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There are two main topics of this research: (i) one topic considers overall properties of a nonlinear cellular
composite, treated as a model of the liver tissue, and (ii) the other topic concerns the propagation of heat
in the nonlinear medium described by the homogenised coefficient of thermal conductivity.
For (i) we give a method and find the effective thermal conductivity for the model of the liver tissue,

and for the point (ii) we present numerical and analytical treatment of the problem, and indicate the
principal difference of heat propagation in linear and nonlinear media. In linear media, as it is well known,
the range of the heat field is infinite for all times t > 0, and in nonlinear media it is finite.
Pennes’ equation, which should characterize the heat propagation in the living tissue, is in general

a quasi-nonlinear partial differential equation, and consists of three terms, one of which describes Fourier’s
heat diffusion with conductivity being a function of temperature T . This term is just a point of our analysis.
We show that a nonlinear character of the medium (heat conductivity dependent on the temperature)

changes in qualitative manner the nature of heat transfer. It is proved that for the heat source concentrated
initially (t = 0) at the space point, the range of heated region (for t > 0) is finite. The proof is analytical,
and illustrated by a numerical experiment.
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1. INTRODUCTION

1.1. Motivation of the research

The concept of ultrasound means sound waves with a frequency higher than 20 kHz, which is an
approximate upper limit frequency of sounds audible by human ear. After the discovery of strong
ultrasound generators (sonar systems) during the First World War, it was realized that the high-
intensity ultrasound waves negatively influence biological organisms. For example, they can be used
to heat and kill fish. These observations led to investigation of tissue heating by ultrasonic waves,
and to study the effect of ultrasound on the state of health of the patient [1]. The contemporary
state of the research is presented in [2] and [3].

On the other hand, this destructive ultrasonic action has been used in a lithotripsy procedure
as a non-invasive treatment for the removal of kidney stones [4, 5].

The liver is both the largest internal organ and the largest gland in the human body. Its mass
in an adult is about 1.5 kg. Lionel Smith Beale, FRS, (1828–1906), a surgeon, and promoter of
microscopic studies in physiology and anatomy, in an expressive comparison wrote that the liver is
like a great tree with its trunk, branches, and a myriad of leaves, which synthesize and purify the
blood. Really, the liver has an autonomous circulatory system (the hepatic portal system comprising
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the hepatic portal vein and its tributaries), and is composed of about one million primary lobules
which are almost identical, like the leaves of the tree, cf. [6–11], also [12].
The liver constitutes only 2.5% of body weight, but it receives 25% of the cardiac output. As the

result, the hepatic parenchymal cells are the most richly perfused of any cells in the human body.
The total hepatic blood flow is about 120 ml/min per 100 g of liver, and one fifth to one third
is supplied by the hepatic artery. About two thirds of the hepatic blood supply is portal venous
blood [13].
The analysis of the heat diffusion in non-linear heterogeneous biological tissue is a subject of this

paper. The research is partially based on studies described in [3]. Some of these results were reported
at conferences [14, 15]. In addition, the homogenisation results of nonlinear media developed by
the late Professor Józef Joachim Telega and his group [16, 17], are exploited below, and applied to
non-stationary processes.

1.2. Structure of the paper

After a short review of the biological properties of the liver, we give mathematical description of
its overall heat conductivity. Since the liver from mathematical point of view can be considered
as a micro-periodic medium, the mathematical methods of homogenisation developed for micro-
periodic media can be applied to determine some macroscopic properties of the tissue. Pennes’
equation of heat propagation in biological tissue is a quasi-nonlinear partial differential equation
with coefficients depending on temperature T . It consists of three terms, one describing Fourier’s
heat diffusion with the heat conductivity coefficient λ depending on T , second – the heat exchange
due to blood perfusion, and third – the metabolic heat source rate.
Next, the homogenised heat conductivity coefficient is applied to a numerical simulation of

the temperature diffusion produced by ultrasonic pulses and its simplified analytical description.
Finally, we deal with a heat propagation in a nonlinear medium, and present a numerical simulation
of the thermal effects of ultrasonic pulses. A method developed by Yakov Borisovich Zel’dovich and
Aleksandr Solomonovich Kompaneets [18, 19], is used to interpret the simulation results.

2. ULTRASOUND IN MEDICINE

George Döring Ludwig (1922–1973), pioneer in application of ultrasounds in the medicine, found
that the speed of ultrasound and acoustic impedance values of high water-content tissues are near
to those of water. Namely, he found that the speed of sound in soft animal tissue is between 1490
and 1610 m/s, while the speed of sound in water is 1496 m/s (at 25○C). He also estimated the
optimal scanning frequency of ultrasound transducer, as between 1 and 2.5 MHz [20].
The sound wave frequencies, and the corresponding velocities and wave-lengthes are given in the

following table and are comparable with the dimensions of the hepatic lobule, which constitutes
the basic brick of the liver structure, cf. Sec. 3.

