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Theory of Red Blood Cell Oscillations in an Ultrasound Field
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Manipulating particles in the blood pool with noninvasive methods has been of great interest in
therapeutic delivery. Recently, it was demonstrated experimentally that red blood cells can be forced to
translate and accumulate in an ultrasound field. This acoustic response of the red blood cells has been
attributed to sonophores, gas pockets that are formed under the influence of a sound field in the inner-
membrane leaflets of biological cells. In this paper, we propose a simpler model: that of the compressible
membrane. We derive the spatio-temporal cell dynamics for a spherically symmetric single cell, whilst
regarding the cell bilayer membrane as two monolayer Newtonian viscous liquids, separated by a thin gas
void.

When applying the newly-derived equations to a red blood cell, it is observed that the void inside the
bilayer expands to multiples of its original thickness, even at clinically safe acoustic pressure amplitudes.
For causing permanent cell rupture during expansion, however, the acoustic pressure amplitudes needed
would have to surpass the inertial cavitation threshold by a factor 10.

Given the incompressibility of the inner monolayer, the radial oscillations of a cell are governed by the
same set of equations as those of a forced antibubble. Evidently, these equations must hold for liposomes
under sonication, as well.

Keywords: spatio-temporal cell dynamics; Rayleigh-Plesset equation; spherical cell; red blood cell; ery-
throcyte; sonophore.

1. Introduction

Manipulating particles in the blood pool with non-
invasive methods has been of great interest in thera-
peutic delivery, about which a review has been pub-
lished by DELALANDE et al. (2012). Ultrasonic equip-
ment is commonly used for noninvasive manipulation,
owing to its reliability, safety, availability, and low op-
erating cost. Following numerous nondestructive and
destructive experimental studies on microbubbles un-
der sonication near biological cells, e.g., PRENTICE
et al. (2005), VAN WAMEL et al. (2006), KUDO et al.

(2009), and DELALANDE et al. (2011), it was specu-
lated that cells themselves respond to sound by oscil-
lating (KRASOVITSKI et al., 2011), which might lead to
novel ways of noninvasive cell manipulation, filtration,
and even eradication (WALTHER, POSTEMA, 2016).
Recently, MAZZAWI et al. (2015) demonstrated ex-
perimentally that red blood cells can be forced to
translate and accumulate in an ultrasound field. This
acoustic response of the red blood cells has been at-
tributed to sonophores, gas pockets that are formed
under the influence of a sound field in the inner-
membrane leaflets of biological cells (KRASOVITSKI
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et al., 2011). Under sonication, such trapped gas pock-
ets must oscillate in a similar way as encapsulated gas
microbubbles do.

Although the existence of sonophores would ex-
plain experimentally observed phenomena, such as the
attraction of oscillating microbubbles to fixated cells
(DELALANDE et al., 2011) and the occurrence of the
transient formation of pores in cell membranes in the
absence of microbubbles (BAO et al., 1997), there
might be a more straightforward explanation for the
behaviour observed.

In this paper, we propose a simpler model: that
of the compressible membrane. Initially, we fol-
low the derivation for antibubble dynamics of Ko-
TOPOULIS et al. (2015) step by step whilst replacing
only few parameters, but from Subsec. 2.4 we devi-
ate by including an outer cell membrane, following
the derivation of encapsulated bubbles dynamics by
CHURCH (1995).

2. Theory

Let us consider a spherical cell, as schematically
represented in Fig. 1. We regard the inner cell struc-
ture as an incompressible liquid of radius R;. Instead
of regarding the surrounding bilayer membrane as one
layer, we split it up into three components (BOAL,
2012): an inner monolayer Newtonian viscous liquid
membrane of inner radius R; and outer radius Ry, an
outer monolayer Newtonian viscous liquid membrane
of inner radius R3 and outer radius R4, and a gas void
separating both monolayers of inner radius Re and
outer radius R3. Even though actual cells are rarely
spherical, we may disregard this fact, as the radial
dynamics are predominantly determined by the sur-
face pressure of the surface with the greatest curvature
(ISENBERG, 1992).

f“

Fig. 1. Schematic representation of a spher-

ical cell consisting of a liquid core of radius

Ry, surrounded by a monolayer Newtonian

viscous liquid membrane of outer radius Ra,

a compressible gas void of outer radius R3, and

a monolayer Newtonian viscous liquid mem-
brane of outer radius Rj4.

