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Abstract 

The analytical modelling of coupled slip and sliding contact response of two elastic spheres is presented for the kinematically 
imposed sphere centre relative motion trajectories. One sphere is assumed as a fixed, the other translating along a specified 
trajectory and remaining in contact condition. Two cases are considered, the first is corresponding to a linear trajectory with the 
contact engagement in the combined slip-sliding mode, the other is related to the contact initiation by normal loading and 
subsequent motion along an inclined linear trajectory. The formulae and diagrams of the evolution of driving force along the 
sliding path in terms of main contact geometry parameters were analytically specified. Further extensions and applications of the 
analysis can be envisaged in the creation of the translation controlled apparatus for the measurements of friction and restitution 
coefficients for the pair of spherical grains. 
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1. Introduction 

The mechanical response of soils, fluidized beds, is mainly predicted in the framework of continuum mechanics 
and rules of the theories of elasticity and plasticity. Such approach allows for establishing the main bulk parameters 
without any consideration of the behavior of individual grains at their micro scale and the effects arising in 
microstructure of granules during the transient flow. Alternatively, the same bulk properties of granular matter can 
be determined using the homogenization approach, when the micro-level contact interaction parameters are defined. 
In this case, the micro-level based parameters, such as, the normal and tangential compliances, contact stiffness, 
friction coefficient, adhesive strength or viscosity modulus established from the grain-grain contact mechanics are 
required. As a rule, the micro-mechanical approach requires the numerical analysis [1], [2]. 

The pioneering analysis of two spheres contact interaction under the applied normal to contact plane forces was 
developed by Hertz. For the sphere-sphere contact interaction, when normal and tangential forces are applied, the 
theory has been developed by Mindlin and Deresiewicz [3]. However, this theory is suitable for very small tangential 
displacement ranges, operating in a so called slip mode, and is not appropriate, when the contact zone is no longer 
fixed and sliding of the sphere occurs. For a specified trajectory of the sphere center, both normal and tangential 
forces vary and the contact zone changes its size and orientation, cf. [4], [5].  

The present paper is aimed at developing the analytical description of interaction of two contacting spheres for 
several classes of combined slip and sliding trajectories, typical in the experimental testing. In particular, one sphere 
is being fixed, the other allowed to execute a translatory motion with the constraint set on its rotation. The case, 
when the contact zone is first generated by applying the normal load and next a combined slip and sliding process is 
induced by applying the oblique or transverse load is also considered. The account for memory effects in the slip 
regime and for configurational effects in the sliding regime is essential in the analysis.   

2. The sphere-sphere contact interaction for the displacement controlled sliding process  

Two cases of the sphere-sphere contact interaction under the imposed trajectory will be considered (Fig. 1). 
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Fig. 1. Sphere-sphere contact interaction - geometry and decomposition of velocities: a) horizontal sphere centre trajectory inducing contact 
engagement in the combined slip-sliding mode, b) inclined linear motion trajectory applied after initial contact generation by normal loading.  

Firstly, we shall consider the sliding of the sphere of radius R2 along the imposed linear path O1O2 (Fig. 1a). In 
this case, the sphere comes into contact at the point A and translates over the lower sphere until the contact 
separation. Next, the analysis of the sphere slip and sliding will be performed for the motion along an inclined 
trajectory relative to the activated contact zone by the primarily normal compression introduced, (Fig. 1b). The 
displacement controlled process is executed by mounting the upper sphere at the center point O1 to a moving tool 
which imposes the required motion trajectories and eliminates the sphere rotation. 

The contact modelling is performed using the normal contact traction specified by the Hertz law 23*
tnt hkhN  

(where ht is the total overlap defined as the sum of penetration depths of the contacting spheres, 

effeffn REk 34* is the contact zone stiffness depending on the effective modulus of elasticity effE  and the 
effective radius effR  of two contacting spheres) and adopting the tangential contact traction accounting for the 
Mindlin-Deresiewicz  and Coulomb sliding friction rules.  

