrals
of Eq. (13), equals

BIe =

∫
Γe

σe
ij n

e
j δu

e
i =

∫
Γt

e

t̂ei δu
e
i . (17)

Here, the property δue
i = 0 on Γu

e has been used.

4.3. Weak form of piezoelectricity

The theory of piezoelectricity is extensively discussed, for
example, in [13, 15]. More or less brief recapitulations of the lin-
ear theory of piezoelectricity may be found also in many papers
and books on active vibration control and piezoelectric actuators
and sensors (e.g., [10, 16, 17]). A very good survey of the ad-
vances and trends in finite element modeling of piezoelectricity
was presented by Benjeddou [6]. In this paper the basic theoreti-
cal considerations and equations of linear piezoelectricity as well
as the variational piezoelectric equations are also given.

Piezoelectric elements (actuators and sensors) of the pro-
posed active composites, liners and panels are to be modeled us-
ing the linear theory. It is adequate enough and, moreover, it is a
very accurate model when comparing it to some frequently used
approximations (as a matter of fact, the so-called thermal analogy
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approach is usually an acceptable approximation when modeling
piezo-actuators). Here, a variational form of linear piezoelectric-
ity will be presented as being the most used one for piezoelectric
finite element formulations. This form should be regarded as the
sum of the conventional principle of virtual mechanical displace-
ments and the principle of virtual electric potential.

Let Ωpz be a domain of piezoelectric material, %pz its mass
density, and Γpz its boundary. The unit boundary-normal vector,
npz
i , points outside the domain. The dependent variables of piezo-

electric medium are the mechanical displacements, upz
i , and elec-

tric potential, V pz. The case of harmonic oscillations (with the
angular frequency ω) with no mechanical body forces and elec-
tric body charge is considered. Then, for arbitrary yet admissible
virtual displacements, δupz

i , and virtual electric potential, δV pz,
the variational formulation of the piezoelectricity problem can be
given as

WF pz = −
∫

Ωpz

σpz
ij δu

pz
i|j +

∫
Ωpz

ω2%pz u
pz
i δu

pz
i +

∫
Γpz

σpz
ij n

pz
j δu

pz
i

−
∫

Ωpz

Dpz
i δV

pz
|i +

∫
Γpz

Dpz
i n

pz
i δV

pz ,

(18)

where σpz
ij = σpz

ij(u
pz, V pz) and Dpz

i = Dpz
i (upz, V pz) are expres-

sions of mechanical displacements and electric potential. Obvi-
ously, from the physical point of view they represent the mechani-
cal stress tensor and the electric displacement vector, respectively.
As a matter of fact, these expressions are the so-called stress-
charge form of the constitutive relations of piezoelectricity – they
are given below for the case of linear anisotropic piezoelectricity:

σpz
ij = Cpz

ijkl

upz
k|l + upz

l|k

2
− epz

kij V
pz
|k ,

Dpz
i = epz

ikl

upz
k|l + upz

l|k

2
+ εpz

ik V
pz
|k .

(19)

Here, Cpz
ijkl, e

pz
ikl, and εpz

ik denote (the components of) the fourth-
order tensor of elastic material constants, the third-order tensor
of piezoelectric material constants, and the second-order tensor
of dielectric material constants, respectively. These three tensors
of material constants characterize completely any piezoelectric
material, i.e., its elastic, piezoelectric, and dielectric properties.
Only one of these tensors is responsible for the piezoelectric ef-
fects. Therefore, piezoelectricity can be viewed as a multiphysics
problem where in one domain of a piezoelectric medium the
problems of elasticity and electricity are coupled by the piezo-
electric material constants present in (additional) coupling terms
in the constitutive relations. One should notice that the (lin-

ear) kinematic relations, εpz
ij =

u
pz
k|l+u

pz
k|l

2
, linking mechanical

strain (εpz
ij) and displacements (upz

i ), and the Maxwell’s law for
electrostatics, Epz

i = −V pz
|i , relating the electric field (Epz

i ) with
its potential (V pz), have been explicitly used in Eqs. (19).