Because the monolayer membranes are considered
Newtonian viscous liquids, they are incompressible,
as is the intracellular liquid. Consequently, the inner
membrane radii do not respond to pressure changes.
However, the gas void separating the inside and outside
membranes must abide by the same thermodynamics
that cavitation bubbles do when subjected to a sound
field.

2.1. Fundamental equation of cell dynamics

Let us consider a polytropic gas void, surrounding
the spherical incompressible liquid core of radius Rg
as presented in Fig. 1. For now, we ignore the outer
monolayer membrane.

We are assuming adiabatic conditions. Further-
more, no mass exchange between the respective inter-
faces is assumed.

Following the derivation for antibubble dynamics
of KoTorouLis et al. (2015) and introducing a driv-
ing function P(t), the fundamental equation of cell dy-
namics becomes:

.. 3.
R3R3 + §R32

20 R336—R23 >’Y 20
+— | ==—= ) —=—po—P(t
(pO RSO)(R33—R23 R3 Po ( )
where pg is the ambient pressure, Rso is the initial
outer radius of the gas void, 7 is the polytropic ex-
ponent of the gas inside the void, pr, is the density of

the liquid surrounding the cell, and o is the surface
tension.
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2.2. Cell dynamics in a Newtonian viscous fluid

The viscosity nr, of a Newtonian viscous fluid is by
definition equal to the rate of strain Ae/At.

Again, following the derivation for antibubble dy-
namics of KOTOPOULIS et al. (2015) and introducing
a driving function P(t), the fundamental equation of
cell dynamics in a Newtonian viscous fluid becomes:
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This is the Rayleigh-Plesset-like equation for a cell in
a Newtonian viscous fluid, which can only be applied
if the surrounding fluid is incompressible and the gas
is polytropic. The equation is a second-order nonlinear
ordinary differential equation.

2.3. Linear analysis for an unrestrained cell

Let us assume that (2) has a solution of the form

Rs(t) = Rsoll +£(1)] 3)
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for small excursions & of the outer surface of the void,
i.e., £ < Rao. Then, (2) can be linearised and repre-
sented by a mass-spring-dashpot system (POSTEMA,
2011).

The linear natural angular resonance frequency wy
of an unrestrained cell is given by:

2 1 _ 20
R3o® pr, 1— (&)3 Rso

Wo 3VPg0 20 (4)
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where pgo is the initial gas pressure inside the void.

It can be observed that the linear damped reso-
nance frequency of a gas void is increased by the cubic
ratio of the inner cell liquid radius and the initial ra-
dius compared to that of a regular gas bubble.

If a cell is suspended in a Newtonian viscous fluid,
it resonates with a linear damped natural angular res-
onance frequency wq, given by (2.2.7) in KOTOPOULIS
et al. (2015):
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It can be observed from (5) that the linear damped
resonance frequency decreases when the viscosity of
the surrounding fluid increases.

2.4. Presence of the outer cell membrane

Now let us take into account that the gas void
is surrounded by a restraining layer. Both the liquid
composing the membrane and the outer surrounding
liquid are assumed to be viscous and incompressible.
Assuming no mass exchange between the respective in-
terfaces, the radial velocity v(r, t) in the membrane and
in the surrounding fluid at a distance r from the centre
of the cell can be expressed as (LEIGHTON, 1994):

Rs® .
o(r,t) = —5-Rs, (6)

If R3 <r < Ry, v(r,t) denotes the velocity inside the
membrane. If r > Ry, v(r, t) denotes the radial velocity
of the surrounding liquid. From the assumption of an
incompressible membrane it can be shown that