Table 1. Ultrasound waves in the water.

Wave frequency [MHz] Wave velocity [m/s] Wave length [mm]

1 1 490 1.49

1 1 610 1.61

2.5 1 490 0.596

2.5 1 610 0.644

Advances in modern technology enable to satisfy requirements for the nondestructive charac-
terization of material and biological properties in the µm range. An example of such a progress is
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arising the acoustic microscopy, it is the microscopy that employs very high or ultra high frequency
ultrasound [20, 21].
“Recent advances in the field have allowed acoustic microscope to be operated at wavelengths

that correspond to the center of the optical band. Experimental results in the form of acoustic
micrographs are presented and compared to their optical counterparts. It is apparent that the
resolving power of these instruments is similar to that of the optical microscope” [22].
By using the reflection mode scanning acoustic microscope at nonlinear power levels, resolution

beyond the linear diffraction limit can be achieved [23]. Profiting of relatively low attenuation
of the ultrasonic waves at very high frequency, acoustic microscope can penetrate materials that
are opaque to the visible light. Thus, acoustic microscopes reveal the ability to observe internal
three-dimensional structures, unseen in the light [24].
In the acoustic microscopy the main problem is obtaining images of high resolution with min-

imum temperature increase, as this may be harmful for the tested biological specimens. Leszek
Filipczyński with co-workers analyzed the propagation of heat in the lens of an acoustic microscope
with a carrier frequency of 1 GHz, used for testing living cells at the frequency of 1 GHz [25–28].

3. LIVER

The liver is composed of four lobes of unequal size and shape, with rich micro-structure. The
liver is an important vital organ with a wide range of functions including protein synthesis and
storage, transformation of carbohydrates, synthesis of cholesterol, bile salts and phospholipids,
detoxification, and production of biochemicals necessary for digestion [8, 29].

3.1. Lobules

Each liver lobe is made up of hepatic lobules. In the mentioned Beale’s comparison, these lobules
correspond to the leaves of a tree. The shape of the hepatic lobule is approximately hexagonal, and
divided into concentric parts, with the central vein in the middle, see Fig. 1. The lobule is about
2× 1× 2 mm in size [30]. Thus, its dimensions are comparable with ultrasonic wave-lengthes from
Table 1.

Fig. 1. Beale’s drawing of a single lobule (real size about 2× 1× 2 mm). The blood enters the lobule at its
periphery, and a tiny network of capillaries, or sinusoids, runs through it to the central hepatic vein. There

are also portal triads on the border of the lobule.

Each lobule is containing at least 1000 sinusoids 0.5–1.0 mm in length, and 700 nm in breadth.
One can estimate there are over 1 billion sinusoids in the liver.
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Another component of the hepatic lobule is a portal triad. It consists of the following five
elements: proper hepatic artery, hepatic portal vein, common bile duct, lymphatic vessels, and
a branch of the vagus nerve. The name portal triad is a traditional and now confusable. It was
given before lymphatic vessels and the branch of the nerve were discovered in the structure.
The hepatic lobules also consist of plates of hepatocytes radiating from a central vein. A hep-

atocyte is a cell of the main parenchymal tissue of the liver. Hepatocytes make up 70–85% of the
liver’s mass. The typical hepatocyte is similar to a cube with sides of 20–30 µm.
Sinusoidal capillaries are a special type of open-pore capillary also known as a discontinuous

capillary, that have larger openings (30–40 µm in diameter) in the endothelium [31].
From a metabolic meaning, the functional unit of the liver is the hepatic acinus (liver acinus,

terminal acinus). The hepatic acinus is a diamond-shaped mass of liver parenchyma surrounding
a portal tract, and is smaller than a portal lobule. Its longer diagonal extends between central
hepatic veins of two adjacent lobuli, and the shorter diagonal extends between the two nearest
portal triads, cf. [32].