Boundary conditions. In piezoelectricity the boundary condi-
tions are divided into two groups – there are mechanical con-
ditions (referring to the elasticity problem) and electrical condi-
tions (referring to the electricity). Consequently, the boundary of
piezoelectric domain can be subdivided as follows:

Γpz = Γt
pz ∪ Γu

pz and Γpz = ΓQ
pz ∪ ΓV

pz . (20)

The parts belonging to the same group of subdivision are disjoint
and both subdivisions are completely independent. Here, Γt

pz and
ΓQ

pz pertain to the Neumann conditions for surface-applied me-
chanical forces and electric charge, respectively, while Γu

pz and

ΓV
pz refer to the Dirichlet conditions on imposed mechanical dis-

placements and electric potential, respectively. The third possi-
bility of Robin boundary condition is skipped; however, it would
involve another parts – one in the mechanical and one in the elec-
tric subdivision of the boundary.

First, consider the mechanical boundary conditions. The
forces, t̂pz

i , applied to a boundary are expressed by the Neumann
(or natural) condition

σpz
ij n

pz
j = t̂pz

i on Γt
pz , (21)

whereas the imposed displacements, ûpz
i , will appear in the

Dirichlet (i.e., essential) boundary condition

upz
i = ûpz

i on Γu
pz . (22)

The Dirichlet condition must be a priori explicitly met by the
trial functions while the Neumann condition (21) is used for the
mechanical boundary integral, that is, the third term in Equa-
tion (18), which equals

BImech
pz =

∫
Γpz

σpz
ij n

pz
j δu

pz
i =

∫
Γt

pz

t̂pz
i δu

pz
i , (23)

since δupz
i = 0 on Γu

pz.
The electric boundary condition of the Neumann kind serves

for a surface electric charge Q̂pz applied on a boundary

−Dpz
i n

pz
i = Q̂pz on ΓQ

pz , (24)

whereas the Dirichlet condition allows to prescribe the electric
potential V̂ pz on a boundary

V pz = V̂ pz on ΓV
pz . (25)

The electric boundary integral, that is, the last term in Equa-
tion (18) equals

BIelec
pz = −

∫
Γpz

Dpz
i n

pz
i δV

pz =

∫
Γ
Q
pz

Q̂pz δV pz . (26)

Here, the Neumann condition for electric charge (24) has been
used together with the condition for voltage variation, δV pz = 0
on ΓV

pz .
By summing up the mechanical and electrical boundary in-

tegrals (23) and (26), the following total mechanical-electric
boundary integral results:

BIpz = BImech
pz + BIelec

pz =

∫
Γt

pz

t̂pz
i δu

pz
i +

∫
Γ
Q
pz

Q̂pz δV pz . (27)

4.4. Weak form for an acoustic medium

Let Ωa be an acoustic medium domain, that is a domain of in-
viscid fluid, and Γa its boundary with na

i being the components of
unit normal vector pointing outside the domain. The dependent
variable of acoustical medium is the acoustic pressure, pa. Fi-
nite element methods for time-harmonic acoustics are reviewed
in [12, 18]. For harmonic motion with the angular frequency ω,
the following weak form should be used:

WF a = −
∫
Ωa

1

ω2%a
pa
|i δp

a
|i+

∫
Ωa

1

%a c2a
paδpa+

∫
Γa

1

ω2%a
pa
|i n

a
i δp

a ,

(28)
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where %a is the acoustic medium mass density and ca is the speed
of sound. Knowing the acoustic pressure one can always deter-
mine the (complex amplitudes of) displacements, velocities and
accelerations of fluid particle using the following formulas:

ua
i =

1

ω2%a
pa
|i , va

i = jω ua
i = − 1

jω %a
pa
|i ,

aa
i = −ω2 ua

i = − 1

%a
pa
|i .

