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AN EXTENSION OF BURZYŃSKI HYPOTHESIS OF MATERIAL EFFORT ACCOUNTING FOR THE THIRD INVARIANT OF
STRESS TENSOR

ROZSZERZENIE HIPOTEZY WYTĘŻENIA BURZYŃSKIEGO UWZGLĘDNIAJĄCE WPŁYW TRZECIEGO NIEZMIENNIKA
TENSORA NAPRĘŻENIA

The aim of the paper is to propose an extension of the Burzyński hypothesis of material effort to account for the influence
of the third invariant of stress tensor deviator. In the proposed formulation the contribution of the density of elastic energy of
distortion in material effort is controlled by Lode angle. The resulted yield condition is analyzed and possible applications and
comparison with the results known in the literature are discussed.
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Celem pracy jest propozycja rozszerzenia hipotezy wytężenia Burzyńskiego dla uwzględnienia wpływu trzeciego nie-
zmiennika dewiatora tensora naprężenia. W proponowanym sformułowaniu udział gęstości sprężystej energii odkształcenia
postaciowego jest kontrolowany przez funkcję zależną od kąta Lodego. Wyprowadzony warunek plastyczności porównano ze
znanymi wynikami z literatury oraz przedyskutowano jego możliwe zastosowania.

1. Introduction

Experimental investigations related with mechanics
of soils and rocks, the strength of concrete as well as
failure processes and phase transformations in advanced
metallic materials reveal that assumption about isotropic
mechanical properties requires also an account for the
third invariant of stress tensor deviator in the formu-
lation of limit state criteria (failure criteria). The limit
state criteria can determine the limit of elasticity, plastic-
ity, phase transformations or rupture. The third invariant
of stress tensor deviator corresponds to the Lode angle
on the octahedral plane. The experimental observations
show that the effect of Lode angle appears particularly
visible, while shear processes are taking place. On the
atomic level the shear process in a solid body is accom-
panied with the change of the configuration of atoms and
valence electrons which are responsible for the bonds be-
tween the neighboring atoms. This leads to the change
of the symmetry of groups of atoms and results in the
change, mostly with downward tendency, of their energy
of cohesion [3], [6]. Therefore an extent of the domina-
tion of shearing in deformed solid body has an essential

influence on the energy-based measure of material ef-
fort. This leads to the conclusion that the contribution
of shear modes of stress, quantified by means of the
Lode angle, should be accounted for in the energetic
criteria of failure. Due to the universality and multiscale
character of energy, among many proposed hypotheses
of material effort those with energy basis seem to be
the most worthy considering from the physical point of
view. The hypothesis of variable limit energy of volume
change and distortion proposed originally by Burzyński
[2] is the one which seems to be the most general of all
– many other are just special cases of this one for certain
values of its parameters [7], [13].

The aim of the paper is to propose an extension of
the Burzyński hypothesis of material effort to account
for the aforementioned influence of the Lode angle. The
main idea of the proposed new formulation is that the
contribution of the density of elastic energy of distortion
in the measure of material effort is controlled by Lode
angle. The resulted yield condition is analyzed from the
point of view of possible applications and the compar-
ison with the results presented in the literature is dis-
cussed [4], [5], [8], [9].
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2. The Burzyński energy-based hypothesis of
material effort and its extension

2.1. The hypothesis of variable limit energy of
volume change and distortion

Burzyński considered as a measure of material ef-
fort variable elastic energy density of distortion and a
part of energy density of volumetric change controlled
by a pressure dependent influence function. The limit
condition takes in such a case the following form [2]:

Φf + η (p) Φv = K where η (p) = ω +
δ

3p
, (1)

where Φv is volumetric strain energy density, while Φ f
is distortional strain energy density. It is in general a
three-parameter condition. The great convenience in ap-
plication of it is due to the fact that after proper sub-
stitutions the set of parameters (K, ω, δ) can be re-
placed by (kt , kc, ks) which are the limit values of stress
under tension, compression and pure shear respectively
Those three parameters can be measured experimental-
ly. In case of the Burzyński condition (1) those three
values give us full information about strength properties
of isotropic solid. Sometimes it is useful to express the
limit condition (1) in terms of the other two parame-
ters proposed by Burzyński: the strength difference ratio
κ = kc

kt
> 1 and the so called ”plasticity coefficient”

which is a measure of mutual relations between all three
limit quantities v = kckt

2k2
s
− 1. Eq. (1) can be rewritten in

the following form:

1 + v
3

σ2
f + 3 (1 − 2v) p2 + 3pkt (κ − 1) = κk2

t , (2)

where p = 1
3 (σ1 + σ2 + σ3) denotes hydrostatic stress

and

σ f =
√

(σ2 − σ3)2 + (σ3 − σ1)2 + (σ1 − σ2)2

is the stress invariant introduced by Burzyński [2]. For
certain values of κ and v the condition (2) is describing
certain type of a limit surface in the space of principal
stresses (σ1, σ2, σ3):

• v <
1
2

– ellipsoidal surface with one of its axes paral-
lel to p axis. For κ , 1 it is translated along p axis.
In such a case the strength differential (SD) effect
is involved. In the case of symmetric elastic range
(κ = 1) limit surface is the same as in the case of
Rychlewski’s [10], [11] limit criterion for isotropic
materials;

• v =
1
2

– paraboloidal surface with its axis parallel
to p axis and translated along it. It describes the

SD effect. For κ = 1 the paraboloid of revolution
becomes a cylinder – the criterion for pressure in-
sensitive materials not exhibiting SD effect – this
case corresponds to the Huber criterion [13];

• 1
2
< v <

3 (kc + kt)
8kckt

− 1 hyperboloidal limit surface

(two sheets). Only one sheet has a physical meaning.
If v reaches its upper limit value the surface becomes
a cone – the same as in the Drucker-Prager hypothe-
sis [13], which was proposed independently 25 years
later;

Note that the qualitative change of surface character is
continuous however it changes very rapidly when v is

close to
1
2
. As it was already mentioned, the SD effect is

involved by accounting for pressure influence on material
effort – other authors (Raniecki and Mróz [9]) formu-
lated limit conditions for pressure insensitive-materials
describing the SD effect with use of the Lode angle
dependence.

2.2. The proposed extension of the Burzyński
hypothesis

The influence of the Lode angle on the Burzyński
measure of material effort could be involved by the vari-
able contribution of the energy density of distortion. The
contribution is described by certain ”influence function”.
The possible propositions of the form of such a function
are given in the next subsection. Finally the extended
material effort hypothesis of variable energy of volume
change and distortion in the limit state reads:

η̃ f (θ) Φ f + η̃v (p) Φv = K, (3)

where the symbols η̃ f and η̃v denote Lode angle influ-
ence function and pressure influence function, respec-
tively. The condition (3) can be expressed in a following
way:

η f (θ) q2 + ηv (p) p2 = K, (4)

where

q =

√
1
3

[
(σ2 − σ3)2 + (σ3 − σ1)2 + (σ1 − σ2)2

]
(5)

and θ =
1
3

arccos


3
√

3
2

J3

J3/2
2

 is the Lode angle.

2.3. Propositions of influence functions ηv and η f

2.3.1. Pressure influence function

In case of pressure influence function the choice
of Burzyński’s function seems to be well justified since
hypothesis formulation given by Eq.(3) is a consistent
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extension of his own idea. Furthermore this function en-
ables description of various relations between hydrosta-
tic and deviatoric stresses – linear, paraboloidal, hyper-
boloidal and elliptical – and it was analyzed precisely by
Burzyński in [2]. It is a two-parameter rational function
which can be written in the form:

ηv (p) = ω +
δ

p
(6)

2.3.2. The Lode angle influence functions

The Lode angle dependence, which is characteris-
tic especially for brittle materials and soils, can be de-
scribed:
• two-parameter power function (Raniecki and Mroz

[9])
η f (θ) = [1 + α cos (3θ)]β

• two-parameter exponential function (Raniecki and
Mróz [9])
η f (θ) = 1 + α

[
1 − e−β(1+cos(3θ))

]

• one-parameter trigonometric function (Lexcellent
[5])

η f (θ) = cos
[
1
3

arccos [1 − α (1 − cos (3θ))]
]

• two-parameter trigonometric function (Podgórski
[8])

η f (θ) =
1

cos
(
π

6
− β

) cos
[
1
3

arccos (α cos (3θ)) − β
]

Valuable summary of propositions of Lode angle
influence functions was made by Bardet in [1]. The ear-
lier attempts to account for the Lode angle effect are
discussed by Życzkowski [13].