3.2. Cellular structure of the liver and its heat conductivity

The liver can be considered as an unidirectional composite of the lobules, the plane normal to the
central vein direction can be considered as the isotropic plane, at sufficiently long wavelengths (low
frequencies) of acoustic excitation. The central vein of each lobule is along the axis that is normal
to the plane of isotropy.
Each layer of lobules has approximately the same properties in-plane but different properties

through-the-thickness. The plane of each layer is the plane of isotropy and the vertical axis is
the axis of symmetry. Thus it is a material with a transversal isotropy. A transversely isotropic
material is one with physical properties which are symmetric about an axis that is normal to a plane
of isotropy.
The heat conductivity of a transversely isotropic material is described by the matrix [33],

λ =
RRRRRRRRRRRRRRR
λ11 0 0

0 λ11 0

0 0 λ33

RRRRRRRRRRRRRRR
with two different elements, λ11 and λ33.

4. THERMAL PROPERTIES AND PENNES’ EQUATION

The heat in a living body is transferred by three different mechanisms: conduction, convection (nat-
ural or forced) and radiation. Average thermal conductivity of the liver in (W/(m ⋅K) is 0.52 with
standard deviation 0.03. The same numbers are found for the blood [34]. The tissue temperature
T = T (r, t) depends on the spacial position r = (xk), k = 1,2,3 and the time t. Pennes’ equation
deals with description of the tissue temperature T and reads [35, 36],

cρ
∂T

∂t
= ∂

∂xk
(λ(T ) ∂T

∂xk
) +wb cb ρb(Ta − T ) + q. (1)

Here, ρ and c are the mass density [kg/m3] and specific heat [J/(kg ⋅K)] of the tissue, respectively,
wb = wb(r, t) is the blood perfusion rate [m3 blood/(s kg tissue)], cb – blood specific heat, ρb –
blood density, Ta is the temperature of the arterial supply blood. The heat generation term q

encompasses the thermal effects of metabolism and, if necessary, other volumetric heat loads, as
microwave irradiation or the heat generated by ultrasound waves.
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4.1. Nonlinearity of thermal properties

There is considerable variation in the thermal properties from tissue to tissue, from species to
species, and even within tissues from the same donor. The thermal properties of water taken
from [37] were fit to a linear equation over the range 0○ to 45○, it is λ = 0.5652 + 0.001575T .
The thermal conductivity of tissue is lower than that of water, while the temperature dependence
approximates that of water, cf. also [38, 39].
Therefore, for the biological materials we observe the linear dependence of the heat conductivity

on temperature

λ = a + bT (2)

and the experimental data are gathered in the Table 2.

Table 2. Linear dependence of the heat conductivity on temperature
in the water and the collagen, cf. Eq. (2).

Substance a b Temperature range

Water 0.5652 0.001575 0–45○C

Sheep collagen 0.5280 0.001729 25–50○C

The thermal conductivity λ is given in W ⋅m−1 ⋅K−1 units.

4.2. One-dimensional time-independent problem

Let the section [x0, x0 + ℓ] of x axis consist of two sub-sections (segments) [x0, x0 + a] and [x0 +
a,x0 + ℓ]. Let the heat conductivity be λa(1 +αT ) in [x0, x0 + a] and λb(1 + βT ) in [x0 + a,x0 + ℓ].
Consider time independent heat flow described by the equation

d

dx
{λa(1 + αT )dT

dx
} = 0 for x0 < x < x0 + a,

d

dx
{λb(1 + βT )dT

dx
} = 0 for x0 + a < x < x0 + ℓ,

(3)

together with the boundary conditions T (x0) = T0 and T (ℓ) = Tℓ. The conservation of the heat
energy density stream imposes that the integration constants appearing after the first integration
in both cases are the same and equal C. After second integration we get

λa {(Ta +
1

2
αT 2

a ) − (T0 +
1

2
αT 2

0 )} = Ca and λb {(Tℓ +
1

2
αT 2

ℓ ) − (Ta +
1

2
αT 2

a )} = C(ℓ − a). (4)
The quantity Ta denotes the unknown temperature at x = x0 + a. By solving the last set

Ta = bλa + aλb

bλaα + aλbβ
× {−1 +√1 + 2

bλaα + aλbβ(bλa + aλb)2 (bλa (T0 +
1

2
αT 2

0 ) + aλb (Tℓ +
1

2
βT 2

ℓ
))}. (5)

For small α and β we expand the square term in series and obtain

Ta = 1

bλa + aλb

(bλa (T0 +
1

2
αT 2

0 ) + aλb (Tℓ +
1

2
βT 2

ℓ )). (6)

In the linear case, for α = 0 and β = 0 we have
Ta = 1

bλa + aλb

(bλaT0 + aλbTℓ) (7)

and observe that for α > 0 and β > 0 the nonlinear expression for the temperature Ta is always
greater than the linear one.
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5. EFFECTIVE THERMAL CONDUCTIVITY OF THE LIVER