(29)

Boundary conditions: When a value of acoustic pressure, p̂a,
is prescribed, the Dirichlet boundary condition simply states that

pa = p̂a on Γp
a . (30)

When a rigid piston of known acceleration, âa
i, is imposed on a

boundary – in the harmonic case âa
i = −ω2 ûa

i, where ûa
i is the

(complex) amplitude of displacements – the following Neumann
condition is used

1

ω2%a
pa
|i = ûa

i on Γu
a . (31)

Using this condition and the condition for pressure variation,
δpa = 0 on Γp

a , the boundary integral, that is, the last term in
Equation (28), can be written as follows:

BIa =

∫
Γa

1

ω2%a
pa
|i n

a
i δp

a =

∫
Γu

a

ûa
i n

a
i δp

a . (32)

The acoustic impedance can be prescribed at a boundary by the
Robin’s type of boundary condition, which is a linear combina-
tion of the Dirichlet’s and Neumann’s kinds. Finally, the so-called
non-reflecting boundary conditions (NRBC) [11] often play an
important role, because they ensure that no (or little) spurious
wave reflection occurs from the boundary.

5. Numerical example

5.1. Active sandwich panel

A few results of numerical analysis carried out for a disk of
sandwich panel with poroelastic core, and a thin PZT-ceramic
patch fixed to one of its faceplates, will be presented below. Fig-
ure 1 shows a lateral view of such panel fitted into a rigid-walled
air waveguide, so it can smoothly slide along. The total thick-
ness of panel (without PZT-patch) is 20 mm and its diameter is
100 mm. The PZT-patch is 0.3 mm thick; it is also circular in
shape and it is fixed in the centre of the circular faceplate of
panel. Therefore, the whole configuration of the panel in air
waveguide is perfectly symmetric relative to its axis, and thus,
a two-dimensional axially-symmetric modelling of the represen-
tative domain of panel with as adjacent fragment of air waveguide
(the rectangle ABCD shown in Fig. 1) is fully justified.

A plane, time-harmonic, acoustic wave propagates in the air
waveguide onto the panel’s surface. It is partially reflected, par-
tially absorbed, and partially transmitted through the panel. The
acoustic transmission through the panel was analysed for the pas-
sive and active cases. The feasibility of active approach – in-
volving complex two-dimensional deformations – can be studied,
provided that the finite-element model is reliable: as a matter of
fact, various results of acoustic transmission (some of which are
going to be presented below) were also utilized to validate the
convergence of finite element solutions.

5.2. Results of the passive behaviour

Several finite element analyses were carried out to test pas-
sive behaviour of sandwich panel. Figure 3 presents the sound
pressure level calculated for purely passive panel at point D

(60 mm from the lower surface of panel, see Fig. 1) for harmonic
acoustic excitation with the amplitude of 1 Pa as described in the
previous Section. Four results are plotted in the form of SPL
curves. Three of them, namely, (a), (b) and (c), were obtained for
two-dimensional, axially-symmetric, finite-element models using
coarse or dense meshes, and linear or quadratic approximations
in poroelastic domain. The elastic faceplates were always ap-
proximated using the second-order shape functions. The fourth
curve (d) is a result of one-dimensional analytical solution. Since
no piezoelectric patch was present in the finite element models
the one-dimensional modelling is fully appropriate under the cir-
cumstances described above (that is, the applied boundary con-
ditions and uniformly distributed acoustic pressure excitation),
and thus, the analytical solution is exact for such configuration of
purely passive panel. From Fig. 3 it can be seen that the results
for the proposed two-dimensional finite-element models are very
accurate even for the coarsest of meshes with linear approxima-
tion in poroelastic domain (notice that some discrepancies visible
for this model in the range above 3 kHz are for SPL below 10 dB).
Thus, the general conclusion is that all the considered models are
in fact valid for passive analyses, so that the very economical
coarse-mesh model with linear approximation in poroelastic do-
main may be used. It will be demonstrated, however, that it is not
true in the case of the active approach.
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Figure 3: The sound pressure level (SPL) at point D for: (a) the
2D axial model with the coarse mesh and a linear approxima-
tion in the poroelastic domain, (b) the 2D axial model with the
dense mesh and a linear approximation in the poroelastic domain,
(c) the 2D axial model with the coarse mesh and a quadratic ap-
proximation in the poroelastic domain, (d) the analytical solution.