R4® — R3® = Ryo® — Ra3o® (7)
and . .
R3*Rs = Ry*Ry, (8)

where Ryg is the initial cell radius.
From conservation of radial momentum (LANDAU,
L1FSHITZ, 1986), it follows that
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where pyp is the the density of the membrane, py, is the
density of the surrounding liquid, p is the pressure in
the membrane or the liquid, 7™ is the viscous stress
tensor in the membrane, and 7% is the viscous stress
in the liquid. Equation (9) is integrated from R3 to Ry,
and (10) is integrated from R4 to infinity, substituting
(6) for v. It is here assumed that the contribution to
the radial momentum from the gas inside the void can
be neglected. Combining these two integrals, the result

can be expressed as
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where Pyi(Rp,t) and Py(Ra,t) are the pressures in
the membrane at the inner and outer interfaces, re-
spectively, Pp(Rz,t) is the pressure in the liquid at
the outer interface, 7 (Ry,t) and 7N (Ra,t) are the
stresses at the inner and outer interfaces, respectively,
and 75 (Ra,t) is the stress in the liquid at the outer
interface (CHURCH, 1995).

The boundary conditions from conservation of ra-
dial momentum can be stated as

20
pg(Rg,t)—f—T}N\f(Rg,t) ZPM(Rg,t)+ R_33 (12)

and
PM(R4,t) — TM(R;;,t) = PL(R4,t) — T}T(Rzl,t)
2
+224 4 P, (13)
Ry

where P,(Rq,t) is the instantaneous pressure inside
the void, and o3 and o4 are the surface tensions at
the two respective interfaces of the outer membrane.
Combining (11) with the boundary conditions in (12)
and (13) yields
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It now remains to determine the two integrals in
(14). Where the first integral describes the rheological
properties of the membrane, and the latter integral
describes the damping from the surrounding fluid.

Assuming the void is surrounded by a Newtonian
viscous liquid, the shear viscous stress can be ex-
pressed as

ov
L — op, — 1
Trr "L or’ ( 5)

The last integral in (14) can now be determined using
(6), yielding an expression for the effect of a viscous
surrounding liquid:
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The general Rayleigh-Plesset-like equation for a cell
with a finite membrane and surrounded by a Newto-
nian viscous liquid is obtained by substituting

R3o® — R*Y
Pg = Pgo (W (17)
for pg(R1,t) and (16) for the last integral in (14):
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2.5. Newtonian viscous liquid outer cell membrane

Now let us assume that the outer monolayer mem-
brane of a cell can be regarded as a Newtonian viscous
liquid, where the viscous stress in the membrane 7 is
related to the membrane viscosity my by (DOINIKOV,
DAYTON, 2007):

ov

= (19)
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The remaining integral in (18) describes the shear

viscosity in the Newtonian liquid membrane, which

dampens the radial response from the void as it is ex-

cited by an acoustic pulse. Substituting (19) and using

both (7) and (8), the integral can be written in terms
of radial displacement:
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Substituting (20) into (18) gives a Rayleigh-Ples-
set-like equation for a cell with a Newtonian membrane
of finite thickness surrounded by a Newtonian viscous
liquid:
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3. Solution

To simulate a spherically oscillating cell, param-
eters measured on living blood cells were used. Bi-
layer cell membranes are 20 nm in thickness, whereas
the void separating the individual monolayers is only
2nm in thickness (BOAL, 2012). The shear viscosity of
red blood cell membranes is in the order of 103 Pa-s
(TRAN-SON-TAY et al., 1984). The sizes of cells greatly
vary. Red blood cells have in axial view an outer radius
of 3 pm.

Equation (21) was solved numerically using the
ode45 algorithm of MATLAB® (The MathWorks, Inc.,
Natick, MA, USA). The parameters chosen were: py &
pL = 103 kg-mfg, Ryo = 3 um, (R40 — Rgo) = 9 nm,
(R30 — R2) = 2nm, pg = lkg-m™3, v =14, 03 =
04 =0.025N-m™!, po = 10° Pa, n;, = 1073 Pa-s, and

v = 10° Pa-s.