5.1. Nonlinear heat transport

Effective medium approximations are descriptions of a medium (composite material) based on the
properties and the relative fractions of its components. To these approximations belongs Clausius-
Mossotti’s formula (CMF) for the effective conductivity of the medium consisting of the matrix
substance of conductivity λM , in which are disseminated small spherical inclusions of conductivity
λI . If the ratio of the volume of all small spheres to that of whole is f , then

λeff = λI + 2λM + 2(λI − λM)f
λI + 2λM − (λI − λM)f λM . (8)

Vladimir Mityushev gave the definition of the effective thermal conductivity for the case when the
conductivity coefficient is a function of the temperature T , and found a generalization of CMF for
a family of strongly non-linear and weakly inhomogeneous composites [40].
A. Gałka, J.J. Telega and S. Tokarzewski using asymptotic methods derived the formula for the

effective heat conductivity in this general case [16]. In one-dimensional case their formula reads

λeff = A(ξ) +B(ξ) + C(ξ)
T −D(ξ) , (9)

where ξ = a/ℓ, and A, B, C, D are given function of ξ. Their effective conductivity λeff is no more
linear in the temperature.

5.2. Homogenisation

We study a quasi-linear heat equation for periodically micro-heterogeneous medium, and perform
asymptotic homogenisation of the problem [41, 42].
Let Ω ⊂ IR3 be a bounded regular domain and Γ = ∂Ω its boundary. We introduce a parameter

ε = l

L
, (10)

where l and L are typical length scales of micro-inhomegeneities and the region Ω, respectively.
The small parameter ε characterizes the micro-structure of the material. Hence, the coefficients

and the fields of the problem are functions of the ε, what indicates superscript ε.
Performing homogenisation, or passing with ε to zero one obtains the homogenised (known also

as the effective) coefficients. Such procedure is possible, since in the local problem the macroscopic
temperature T (0) plays the role of a parameter only.
We are going to study the non-stationary heat equation

ρεcε
∂T ε

∂t
= ∂

∂xi
(λε

ij

∂T ε

∂xi
) + rε in Ω,

T ε = 0 on ∂Ω.

(11)

Above ρε and cε denote the density of the material and its specific heat, respectively. The both
quantities have a microstructure denoted by the superscript ε. Moreover, we admit that the specific
heat can depend on the temperature T

cε = c(x
ε
,T) for x ∈ Ω. (12)
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Similarly, the heat conductivity

λε
ij = λij (x

ε
,T) for x ∈ Ω (13)

and rε = r(x,x/ε, t) denotes a heat source, positive or negative, dependent on the microstructure
also.

The heat equation (11) includes, as a special case Pennes’ equation (1) provided that

rε = wε
b c

ε
b(T − Ta) + qε. (14)

The time dependent Eq. (11) is also a generalization of a stationary quasi-linear heat equation,
treated by Gałka, Telega and Tokarzewski [16, 17].
By Y we denote the so-called basic cell, for instance

Y = (0, Y1) × (0, Y2) × (0, Y 3).
We assume the symmetricity of the heat conduction tensor

λij = λji (15)

and assume also that it is positive definite

λijξi ξj ≥ α0∣ξ∣2 (16)

for all ξ ∈ IR3.

According to the method of two-scale asymptotic expansions we write

T ε = T (0)(x, y) + εT (1)(x, y) + ε2 T (2)(x, y) +⋯, (17)

where

y ≡ x

ε
(18)

and the functions T (0)(x, y), T (1)(x, y), T (2)(x, y), and so on, are Y -periodic. Hence, we write
λij(y,T (0)(x, y) + εT (1)(x, y) + ε2T (2)(x, y) +⋯) = λij(y,T (0)) + εT (1) ∂λij(y,T (0))

∂T (0)

+ ε2 (T (2) ∂λij(y,T (0))
∂T (0)

+
1

2
(T (1)(x, y))2 ∂2λij(y,T (0))

∂(T (0))2 ) + ⋯. (19)
For sake of the brevity, we omit the dependence on the time t in the written arguments of the
functions introduced in the expansion (17).
It is tacitly assumed that all derivatives appearing in the asymptotic homogenisation make sense.

We recall that for a function f(x, y), where y = x/ε the operator ∂/∂xi should be replaced by
∂

∂xi
+
1

ε

∂

∂yi
.