5.3. Feasibility and convergence tests of the active approach

The results of passive analysis presented in Fig. 3 show that
the panel exhibit a resonance behaviour at the frequency slightly
above 400 Hz. Around this frequency the acoustic insulation is
very poor, and in general, it is not very effective at lower fre-
quencies. To alleviate this problem the active approach should be
used.

Figure 4: Passive and active behaviour of panel at 400 Hz
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Figure 5: Some h- and p-convergence solutions for active improvement of transmission loss (TL) at 400 Hz obtained for: (a) a coarse
mesh with linear approximation in poroelastic domain (364 DOFs), (b) a dense mesh with linear approximation in poroelastic domain
(2738 DOFs), (c) a very dense mesh with linear approximation in poroelastic domain (10040 DOFs), (d) a coarse mesh with quadratic
approximation in poroelastic domain (551 DOFs), (e) a very dense mesh with quadratic approximation everywhere (39305 DOFs).

The passive and active behaviour of panel at 400 Hz is com-
pared in Fig. 4. In the passive case, the excitation is by a plane
harmonic wave with the pressure amplitude of 1 Pa impinging
the upper faceplate of panel. In the active case, apart from the
acoustic excitation, a harmonic voltage signal of the same fre-
quency of 400 Hz is applied to the electrodes of the piezo-patch
actuator. The actuator is in that way harmonically expanded and
contracted, which induces some bending deformation of the up-
per faceplate, affecting the vibrations of the panel. It is possible
to choose the amplitude (and phase) of the signal necessary to
better attenuate the acoustic wave transmitted through the panel.
To this end, the acoustic pressure below the panel should be ob-
served. It should be noticed that in the passive case the transmit-
ted wave is plane, yet in the case of the active approach it may
not be plane in the vicinity of the lower faceplate because of the
additional, non-uniform, electric excitation induced on the upper
faceplate. Thus, in the active case, the vibrations of the lower
faceplate may not be planar, depending on the frequency of exci-
tations, the thickness and material properties of poroelastic core,
etc. Nevertheless, at some distance from the lower faceplate the
transmitted acoustic wave is plane. This is certainly on the line
CD situated across the waveguide, 60 mm from the lower face-
plate. Therefore, the acoustic pressure of the transmitted wave
will be observed at point D – which should be in practice equal to
the acoustic pressure at any other point on the line CD – or, alter-
natively, a measure of the acoustic pressure defined as an integral
of the pressure along the line CD may be used. As a matter of
fact, one should notice that this approach complies actually with
the experimental practice: during the measurements the micro-
phones are situated at some distance from the sample. The vibra-
tion shapes of panel, shown in Fig. 4 for the passive and active
states, are scaled by the same scaling factor. It can be observed
that the maximal vibrations in the active case are several times
bigger than in the passive case. Nevertheless, they are still very
small and fully comply with the linear regime. The necessary
voltage amplitude was estimated as app. 26 V. Since the piezo-
patch actuators are fixed to the upper faceplate the phase shift
was negligible, and the necessary voltage was found by some
parametric analyses involving sweeping of voltage amplitude, af-
ter some convergence tests – discussed below – had been carried
out. Alternatively, it can be found using the method described in
the next Section, involving two harmonic analysis.

Figure 5 presents some of the p- and h-convergence tests of
the active approach performed for various finite element models.
The acoustic transmission reduction was computed for the mu-
tual, 400 Hz-harmonic excitations by the acoustic wave with the
amplitude of 1 Pa, and the active electrical signal with the am-
plitude swept from 0 V to 90 V. The curves (a), (b) and (c) from