2.3.3. Convexity condition

A general discussion on convexity condition was
presented in [12] for arbitrary chosen form of influence
functions such that K − ηp (p) > 0:



√
3

6η f
∂2η f

∂θ2 −
(
∂η f

∂θ

)2
+ 4

(
η f

)2
+ · · ·

· · · + ∂2ηp

∂p2


(
∂η f

∂θ

)2
+ 4

(
η f

)2
 +

η f(
K − ηp

)
(
∂ηp

∂p

)2 (
∂2η f

∂θ2 + 4η f

) > 0

3

2
(
K − ηp

) ∂2ηp

∂p2 +

(
∂ηp

∂p

)2
2η f

∂2η f

∂θ2 −
(
∂η f

∂θ

)2
+ 4

(
η f

)2
 > 0

, (7)

where:ηp (p) = ηv (p) · p2

The above conditions can be applied in material
identification procedures basing on numerical fitting of
the results of simulation using assumed model to the re-
sults obtained from experiment. It is in fact an optimiza-
tion problem in which the given convexity condition can
be considered as an inequality constraint on the resultant
optimal solution.

3. Yield surface specification

3.1. Iyer and Lissenden experiments on Inconel 718

An attempt to find certain form of a yield condi-
tion basing on (4) and experimental data available in
literature was made. Inconel 718 alloy was considered.
Various tests including tension, compression and pure
shear as well as composition of two of those loadings
one followed by another were performed for Inconel 718
by Iyer and Lissenden [4]. Values of plasticity limit (con-
sidered as an offset limit being a stress causing 0,2%
permanent plastic strain) and proportionality limit has
been estimated basing on uniaxial and pure shear tests.

The proportionality limit estimation is especially
important since it denotes Hooke’s law validity range.
However it seems that mathematical formalism of the
considered yield condition could be well used also in
case of plasticity limit estimation.

TABLE 1

Plasticity limit Proportionality limit

Tension: kpl
t = 779 MPa kH

t = 500 MPa

Compression: kpl
c = 878 MPa kH

c = 610 MPa

Pure shear: kpl
s = 473 MPa kpl

s = 323 MPa

One can observe that the considered material ex-
hibit significant strength-differential effect – in case of

plasticity limit κ =
kc

kt
≈ 1.13 and in case of propor-

tionality limit κ ≈ 1.22. Mutual relations between those
limit stresses can be estimated by Burzyński’s ”plasticity

coefficient” v =
kckt

2k2
s
−1. For the plasticity limit v ≈ 0.53,

for proportionality limit v ≈ 0.46. One can see that this
value is close to 0.5, the value distinguished by Burzyńs-
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ki, for which yield condition becomes either a paraboloid
of revolution or a cylinder. In fact yield condition used in
[4] being simple combination of powers of stress tensor
invariants, namely:

aI2
1 + b · J2 + c · sgn (J3) · (J3)2/3 − 1 = 0

a = 2.610−7
1

MPa2 b = 1.81510−5
1

MPa2 c = 2.210−6
1

MPa2

(8)
is represented in stress space by an ellipsoid with its axis
parallel to paxis and with slightly deformed cross-section
(see Fig. 2). This is due to the assumed elliptical relation

between hydrostatic and deviatoric stresses Parameters
a, b, c and seven other (viscoplastic) material parameters
were found numerically by fitting simulated processes
to those observed during experiments The first attempt
was to determine values of parameters so they fit the
shearing data well, however the obtained result were un-
realistic, especially shear threshold stress was much too
low. Finally parameters a, b, c of yield condition (8) were
found in [4] by fitting numerical simulation to various
experimental data, however unequal weights were used
for different samples in such way so the correlation be-
tween model and experiment was optimal.

Fig. 1. Ellipsoidal yield surface used in [4] and the paraboloid yield surface according to the proposed criterion given by Eq. (9)

Fig. 2. The comparison of the cross-sections of the two yield surfaces, used in [4] and given by Eq. (9), at the deviatoric (octahedral) plane
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3.2. Why a paraboloid yield surface?

Referring to the Burzyński hypothesis relatively low
value of limit shear stress is characteristic for ellip-
soidal yield surfaces (v < 0.5) so it seems that assuming
different character of a yield surface (i.e. paraboloidal,
what indicates calculated v ≈ 0.5) might provide high-
er precision in model identification It is also common
assumption (based on experimental results) that metals
are either pressure-insensitive (cylindrical yield surface
as in Huber-Mises hypothesis [13]) or that hydrostatic
stress is a safe stress state (paraboloidal yield surface).
Thus paraboloidal yield surface seems to be much more
natural and reasonable choice than the ellipsoidal one,
which is typical for instance in case of foams and cellular
materials. Furthermore elliptic relation between devia-
toric and hydrostatic stress is symmetric with respect to
both of those quantities (sign insensitive) so only the
Lode angle might be considered as the cause of SD ef-
fect. Assuming that the difference between values of lim-
it stresses under tension and compression depends only
on different modes of shearing (Lode angle) omitting the
influence of pressure is unjustifiable. The only objective
verification of a surface character would be performing
experiments under high pressure.