According to the method of asymptotic homogenisation we compare the terms associated with the
same power of ε.
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5.3. Results of the homogenisation

We successively obtain:
at ε−2

∂

∂yj
(λij (y,T (0)(x, y)) ∂T (0)(x, y)

∂yi
) = 0 (20)

what is satisfied provided that T (0) does not depend on the local variable y, it is

T (0) = T (0)(x). (21)

This statement holds true under the assumption that the coefficients λij (y,T (0)(x, y)) are positive
definite and Y -periodic. Again, for sake of the brevity we omit the argument t in (20) and (21);
at ε−1

∂

∂yj
{λij (y,T (0)(x))(∂T (0)(x)

∂xi
+
∂T (1)(x, y)

∂yi
)} = 0 (22)

at ε0, after integration over Y ,

ρc
∂T (0)

∂t
= ∂

∂xj

⎧⎪⎪⎨⎪⎪⎩
1∣Y ∣ ∫

Y

λij (y,T (0)(x))(∂T (0)(x)
∂xi

+
∂T (1)(x, y)

∂yi
) + r(x, y, t)⎫⎪⎪⎬⎪⎪⎭ dy, (23)

where

T (1)(x, y) = ∂T (0)(x)
∂xi

χk (y,T (0)) . (24)

The local functions χk(y,T (0)), k = 1,2,3 are solutions to the local problem
∂

∂yj

⎧⎪⎪⎨⎪⎪⎩λij (y,T (0)(x))⎛⎝
∂χk (y,T (0)(x))

∂yi
+ δik
⎞⎠
⎫⎪⎪⎬⎪⎪⎭ = 0. (25)

Finally, substitution of T (1) from (24) into Eq. (23) gives

ρ c
∂T (0)(x, t)

∂xj
= ∂

∂xj
(λeff

ij (T (0)(x, t)) ∂T (0)(x, t)
∂xi

) + r(x, t). (26)

The quantity T (0) = T (0)(x, t) is interpreted as the macroscopic temperature T = T (x, t). Moreover,
ρ c = 1∣Y ∣ ∫

Y

ρ cdy and r(x, t) = 1∣Y ∣ ∫
Y

r(x, y, t)dy. (27)

The effective tensor of heat conductivity in Eq. (26) reads

λeff
ij (T (0)(x, t)) = 1∥Y ∥ ∫

Y

{λij (y,T (0)) + λkj (y,T (0)) ∂χi

∂yk
} dy (28)

with the local function χi being a solution of Eq. (25).
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6. HOMOGENISED COEFFICIENTS

Consider a system built of elementary long tubes. Each tube constitutes a simplified model of the
hepatic lobule, cf. Sec. 3. Its middle part, the central vein is represented as a channel, filled in
reality with the blood and enclosed in the collagen sheath. In our calculation we take the water
instead of the blood, because the water is well defined physical substance, and as it was explained,
it has almost the same heat conductivity as the blood.
In homogenisation procedure the cross-section of the tube (the hepatic lobule) is treated as

a basic cell Y . It is approximated by a square with the unit side, cf. Fig. 2. The cross-section of
the inner channel is denoted by Y1, and the cross-section of the exterior collagen sheath by Y2. In
general, the cross-section Y1 is a rectangle, with sides ξ and η, and its points satisfy inequalities

Y1 = (−ξ
2
,
ξ

2
) × (−η

2
,
η

2
) while Y2 = Y /Y1. (29)

We use the thermal properties of both components given in Subsec. 4.1.

Fig. 2. Basic cell Y . The square is 1× 1, while the inner rectangle ξ × η.

6.1. Ritz’ method

To find approximation of the local functions χi we apply Ritz’ method, cf. [16, 43, 44]. We make
an assumption

χi = ∑
a

χia(T )φa(y), (30)

where φa(y), a = 1,2, ⋅, n are prescribed Y -periodic functions and χia(T ) are unknown constants.
The weak (variational) formulation of Eq. (25) reads: find χk(⋅, T (0)) ∈Hper(Y ) such that
∫
Y

⎧⎪⎪⎨⎪⎪⎩λij (y,T (0)(x))⎛⎝
∂χk (y,T (0)(x))

∂yi
+ δik
⎞⎠
⎫⎪⎪⎬⎪⎪⎭
∂v(y)
∂yi

dy = 0 (31)

for each v ∈Hper(Y ).
The local problem (31) should be satisfied for test functions of the form

v = va φa(y). (32)

To determine the unknown constants one has to solve the following algebraic equation

χiaAab = Bib, (33)
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where

Aab(T ) = ∫
Y

λij(y,T )∂φa(y)
∂yi

∂φb(y)
∂yj

dy and Bib(T ) = −∫
Y

λij(y,T )∂φb(y)
∂yj

dy. (34)

