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The short-wavelength instability of magnetically

buoyant layer
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2Institute of Fundamental Technological Research, Polish Academy of Sciences, Poland
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Abstract. We revisit the problem introduced by Gilman (1970) and Acheson (1979) of
linear stability of a plane layer of compressible fluid permeated by a horizontal magnetic
field of magnitude decreasing with height with respect to short-wavelength two-dimensional
perturbations varying in the directions perpendicular to the applied field. We show, that in
the limit of large horizontal wave numbers the perturbations become strongly localised in the
vertical direction. The motiavtion for this study is of astrophysical nature and comes from the
common belief, that the magnetic buoyancy effects produce short-wavelength instabilities in
the solar tachocline. We analyse the solar tachocline parameter regime to speculate about the
strength of the magnetic field at the base of the solar convective zone and the time scales of the
field variations induced by the magnetic buoyancy instability on the Sun.

1. Introduction

The pioneering works on the magnetic buoyancy instability of Gilman (1970) and Acheson
(1979) revealed some peculiarities of the short-wavelength limit, i.e. that the growth rate of
the instability must necessarily vary with height in the buoyant layer. The solution to this
difficulty lies in localisation of the eigenmodes, which in the limit of large horizontal wave
number (corresponding to the direction perpendicular to the applied field) are strongly localised
in the vertical direction and in the actual limit of k −→ ∞ there exist modes associated with
different eigenvalues corresponding to every value of the vertical coordinate z within the layer.
A detailed analysis of this problem is given in Mizerski et al. (2011). Similar behaviour has been
found recently in the study of the inertial instability in geophysical flows by Griffiths (2008).

2. The short-wavelength limit

By choosing the layer depth d, the free fall time
√

(d/g) and the free fall velocity
√

gd as units of
length, time and velocity respectively (where g is the acceleration of gravity, assumed constant)
the set of hydro-magnetic equations governing the evolution of the velocity (u), temperature
(T ), density (ρ) and magnetic field (B) takes the following form

ρ
∂u
∂t

= −ρ (u · ∇)u−P∇p−ρêz+Λ(∇×B)×B−UνE
−1ρêz×u+Uν

[
∇2u +

1
3
∇ (∇ · u)

]
, (1)
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∂B
∂t

+ (u · ∇)B = (B · ∇)u−B∇ · u + Uη∇2B, (2)

ρ
∂T

∂t
= −ρu · ∇T + γUκ∇2T − γ − 1

α
p∇ · u +

γ − 1
α

Uη
Λ
P (∇×B)2

+
γ − 1

α

Uν

P
[
2eijeij − 2

3
(∇ · u)2

]
, (3)

∂ρ

∂t
+∇ · (ρu) = 0 , p = αρT, (4)

where we have assumed that the dynamic viscosity νρ is constant, eij is the symmetric part of
the velocity gradient tensor, and:

P =
ps

ρsgd
, α =

ρsRTs

ps
, (5)

Λ =
B2

s

µ0ρsgd
= β−1P, E−1 =

2Ωd2

ν
, (6)

Uν =
ν

d
√

gd
, Uη =

η

d
√

gd
, Uν =

κ

d
√

gd
. (7)

In the above E is the Ekman number, γ = cp/cv is the ratio of specific heats, R = cp − cv

is the gas constant, µ0 is the magnetic permeability of vacuum, ν, η and κ are the kinematic
viscosity, magnetic diffusivity and thermal diffusivity respectively, ps, ρs, Ts, Bs are the scales
of pressure, density, temperature and the magnetic field respectively and β = µ0ps/B2

s is the
plasma β, i.e. the ratio of the gas pressure to the magnetic pressure. The quantities Ui denote
ratios of a certain velocity scale associated with the subscript ’i’ with the free fall velocity. We
study the linear stability of the following basic, stationary state

B0 = B0 (z) êx = [1− Γ + Γz] êx, (8)

Γ = 1− Bbottom
0

Btop
0

< 0, (9)

where Γ is the negative field gradient which makes the fluid layer magnetically buoyant and Btop
0

and Bbottom
0 are the magnitudes of the field at the top and bottom of the tachocline respectively.