3.3. Yield condition specification

Yield surface given by condition (4) was determined
for Inconel 718 assuming that relation between hydro-
static and deviatoric stresses is paraboloidal. To obtain
such relation Burzyński’s function was chosen as pres-
sure influence function. Analysis of the cross-section of
yield surface given by Eq.(8) parallel to octahedral plane
indicates that the Lode angle dependence has a hexago-
nal character. Among all presented Lode angle influence
functions only the one by Podgórski enables description
of such a dependence. However it had to be slightly
modified since its maximums were rotated referring to
the maximums obtained from Eq.(8). Finally yield con-
dition of a following form was considered:

q2

cos( π6−β)
cos

[
1
3 arccos

[
α cos

(
3
(
θ − π

2

))]
− β

]
+

+
(
ω + δ

p

)
p2 − K = 0

(9)

Unknown parameters can be determined from a nonlin-
ear system of equations – each equation is obtained from
satisfying yield condition (9) in simple loading cases
like uniaxial tension or compression or pure shear for
which values of p, q and θ are known. For higher preci-
sion more complex stress states could be analyzed – i.e.
shearing with tension, shearing with compression or (as
Burzyński proposed) biaxial and triaxial uniform tension
and compression.

Yet different method of yield condition specification
was chosen. Since surface given by Eq.(8) was deter-
mined by optimal fitting it to various multiaxial tests, it
seems that its character is quite well estimated especial-
ly for small values of hydrostatic stress - no tests under
high pressure were performed and hydrostatic compo-
nent of a stress tensor in each test was also not signif-
icantly high due to lack of stress concentration in the
samples. That’s why an attempt of fitting paraboloidal
yield surface given by Eq.(4) to the surface (not only
single points in stress space corresponding with basic
strength tests) given by Eq.(8) was made. To achieve
proper fitting Levenberg-Marquardt algorithm was im-
plemented replacing yield surface used from [4] by a
large set of points. For reasons presented below, the fit-
ting took place only for positive values of hydrostatic
stress. As it was mentioned in subsection 3.2, the aim
of the authors was to determine a paraboloidal yield
surface – different character of paraboloidal and ellip-
soidal relation between q and p for negative values of
pressure would cause too big error for any efficient use
of Levenberg-Marquardt algorithm. Another reason is
that results presented in [4], are much more reliable for
positive values of pressure – the material was character-
ized in [4] basing on five tests (tension, compression and
three shearing tests) yet each of them had a different in-
fluence on the final result due to use of inequal weights.
The only source of hydrostatic component in those tests
are uniaxial tests. Tension test was taken with the weight
40% while compression test with the weight 10%.

As a measure of an error of fitting a distance be-
tween both surfaces along q direction was considered.
It appeared that the resultant values of unknown para-
meters of function given by Eq.(9) obtained from the
performed computation depend strongly on their initial
values used in iteration if the number of estimated pa-
rameters was greater than two. However the number of
parameters could be reduced by assuming some of their
values i.e.:
• ω = 0 – due to fact that relation between p and q

was assumed paraboloidal.
• β =

π

6
– due to fact that Lode’s angle dependence

has a hexagonal character.
• α = 0.9 – smoothing of corners of an octahe-

dral cross-section depend on the value of this pa-
rameter (for α = 0 – no Lode’s angle dependence;
α = 1, β =

π

6
– strictly hexagonal dependence –

like i.e. in Coulomb-Tresca-Guest hypothesis). This
value was estimated so that octahedral cross-sections
of both surfaces correspond sufficiently well.
Parameters δ ≈ 174, 85 MPa and K ≈ 127871 MPa2

were found using the mentioned Levenberg-Marquardt
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algorithm. Comparison of both surfaces given by Eq.(8)
and Eq.(9) and their octahedral cross-sections’ compar-
ison are shown in Fig.(1) and Fig.(2). Surface given by
Eq. (9) was presented in form of points only to make
the figure of two intersecting surfaces clear.

4. Summary

A proposition of a yield criterion of clear physi-
cal (energetic) interpretation for isotropic and homoge-
neous materials involving pressure sensitivity with the
resulting SD effect and the Lode angle dependence and
was introduced. Many commonly used yield criteria are
involved as special cases for certain form of influence
functions and certain values of their parameters. It is
an extension of the Burzyński yield condition account-
ing for influence of the third invariant of stress tensor
deviator. General convexity condition for obtained yield
surface for arbitrary chosen forms of influence functions
was derived. Certain form of yield condition for Inconel
718 alloy was formulated referring to experiments by
Iyer and Lissenden [4] by yield surface identification.
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