For a given macroscopic temperature T the solution of Eq. (33) is

χia = (A−1)abBib, (35)

where A−1 is the inverse matrix of A. Finally, we obtain

λij(T )eff = ⟨λij(y,T )⟩ + (A−1(T ))abBib(T )Bja(T ). (36)

In the two-dimensional case y = (y1, y2), ∂φa(y)/∂y3 = 0. Then, after (34) we get
Aab(T ) = λ(2)(T )∫

Y

∂φa(y)
∂yi

∂φb(y)
∂yi

dy1 dy2 + [λ(2)(T ) − λ(1)(T )]∫
Y1

∂φa(y)
∂yi

∂φb(y)
∂yi

dy1 dy2

and

Bib(T ) = [λ(2)(T ) − λ(1)(T )]∫
Y1

∂φb(y)
∂yi

dy1 dy2.

(37)

The base functions are taken in the form

φ1(y1, y2) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξy1 +
ξ

2
if y1 ∈ (−1

2
,−

ξ

2
),

−(1 − ξ)y1 if y1 ∈ (−ξ
2
,
ξ

2
),

ξy1 −
ξ

2
if y1 ∈ (ξ

2
,
1

2
),

(38)

φ2(y1, y2) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ηy2 +
η

2
if y2 ∈ (−1

2
,−

η

2
),

−(1 − η)y2 if y2 ∈ (−η
2
,
η

2
),

ηy2 −
η

2
if y2 ∈ (η

2
,
1

2
).

(39)

Substituting the functions (38) and (39) into (37), and subsequently into (36), we find the
approximate dependence of the effective conductivity λeff

ij (T ) on the temperature T .
6.2. Calculated coefficients

Our basic cell of periodicity is composed of two parts, internal inclusion, short “in”, and external,
short “ex”, see Fig. 2, and in our case, both parts are made of isotropic materials. The heat
conductivities taken from Table 2, for the water and the collagen, respectively, can be written in
the matrix form as

λ
(in)
ij = w

⎡⎢⎢⎢⎢⎣
1 0

0 1

⎤⎥⎥⎥⎥⎦ and λ
(ex)
ij = k

⎡⎢⎢⎢⎢⎣
1 0

0 1

⎤⎥⎥⎥⎥⎦, (40)
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where w and k are given scalar functions of the temperature T . Then the components of the effective
heat conductivity tensor read

λeff
11(T ) = ξwη + (1 − ξη)k − η2ξ(1 − ξ) (k −w)2

η(1 − ξ)(k −w) − k , (41)

λeff
22(T ) = ξwη + (1 − ξη)k − ξ2η(1 − η) (k −w)2

ξ(1 − η)(k −w) − k . (42)

We observe that the linear term of the homogenised conductivity is simple arithmetic mean of
conductivities of the components.

6.3. Homogenisation results

In our calculations we take as the inner material – the water, and as the external one – the collagen.
Hence, cf. Subsec. 4.1,

w = 0.5652 + 0.001575T and k = 0.5280 + 0.001729T. (43)

In calculated examples we consider two different cases, one isotropic, and the second – anisotropic,
see Fig. 3.

Fig. 3. The effective conductivity tensor components in isotropic composite (λeff

11 = λ
eff

22 ) as the function of
the temperature T for three different square inclusions.

First, an isotropic micro-heterogeneous medium is studied, with the basic cell characterized by
ξ = η =√0.9, what corresponds to 90% amount of the water in the tissue. In Fig. 3 the temperature
dependence of the effective conductivity components of the homogenised medium is shown. We
have λeff

11(T ) = λeff
22(T ) in this case. The lower fraction of the water manifests in moving away the

effective lines from the line of water conductivity.
In the second case, the basic cell is characterized by ξ = 0.71 and η = 0.99, what corresponds

to 70% of the water amount in the tissue, and should result in the anisotropy of the homogenised
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medium. The difference of the effective conductivity components (λeff
11(T ) − λeff

22(T )) in function of
the temperature T is presented in Fig. 4. Both lines are different, but still very near each other; the
difference is less than 4× 10−4. We observe that the difference does not depend on the temperature.

Fig. 4. The difference of the effective conductivity tensor components (λeff

11 − λ
eff

22 ) for both, isotropic and
anisotropic composites does not depend on the temperature T . The basic cell of the isotropic composite is
built of the square water inclusion in the collagen matrix; the water inclusion for the anisotropic case has the

shape of rectangle 0.71× 0.99.

