Plasma generated during underwater laser shock processing

J. Radziejewska¹, J. Hoffman², Z. Szymanski²

¹Warsaw University of Technology, ul.Narbuta 85, 02-524 Warsaw, Poland
²Institute of Fundamental Technological Research, ul.Powsielskiego 58, 02-106 Warsaw, Poland

zym@ippt.pan.pl

Knowledge of the behaviour of materials and their properties under conditions of dynamic deformation is essential for proper designing of machines and equipment and for predicting their behaviour in manufacturing and operating processes. Ultra-high speed deformations occur in the processes of friction and machining of materials, as well as, operation of components used in many fields of technology. Properties of materials under conditions of dynamic deformation significantly differ from those in static conditions. They depend on the speed of deformation, microstructure of the material and temperature. Laser shock processing is regarded as a very promising tool for studying dynamic deformation of materials.¹,² Pulse laser ablation in water supplies suitable conditions for such studies at relatively low laser fluences. The investigated metallic samples are usually coated with a thin layer of graphite in order to provide full absorption of the laser radiation. Additionally, such a layer isolates the investigated metal from thermal effects connected with interaction of the laser beam. In this paper the ablation of graphite layer is studied to get better insight into underwater laser shock processing. An 10 ns laser pulse of 1064 nm Nd:YAG laser with intensity of 1.5 GW·cm⁻² was used to produce a shock wave. The induced plasma pressure was about 2 GPa as inferred from measurements with the use of piezoelectric pressure transducers located at the bottom surface of the sample.

The emission spectra of ablated plume consist mainly of continuous radiation. After 50 ns from the laser pulse the absorption spectra of OH (A²Σ⁻−X²Π) system appears. This absorption band results from the absorption of plasma radiation in water and its temperature of about 5000 K reveals the temperature of dissociated water layer, which surrounds the plume. After 100 ns strongly broadened molecular spectra of C₂ Swan system appear, which become better resolved with longer delay time as the plasma pressure and electron density decrease. Very weak carbon atomic lines are observed after 500 ns from the laser pulse.

Fig. 1a shows the calibrated continuous radiation as a function of wavelength measured 20 ns after the laser pulse. At this moment the experimental intensity fits well to that of blackbody with a temperature of 17000 K. At longer delay times the intensity of plasma radiation deviates significantly from that of blackbody. The temperature can be then obtained from Swan spectra (Fig. 1b).

![Figure 1](image-url)