The contact path is specified geometrically by tracking the contact point C position during sliding by intersection 
of sphere profiles (cf., Fig. 1a). Since the Hertz theory defines the normal contact force N between two spheres of 
different elastic compliance and radii in terms of total overlap ht, so there is no need to select a specific contact 
trajectory for each case of different elastic compliances and radii. The mechanical contact response depends on the 
evolution of total overlap and of the orientation of contact plane. In Fig. 1a, the contact point position C shown is 
attributed to the actual path for the spheres of equal elastic moduli. 

2.1.  Contact zone activated in the sliding mode interacting with slip displacement 

Consider the sliding of sphere of radius R2 along the linear path O1O2 (Fig. 1a). The contact condition is 
00yR  (where 21 RRR , 0y  is the vertical coordinate of the sphere center), while the value of maximal 

overlap h0 is known. Hence, the condition of consthRy 00  is held. The contact zone growth develops 
instantaneously in the sliding mode and the Coulomb friction rule is valid from the onset of contact engagement [4], 
when the following initial condition is satisfied 

Ryy
14

2
lim0 ,    (1) 

where  is the coefficient of friction and  is the Poisson’s ratio.  
However, a limit slip displacement δu, tangential to the contact plane, specified in Mindlin-Deresiewicz theory 

[1], develops simultaneously with the sliding displacement Δsr at the sphere centre and evolves along the whole 
sliding path. Therefore the slip and sliding rates are interacting and, therefore, affecting the overlap. Thus, we can 
assume (Fig. 1a): 

rst sss ,  rst hhh  (2) 

where ss  is the slip displacement component related to the limit displacement δu and 
sh , 

rh are the corresponding 
overlap rates. Note, the slip displacement is referred to the sphere center tangential to the contact plane, but the 
contact zone position at point C remains fixed.  

The ultimate slip displacement and its rate, for the left- or rightward motions, can be expressed as: 

ttgug hhssu 420 , thu0 , (3) 
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where 42gs  and rst hhh are the normal contact velocities  of the contact plane produced by slip and 

sliding displacements ss  and rs , respectively, 0g signs tvs  is the function setting the direction of motion. 

From the contact configuration developed at angle t , the following relations can also be written (Fig. 1a) 

ttr ys 2
0 cos ;  trsts hhus coscos0 , (4) 

where tttr yh 2
0 cos/sin , ts uh tan0  and ttrtr shu tan1tantan10 . 

Thus, the sphere centre translation and the total overlap rates are expressed as follows: 

rttrsrt sssss tan1tan1 , (5) 

rttrsrt hhhhh )tan1(tan1 ,     (6) 

while the functions of the sphere displacement, center coordinate and overlap are found after integration. Thus: 

0tantan20tantan 22
0 tttt ys , 0tantan2tan 22

0 tttt ys       (7) 

t

u
yh tt 2cossin1lncostancos20 . (8) 

where 0  is the initial angle of contact engagement: u0 , for 1sg , and u0  for 1sg .  Note that for 

0tth , the contact separation angle u  is specified.   
The imposed trajectory induces the contact forces, while the equilibrium conditions express the resultant forces 

oriented in the normal and parallel directions to the translation path imposed: 

coscos)(*
gttt sNN , NNR ,  (9) 

cossin)(*
gttt sNT , TF , (10) 

where arctan  is the friction angle, RN  is the vertical reaction force of the moving tool and F is the moving 
tool driving force. 

Now, the active loading condition, accounting for the contact plane orientation can be expressed by the formula 

0)stan()stan(),,( gg
**

ttRtttttRL NFNTFNF .  (11) 

In Fig. 1b, the force function F-NR for the case of monotonic rightward motion along the linear trajectory and 
evolution of the limit surface (11), represented by two Coulomb lines rotating about the origin O, is plotted. During 
sliding the limit locus rotates, as the angle t  varies from u  to u  from the contact activation to its separation, 

respectively. The force path reaches the maximal value of the driving force F at point PF, for 0T . Next, the 

extremal point PN is attained at 0N  at which vertical reaction takes the maximal value. Thus, the combined slip 
and sliding memory rules are represented by the NR-F limit and loading surfaces with account for the contact plane 
rotation an any t .  
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The contact orientations corresponding to maximal values of *
maxT  and *

maxN  can be determined from the 

formulae (9)-(10), requiring 0dd *
tT  and 0dd *

tN , and the following equations are derived: 

)scot(1coscos32tan gTuTT ,  (12) 

)stan(1coscos32tan gNuNN ,  (13) 

where T  and N  are the contact angles corresponding to extreme values of resultant forces T and N .  