Fig. 5 present the h-convergence of the active solution – when the
mesh density is increased and the approximation remains linear,
whereas the curves (a) and (d), as well as the curves (c) and (e)
present two p-convergence solutions – when the approximation
order is increased, from linear to quadratic, and the mesh density
remains unchanged, coarse or very dense, respectively in these
two cases. It is remarkable that all the curves start from the same
point at 0 V, which confirms that for the passive case all the mod-
els give the same results. However, when the voltage is increased,
the coarse and dense-mesh models with linear approximation in
poroelastic domain give solutions – the curves (a) and (b) – which
are significantly different from the results obtained with the very
dense-mesh models. Thus, it can be stated that the models with
linear shape functions are not appropriate for the active analy-
ses if their meshes are not extremely dense; they give very ex-
aggerated estimations for the proper voltage amplitudes of ac-
tive reduction signals. On the other hand, the curves (c) and (d),
obtained for the very dense mesh with linear approximation in
poroelastic domain, and for the coarse mesh with quadratic ap-
proximation, respectively, are very close to the curve (e) obtained
when the accurate model with the very dense mesh and quadratic
approximation was used. Eventually, a conclusion must be drawn
that the model with the coarse mesh but with quadratic approx-
imation in poroelastic domain, gives very good results, being at
the same time very economical (only 551 DOF).

5.4. Frequency analyses and a parametric survey for the active
approach

Figure 6 presents parametric sweeps performed in order to
estimate optimal voltage amplitudes for the active reduction of
vibroacoustic transmission at different frequencies. For each of
several computational frequencies from 250 Hz to 800 Hz, the
voltage amplitude of active signal was swept to find the minimum
of the sound pressure level computed at point D which meant also
the maximum of the transmission loss. The optimization of the
phase of the signal was neglected since the piezo-patch actuator
affects directly the upper faceplate, where the acoustic excitation
is also directly applied, and the elastic faceplate is assumed loss-
less. The results shown in Fig. 6 clearly confirm that at lower
frequencies higher voltages for active signals are necessary.

The right-hand side graph in Fig. 6 summarizes the results of
optimal voltage amplitudes found for the PZT-patch actuator of
radius 10 mm. These results were also obtained by the following
calculation procedure. First, a pressure measure, for example,
the acoustic pressure, at the distance of 60 mm from the lower
faceplate is computed for the harmonic excitation by the plane
acoustic wave with the amplitude of 1 Pa; let the result be termed
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Figure 6: Optimal voltage amplitudes for the active reduction of vibroacoustic transmission at different frequencies
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Figure 7: Optimal voltage amplitudes for the active reduction signals

as α [Pa]. Then, the pressure measure is calculated for only elec-
trical excitation with the voltage amplitude of 1 V; let the result be
termed as β [Pa]. Since the system is linear, the pressure response
at 60 mm for simultaneous, acoustic and electric excitations can
be computed as follows

pa
at 60 mm =

α

1 Pa
p̂+

β

1 V
Û , (33)

where p̂ [Pa] and Û [V] are the amplitudes of the acoustical and
electrical excitations, respectively. Now, from the requirement
that pa

at 60 mm ≈ 0 Pa, the necessary amplitude for the active sig-

nal may be estimated as:

Û = −α
β

V
Pa
p̂ = −α

β
V . (34)

Here, it has been assumed that the amplitude of acoustic excita-
tion is p̂ = 1 Pa. Notice that α, β, and Û are in general complex
amplitudes. This procedure was extensively used for a paramet-
ric survey where the optimal voltage amplitudes for active sig-
nals were estimated at different frequencies for different sizes
of the piezoelectric actuator. The radii of the PZT-patch were
taken from 5 mm to 45 mm, whereas the computational frequen-
cies were from the range of 100 Hz to 600 Hz. The results are
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given in Fig. 7, where it can be observed that the optimal ra-
dius of PZT-patch is approximately 35 mm: the smallest voltage
amplitudes are required in the whole considered frequency range
for such PZT actuator. It means that when the radius is bigger
or smaller than 35 mm the optimal voltage amplitude increases.
Nevertheless, quite a good performance has a PZT-patch with the
radius of only 16 mm, for which – even at the lowest considered
frequency of 100 Hz – the required voltage amplitudes for active
signal are not bigger than several dozens of volts.

6. Conclusions

A fully-coupled finite-element modelling of active-passive
systems for vibroacoustic attenuation, involving poroelastic,
piezoelectric, and elastic materials, as well as “acoustic” (invis-
cid) fluids has been discussed. The proposed multiphysics system
is suitable for numerical analyses of active sandwich panels with
poroelastic core and allows for advanced parametric studies.
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