The driving pulse consisted of a 10-cycles sinu-
soid wave, with a centre frequency of 1 MHz or
3 MHz. The number of cycles chosen is typical for
the upper pulse duration in commercial ultrasound
equipment, whereas the centre frequencies are typi-
cal for those used in clinical cardiac and gastroentero-
logic ultrasonic imaging. Acoustic amplitudes ranged
from 300 kPa to 20 MPa. The low acoustic pressures
were chosen to simulate clinically safe ultrasound, the
higher pressures to investigate under what conditions
ultrasound-induced cell damage should be permanent.

4. Results and discussion

Figures 2-4 show expansion-time curves of red
blood cells under sonication. In all these figures, it
can be observed, that all oscillations of the void are
highly asymmetric, 7.e., greater expansive excursions
than contractive excursions. This is a direct result of
the incompressibility of the cellular content and of the
nonlinearity of (21). It may be interesting to mention,
that if the density of the outer membrane were dif-
ferent from the density of the surrounding fluid, more
asymmetry should have occurred: According to (18),
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Fig. 2. Expansion-time curve of a red blood cell under
1-MHz sonication. The acoustic amplitude is 300 kPa.
Time ¢ has been normalised by period T'.
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Fig. 3. Expansion-time curve of a red blood cell under
3-MHz sonication. The acoustic amplitude is 500 kPa.
Time ¢ has been normalised by period T'.
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Fig. 4. Expansion-time curve of a red blood cell under
1-MHz sonication. The acoustic amplitude is 20 MPa.
Time t has been normalised by period T

it follows from the first term on the left-hand side that
the acceleration increases if p1, > pm, and the accel-
eration decreases if pr, < pum. The ratios of the den-
sities effects the second term on the left-hand side in
a similar way, decreasing and increasing the degree of
nonlinearity. The first term on the right-hand side is

a different form of a Rayleigh-Plesset-like equation, de-
scribing the radial pulsation of a gas bubble. The pres-
sure inside a cell is larger than in a gas bubble under
the same conditions.

Figures 2 and 3 both demonstrate a maximum void
expansion of more than 5 nm, i.e., more than 2.5x
the initial void thickness, despite the high viscosity
(mi = 103 Pa-s) of the outer monolayer membrane.
The acoustic amplitudes in both computations were
chosen to correspond to a mechanical index of 0.3
(APFEL, HOLLAND, 1991): At a transmit frequency of
1 MHz, acoustic amplitudes of pulsed ultrasound below
300 kPa are considered safe in neonatal scans, whereas
at a transmit frequency of 3 MHz, acoustic amplitudes
of pulsed ultrasound below 500 kPa are considered safe
in neonatal scans (POSTEMA, 2011).

Hence, even at low acoustics amplitudes, the void
inside the bilayer membrane oscillates to multiple
times its initial thickness. These excursions are not
enough to permanently damage a red blood cell.

Recently, L1 et al. (2013) measured that red blood
cells need to be stretched to an area corresponding to
20% increase of their resting radius. Figure 4 shows
that such excursions can be achieved during sonica-
tion at 1 MHz with an acoustic pressure amplitude of
20 MPa. This pressure amplitude corresponds to 10x
the threshold of inertial cavitation (APFEL, HOLLAND,
1991). Hence, permanent cell damage caused by the os-
cillating bilayer void can be neglected in clinical situ-
ations. However, diffusive processes into the void have
not been accounted for in our model. Such processes
might inflate the void over multiple cycles.

The purpose of this paper was to propose a model
with less unknown parameters than the sonophore.
Introducing compressible membranes, bulk viscosity
and thermal conductivity would, albeit representing
a more realistic situation, complicate the model with
unknown material properties. However, real excursion
amplitudes should be even lower due to these addi-
tional damping terms.

It can be noted that, given the incompressibility
of the inner monolayer, the radial oscillations of a cell
are governed by the same set of equations as those of
a forced antibubble (KOTOPOULIS et al., 2015).

5. Conclusions

We derived the spatio-temporal cell dynamics for
a spherically symmetric single cell, whilst regarding
the cell bilayer membrane as two monolayer Newtonian
viscous liquids, separated by a thin gas void.

Given the incompressibility of the inner monolayer,
the radial oscillations of a cell are governed by the same
set of equations as those of a forced antibubble. Evi-
dently, these equations must hold for liposomes under
sonication, as well.
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