The derived formulae (12) and (13) can be effectively adopted in the experimental measurement of the 
coefficient of friction of the spherical grains. In Eq. (12) and (13), the angles T , N  and Ryu 0cos   are the 
variables independent of the contact stiffness; so, the values of angles T  (or N ) can be measured at the peak of 
the moving tool driving force *

maxT  and the friction coefficient can be easily calculated from formulae (12-13).  
As a rule, the developed inter-particle friction apparatus [6], [7] are mainly based on the force controlled slip or 

sliding process. In this case, after contact activation the slip regime evolves first, and next the sphere sliding 
develops, during which the coefficient of friction is usually predicted. The measurements are very complex because 
it is difficult to perform exactly initial contact activation due to surface shape imperfections leading the spurious 
oscillations of the horizontal force. It is worth mentioning that force oscillations tracked during experiment 
theoretically can be attributed to instantaneous switch form the slip to sliding mode and otherwise. Also, the 
experimental measurement should be controlled for both vertical loading force and the horizontal driving force.   

On the contrary, when the sphere-sphere contact interaction results from the imposed linear motion trajectory, it 
does not require contact activation by applying the vertical force and generates the sliding mode instantaneously 
with no preceding slip mode. So, for the experimental prediction of , the measurement of angle T , at which the 
driving force magnitude reaches the maximal value, is only required.   

2.2.  Contact response starting from initially activated contact zone 

Consider the case (Fig. 1c), where the sphere motion proceeds from the activated contact at 00t . This is the 
most frequent case in contact analysis and experimental testing. The initially imposed normal load N0 activates the 
contact zone of radius 0a  and overlap 0h . The subsequent slip and sliding of the upper sphere relative to a fixed 
bottom sphere is then induced by the translation paths inclined at the angle . When the sphere moves along the 
inclined trajectory, the contact zone evolves by changing its orientation and size (Fig. 1c).  

The main contact parameters, generalized for any case of contact geometry and spheres size, can be defined in 
the following dimensionless forms: tttr ys cossin0 , 

1
0 tantan1 ttr yy , where 

Rhh rr , Ryy rr rky0 , Rss rr .   
For the case (Fig. 1c), the resultant forces acting on x1, y1 axes, either for the slip or sliding modes, are as follows: 

tstgttt ThNshNN sin,mincos*
1 , (14) 

tstgttt ThNshNT cos,minsin*
1 , (15) 

where sT  is the  force parallel to the contact plane, induced by the slip displacement s .  
After contact activation the imposed translation results in the slip displacement s  generated at the sphere center 

under the fixed contact zone at 0t  (Fig. 1b). The slip regime always proceeds first with displacement s  
(Fig. 1b), while the normal and tangential displacements are  c o ssts ss  and tanssh . Moreover, 
when the sphere motion proceeds from 0t , the sphere center displacement is equal to path coordinate. The 
overlap takes the additional component st hhh 0 , and the normal contact force now equals: 
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23
0

* tansnt hkhN . (16) 

At the end of slip regime, when the slip displacement reaches its limit value, 
32*

nsutsus kNh , the 
switch from the slip to sliding regime  occurs and we have: 

tan10
32* hkNh nsusu , tan10hsu , costan10hssu .  (17) 

2323
0

* tan1hkN nsu , 2311 sussus NT , sus ,0 .  (18) 

When sus , the sliding regime develops  and the sphere slides at varying overlap ht , contact plane 
orientation t and the limit slip displacement us . The trajectory coordinate is rst sss  and the tangential 
force obeys the Coulomb friction rule, ts hNT . The problem becomes statically determinate and using Eqs. 
(14) and (15) we derive the following formula for the driving force: 

g
*
1 stan ttt NF  . (19) 

where cosscos g
*
1 ttt hNN  is the resultant force of the moving  tool along  y1-axis.  