6.4. Estimation of the method error

We began our calculations for the material built of square cells with a circular opening inside. This
circular opening we call the initial circle. Next, we replaced a circular opening by a square one.
Such a procedure entails an methodical error. To estimate it we carried out 3 similar tasks with
different square inclusions: (i) the side of square is equal to diameter 2R = √0.9 of the replaced
circle (circumscribed square), (ii) square of the surface equal to the initial circle, and (iii) inscribed
square. The results are shown in Fig. 3. The discrepancies are smaller than 2%.

7. APPLICATION TO NUMERICAL FEM CALCULATIONS

To determine the temperature field inside the liver tissue, a numerical model based on the finite
element method (FEM) was implemented in the Abaqus 6.12 software (DS SIMULIA Corp.). This
numerical model simulates an experiment of heating the liver tissue sample in vitro by ultrasound
circular focusing transducer, described in [45] and [2]. The axially-symmetric problem is considered,
in which an ultrasound wave is propagating in the positive z axis direction. The temperature
fields are induced by ultrasound circular focusing transducer, with the focus placed inside the liver
sample in vitro immersed in the water bath. The dimensions of the longitudinal cross-section of the
calculation area are 40× 15 mm. The dimensions of the longitudinal cross-section of the focus area
are 20× 2.25 mm, see Fig. 5.
The transducer is immersed in water and the source acoustic power is 0.7 W, and 50% of the

acoustical energy is transformed into heat [46]. The time of exposure was 2 seconds. Thus the
heat energy supplied to the tissue is 0.7 J. The coefficients in the heat transfer equation solved
numerically are assumed as follows. The temperature dependent heat conductivities are given by
Eq. (2) and Table 2, the densities and the specific heats of water and tissue are 1000 and 1060 kg/m3,
and 4200 and 3600 J/kg K, respectively.
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Fig. 5. The propagation of the heat pulse in the liver. Profiting the symmetry, the half of the image is shown
only. The z-axis – the direction of the ultrasonic wave. Notice that the range of the temperature scale changes

from image to image due to lowering of the temperature.

7.1. Propagation of heat pulse in nonlinear medium

Since the deflection from rectilinearity in the dependence of the effective heat conductivity λeff is
very small, cf. Fig. 3, we assume that after homogenisation the function λeff = λeff(T ) it is still
linear. Hence, we consider a propagation of a thermal pulse (produced by a focused ultrasound
beam) in the medium with the conductivity λ linear in T

λ = λ0(1 + bT ), (44)

with λ0 and b being positive constants

λ = λ0(1 + bT ) ≥ 0. (45)

At the initial instant, t = 0, an amount of heat Q is concentrated at the point x = 0, while T = T0

every where else

T 0(x, t = 0) ≡ T 0(x,0) = Qδ(x). (46)

The heat equation has the form

∂T

∂t
= a ∂

∂x
{(1 + bT ) ∂T

∂x
}, (47)

where

a = λ0

cp
= constant (48)

and cp is the specific heat at constant pressure.
We introduce a rescaled temperature G by the substitution

G = 1 + bT or T = G − 1

b
(49)
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gives

∂G

∂t
= a ∂

∂x
(G∂G

∂x
). (50)

Now, we can apply the method developed by Zel’dovich and Kompaneets [18, 19], also [48], and
look for a solution in the form

G = (Q2

at
)1/3 f(ξ), (51)

where

ξ = x(Qat)1/3 (52)

is a dimensionless variable. We get subsequently

∂G

∂t
= −1

3
(Q2

a
)1/3 1

t4/3
(f + ξdf

dξ
) and

∂G

∂x
= Q1/3

(a t)2/3 dfdξ . (53)

Moreover

∂2G

∂x2
= 1

a t

d2f

dξ2
. (54)

Therefore

∂

∂x
(G∂G

∂x
) = (∂G

∂x
)2 +G∂2G

∂x2
= Q2/3

(a t)4/3 d

dξ
(f df

dξ
). (55)

With the substitution (51), the equation (50) reads

d

dξ
(ξ f + 3f df

dξ
) = 0. (56)

This ordinary differential equation has a solution

f = 1

6
(ξ20 − ξ2) +C (57)

which satisfies the conditions of the problem. We put

C = (Q2

at
)−1/3 (58)

and returning to the expression (51), we get

G = (Q2

at
)1/3 1

6
(ξ20 − ξ2). (59)

This formula gives the distribution of the rescaled temperature G in the interval between the points
x = ±x0, corresponding at every instant to the equations ξ = ±ξ0

x0 = (Qat)1/3ξ0. (60)
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The temperature field expands with time as x0 ∝ t1/3, and outside the interval [−ξ0, ξ0] the tem-
perature vanishes, T = 0.
The constant ξ0 is determined by the condition that the total amount of the heat energy be

constant. The respective law of energy conservation reads

∞

∫
−∞

T (x, t)dx = ∞

∫
−∞

T 0(x,0)dx = Q. (61)

The expression (60) together with (59) can be compared with the numerical experiment results, in
which the locality and finite range of the heat impulse are observed, cf. Fig. 5.