The value of Btop
0 is used to non-dimensionalise the magnetic field and hence this is the quantity

Bs used in the definition of Λ. For simplicity we will also assume that the fluid is isothermal,
i.e. T = 1, and the dissipative effects will be neglected (the former assumption will be relaxed
in the next section, where we study the solar tachocline limit) thus

ρ0 = (ρB − d1) e−κz + d1 + d2z, (10)

where κ = 1/αP and

d1 = ΛΓ2

(
1
κ
− 1− Γ

Γ

)
, d2 = −ΛΓ2, (11)

with ρB being the values of density at the bottom. Furthermore we neglect the Coriolis force
(i.e. we set UΩ ¿ 1) and assume that the perturbations are two-dimensional and vary in the
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a) b)
Fig. 1 The leading order asymptotic solution of equation (12) in the limit of large wave numbers k À 1 under

the assumptions that the function ΛB2
0 (D − Ξ) /ρ̄f (z) is an increasing and concave function of ’z’ at z = z0,

for internal layer at z0 = 0.85 – (a), and the function defining the growth rates ΛB2
0 (D − Ξ) /ρ̄f (z) – (b). The

parameter values chosen for this plot are Γ = −1.35, Λ = 0.2, 1/αP = gd/RTS = 0.8. (after Mizerski et al. 2011)

directions perpendicular to the basic field B0. Under these assumptions the linear stability
problem is governed by the following equation for the vertical perturbation velocity

σ2ρ̄w =
k2ΛB2

0

σ2 + k2f (z)
(D − Ξ)w +

σ2ρ̄

σ2 + k2f (z)

(
Dw +

dw

dz

)
+

d
dz

{
σ2ρ̄f (z)

σ2 + k2f (z)
dw

dz

− σ2

σ2 + k2f (z)
[
ΛB2

0 (D − Ξ)− ρ̄f (z) D
]
w

}
(12)

where D = ρ̄−1dzρ̄, Ξ = B−1
0 dzB0 = B−1

0 Γ and f (z) = αP + ΛB2
0

/
ρ̄. The growth rates σ of

the perturbations are defined by the following function of ’z’

σ2 =
ΛB2

0

ρ̄f (z)
(D − Ξ) . (13)

The solution, obtained analytically by the use of the singular perturbation method is depicted
on figure 1. For large wave numbers k the modes are localised at every z0 in a region defined
by −k−2/3 ¿ z − z0 ¿ k−1/2, if z0 is not a local extremum of σ in which case the point z0 is
sourrounded by a layer of thickness k−1/2 from both sides.

3. The solar tachocline parameter regime

We proceed to study the parameter regime corresponding to that of the solar tachocline

α ∼ P ∼ 1 , UΩ ∼ Λ ∼ β−1, (14)

Uκ ∼ β−2 , Uν ∼ Uη ∼ β−3. (15)

and we now include the variations of temperature in the dynamics. The growth rates of
the perturbations are purely real at the leading order and thus oscillations may appear only
at higher orders. Therefore our asymptotic analysis, with the use of the multiple timescale
method suggests that the timescale of oscillations induced by the magnetic buoyancy in the
solar tachocline is likely to be of the order of years,

β

√
d

g
≈ 2.1× 107 s ∼ years, (16)
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which agrees with the typical cycle time in the Sun. Furthermore, following the idea introduced
in Mizerski et al. (2011) we propose that locally, in the region of upwelling convective currents
at the bottom of the solar convection zone, the magnetic field’s intensity is increased due to the
magnetic field lines being brought closer together by the convective flow. We find, that with
stronger magnetic fields the magnetic buoyancy instability is much more vigorous, in other words
if the field is β1/2 times stronger, causing the local ratio of the gas pressure to the magnetic
pressure to be of order unity, the growth rate is also β1/2 times greater than in the weak field
case. This suggests, that the magnetic field is more likely to be dragged by the flow out of the
tachocline into the convection zone in the regions of upwelling convective currents, and what
follows, can be then further advected towards the surface by the convective flow.
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