In the sliding regime, we refer to the velocity decomposition plotted in (Fig. 1b), thus using Eq. (2)   

rsts sssv , where tsuss cos , and ttr ys 2
0 coscos . The limit slip displacement 

tsu h , evolves until  the contact separation with the rate  tsu h , while the normal contact velocity is 
composed of slip and sliding components, rst hhh , represented as the overlap rates. Since 

tsush tan , combining the late three equations we have tsursu h tan , which finally 
yields the following rate equation rtsu h

1
tan1 . The sphere center translation velocity and overlap 

rate are expressed by the following formulae: rtrst ssss tan1 , trt hh tan1 , 

tttr yh 2
0 cossincos . Finally, integration of these equations yields:  

t
yss sutt

0

2
0 2costancos ,  (20) 

tyhh sutt 00 2coscossin1lntancos2cos . (21) 

In Fig. 2a, the driving force-path diagrams are plotted for the different radii of the spheres, but the same direction 
of motion along three trajectory angles equal 010 , 00  and 010 . The value of 10 01.0 Rh  was 
assumed for all sphere sizes and the stiffness modulus was set  as PaEeff 1 , yielding effn Rk 34* .   
a) b) 
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Fig. 2. Combined slip-sliding modes under the inclined paths imposed: a) driving force-path diagrams for the imposed trajectory angles: >0, 
=0, <0, b) sliding to slip displacement ratio limits vs. the coefficient of friction, sphere radii and trajectory inclination angle. 

The driving force-path diagrams indicate different deformation processes after contact activation (Fig. 2a). In 
particular, for the case >0 (uploaded sliding) the maximal driving force values are up to 4 times higher than in case 
of transverse sliding, =0, and even more higher relative the case of unloaded sliding, <0, where the normal force 
unloading takes place during  the whole imposed sliding path. In the total displacement scale, the driving force 
values evolve almost instantenously in the slip mode (Fig. 2a, inset), and next during the sliding mode the force 
evolution strongly depends on the contact plane rotation with respect to the trajectory inclination.  

It is seen that different maximal values of the driving force can be reached at  different stages of sphere motion 
with consecutive  slip and sliding regimes. For 0 , the maximal driving force is  reached in the slip mode  with 
transition to sliding mode at the reduced force value. For 0   the transverse slip mode passes to sliding mode at 
the maximal force value. When 0 , the maximal value of driving force is  reached in the sliding mode, i.e., the 
driving force-path diagram is initially related to continuous increase of the overlap th   for all contact plane 
configuration angles, such that t . On the other hand, for contact plane configurations corresponding to  

t , the continuous  decrease of driving force magnitude occurs in the sliding mode up to contact separation. It 
is important to note that, when the driving force amplitude is  increased during experimental cyclic loading, then 
near the driving force peak value the small contact surface imperfection of  grain can lead a spurious jump from the 
slip displacement to excessive sphere sliding with the subsequent effect of ratcheting. This effect has been observed 
in some cyclic loading tests of contact response, cf [7]. 

The dependence of ratio limits for sliding to slip displacement on coefficient of friction, sphere radii ratio and 
trajectory inclination angles is diagrammatically presented in Fig. 2b. It can be seen that the inequality rusu ss  is 
valid; however, for 0 , the limit slip displacement sus  is about 3.3 times  smaller than the sliding limit 
displacement rus . The effect of slip displacement should then be accounted for in the contact response analysis, 
especially, for cyclic loading programs.     

3. Conclusions 

For the combined slip and sliding regimes, a brief set of relations specifying the sphere motion under the 
displacement controlled processes has been presented. The account for the memory effects in the slip regime and the 
configurational effects in the sliding regime is essential in the analysis. Further applications and extensions of the 
analysis can be envisaged in the development of the translation controlled apparatus for the measurement of friction 
and restitution coefficients for the pair of spherical grains. The translation controlled apparatus could be simpler in 
application and advantageous in measurement than the load controlled apparatus. Also, the analysis presented is 
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suitable for characterization of the aggregate production processes and in the analysis of wear problems along with 
the specification of the flash temperature effect in the contact zone of two spherical grains. 
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