8. RESULTS AND CONCLUSIONS

Accounting for the nonlinearity in Pennes’ equation results in qualitative (and obviously quantita-
tive) change of heat propagation, in comparison with a linear medium.
First, the dimension of the heated region is always finite, while in the classical description it

always infinite. This result finds its confirmation in FEM calculations for the heat transport in the
homogeneous liver tissue described by the temperature dependent effective heat conductivity.
Second, the appropriability of the used model of heat transport was affirmed by experimental

measurements of the temperature field in a rat liver, cf. [2]. The heating was realized by focusing an
ultrasound beam, while the temperature of the liver during its ultrasound heating was measured
by thermocouples. The linear equation, it is the heat equation with constant conductivity did
not describe the time dependence of the temperature increase in the region of the most strong
heating, even quantitatively. Quite the opposite, the FEM calculations, in which the temperature
dependence of the heat conductivity was accounted for, permitted for much better fitting of the
experimental curve [47]. The power of heat sources used in our FEM calculations was determined
independently from a model of focusing an ultrasound wave in absorbing medium [49].
Applying the homogenisation method to find nonlinear properties of heat transport in two-

component cellular materials permits to discuss the influence of two main components of the soft
tissue, it is of the collagen and the water, for the effective thermal conductivity. It was shown that
almost linear dependence of the effective conductivity on temperature is retained, and the values
of the effective conductivity are moving closer to the water values, see Fig. 3.
To obtain the effective thermal conductivity of the composite, a simplified periodic geometry of

structure of type inclusion in matrix was introduced. The elementary (basic) cell was composed of
the square collagen matrix with a rectangular inclusion (of sides ξ and η), filled with the water.
For such a configuration we could realize maximally possible anisotropy. As is shown in Fig. 4, for
ξ = 0.71 and η = 0.99, the difference (λeff

11 − λ
eff
22)(T ), being an indicator of the anisotropy is less

than 4× 10−4 what gives a relative discrepance of the order 10−3%. This means that even in this
case the anisotropy of heat conductivity is small, what justifies our simplified calculation, in which
we applied a square basic cell (instead of the hexagonal one).
The second simplification, which we have made, pertains to modelling of the cross-section of

a blood vessel, which is a circle or ellipse, and which in our calculations was replaced by a square.
This permitted to elucidate the procedure, the main aim of which was to prove that the heat
propagation in tissues with a structure of two-phase composites of the type collagen-water, and
of overall isotropic properties in the interval 36–43○C can be described with high accuracy by the
effective heat conductivity.
In Fig. 3 we make a comparison of the effective conductivity for 3 different, albeit similar basic

cells, in which the circular opening filled with the water is replaced by (a) the square circumscribed
over the circle, (b) the square of the surface equal to the surface of the circle, and (c) the square
inscribed into the circle. We observe that the conductivities found for these 3 cases agree within
relative discrepancies less than 10−5.
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In the algebraic formulae (41) and (42) the following parameters take place: the heat conduc-
tivities of the components (as functions of the temperature, for example, for the collagen and the
water), and the geometrical proportions (ξ and η) of the water inclusion. These formulae permit
to evaluate the thermal conductivity of the composite, in function of the fraction of components.
The hepatic lobule, the elementary brick of the liver tissue was considered as the basic cell

in the homogenisation process. It was shown that for this tissue, in this what concerns the heat
conductivity it is sufficient to replace the hexagonale structure by the square lattice.
The following results are obtained:

● mathematical formulation of the problem of nonlinear heat conductivity of the liver,

● introduction of a mathematical model of the liver, being a cellular composite prepared of the
collagen skeleton fulfilled with the water,

● calculation of the homogenised heat conductivity coefficients for the above composite,

● the numerical experiment on heat propagation in the liver characterized by calculated ho-
mogenised coefficients,

● the analysis of the results of the numerical experiment by Zel’dovich and Kompaneets’ approach.

We have evaluated the dependence of the effective conductivity on the temperature T for the
homogeneous (in large scale) cutting of the liver. The cutting was treated as a two-dimensional
periodic composite, built of lobules, imitated by the collagen capillaries filled with the water.
The linear dependance of the conductivity coefficient holds for the liver tissue, as a result of

small differences (small contrast) of the heat coefficients of the tissue components.
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