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Particle image velocimetry with optical flow
G. M. Quénot, J. Pakleza, T. A. Kowalewski

Abstract An optical Flow technique based on the use of
Dynamic Programming has been applied to Particle Image
Velocimetry thus yielding a significant increase in the accuracy
and spatial resolution of the velocity field. Results are present-
ed for calibrated synthetic sequences of images and for
sequences of real images taken for a thermally driven flow
of water with a freezing front. The accuracy remains better
than 0.5 pixel/frame for tested two-image sequences and
0.2 pixel/frame for four-image sequences, even with a 10%
added noise level and allowing 10% of particles of appear or
disappear. A velocity vector is obtained for every pixel of the
image.

1
Introduction
The aim of this investigation is to explore the possibility
of using an optical flow technique in measuring fluid flow
velocity. Classical flow visualization is based on direct observa-
tion of tracer particles. Analysis of subsequent images search-
ing for local displacements allows quantitative measurement of
two-dimensional flow fields. The optical flow method offers
a new approach for analysing flow images. It largely improves
spatial accuracy and minimizes the number of spurious
vectors. Application of this method may help in quantitative
analyses of several challenging problems of fluid mechanics, as
well as in full plane validation of their numerical counterparts.
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1.1
Particle Image Velocimetry
Recently the experimental fluid mechanics technique of
Particle Image Velocimetry (PIV) has proven to be a valuable
method for quantitative, two-dimensional flow structure
evaluation. It enables the measurement of the instantaneous
in-plane velocity vector field within a planar section of the flow
field. Due to the large accessible amount of quantitative
vectorial velocity data, the PIV method is of great interest
to engineers and researchers, allowing them the calculation
of spatial gradients, dissipation of turbulent energy, spatial
correlations, and the like. The classical PIV technique uses
multiple-exposure images and optical autospectrum or auto-
correlation analysis (Hesselink 1988). Conventionally, PIV
images are recorded on photographic film, and the flow field is
obtained via the computation of the spatial correlation into
small search regions. The point-by-point search analysis is
repeated until the entire negative is analysed. Processing large
numbers of such images becomes a very laborious task.
Therefore, an alternative approach — referred as Digital Particle
Image Velocimetry (DPIV) — was introduced (Willert and
Gharib 1991, Westerweel 1993). Images are recorded directly
with a CCD camera and frame-grabber, and can be studied
without the unnecessary delay and overhead associated with
the scanning of photographs. The application of DPIV allows
for a simple realization of the cross-correlation technique for
pairs of two separate images. It removes the ambiguity of the
sign of the displacement and improves signal dynamics.

The typical DPIV evaluation procedure is based on the
analysis of two successive images of the flow. The digital
images are decomposed into search windows (small square
regions). The content of corresponding search windows is
cross-correlated for determining an average spatial shift of
particle images. Usually a two-dimensional discrete Fourier
transform (2D DFT) is used to facilitate the evaluation of the
cross-correlation function. The location of the cross-correla-
tion peak provides the mean displacement value, and its
relative amplitude indicates the accuracy of the evaluation. The
ratio of the displacement vs. the time scale between images
given the average velocity in the search window. The spatial
resolution of DPIV is presently limited by the quality of the
available CCD, recording hardware and size of the search
window. Decreasing the size of the search window improves
the spatial resolution but at the cost of a loss of dynamic range
and signal to noise ratio. Hence an optimum window size must
be found. Implementation of special techniques such as the
time-series of single or multiexposure images, application of
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a Gaussian peak-fit estimator, dynamic search windows and
final postprocessing may highly increase both the spatial
resolution and dynamic range of DPIV, resulting in approxim-
ately the same level of accuracy as conventional PIV. Despite
recent progress in the DPIV development, further improve-
ment of the accuracy and minimization of the computational
time still remains a current research goal (Lourenco and
Krothapalii 1995; Sun et al. 1996).

One of the main drawbacks of classical DPIV is its inability
to accurately resolve flow regions characterized by large
velocity gradients. This is due to the strong deformation of the
particle image pattern within a DPIV search window. Hence,
several alternative evaluation methods have been proposed to
remove the above limitation (Huang et al. 1993; Tokumaru and
Dimotakis 1995; Gui and Merzkirch 1996). With this in mind,
it appeared to us that an optical flow method may be an
interesting alternative, offering high evaluation accuracy
without most of the typical DPIV limitations. Conventionally,
this technique was developed for detecting motion of large
objects in a real world scene. The idea of this evaluation
technique is in some sense similar to the Image Correlation
Velocimetry proposed by Tokumaru and Dimotakis (1995).

In this article we describe our efforts to apply the optical
flow technique in fluid mechanics, by evaluating displacements
of small tracer particles conveyed by the flow. In the first part
of the article the accuracy of the velocity measurements using
the new implementation is investigated using synthetic image
sequences generated with the help of a 2D numerical solution.
Next, the optical flow method is tested with experimental data
collected for natural convection in water with phase change
(freezing). Complex flow structures appearing due to the water
density anomaly seem specially suited for testing the perfor-
mance of these methods in regions with strong velocity
gradients and colliding flow streams. Finally, results of the
evaluation are discussed and compared with their DPIV
counterparts.

1.2
Experimental details
The experimental set-up used to acquire flow fields consists
of a 38 mm cube-shaped convection box filled with water,
a halogen tube lamp, a 24-bit frame grabber and a CCD colour
camera. The flow is observed at the central vertical cross
section of the cavity using the light sheet technique. The
halogen tube generates a 2 mm thick sheet of white light, which
illuminates the selected cross-section of the flow.

The experiments are performed in two configurations
(Fig. 1). The first one is a differentially heated cavity. The
motion is driven by a sudden temperature difference
(T

h
\10 °C, T

c
\[7 °C) applied to two opposite metal side

walls of the cavity. The other four walls through which the flow
is observed are made of plexiglas. The second configuration is
a lid-cooled cavity. The top wall of the cube is isothermal at
the temperature T

c
\[10 °C, whereas the other five walls are

non-adiabatic, allowing a heat flux from the external fluid
surrounding the box. The temperature of the external bath is
T

h
\20 °C.
Due to the temperature differences natural convection

occurs in the box. At the cold wall, phase change (freezing of
water) takes place, dynamically changing both thermal and

Fig. 1. The cubical box. The y-axis is parallel to the gravity vector.
Differentially heated cavity (left), Lid-cooled cavity (right)

kinematic boundary conditions of the flow. This is an addi-
tional non-linear coupling which further complicates the
prediction of the flow patterns. Despite the fact that freezing
starts at a planar surface, the surface of the ice does not remain
planar. Its distortion in turn affects the convection in the whole
cavity. A complex interaction between the flow, the moving
boundary and the latent heat released on the surface deter-
mines the flow pattern which is established.

The velocity fields are measured using two or more separate-
ly captured digital images taken at a constant time interval
(typically 1—5 s). Each of the images taken shows a relatively
dense cloud of single illuminated particles. By applying
thermochromic liquid crystals as seeding particles it is possible
to collect at the same instant both velocity and temperature
fields (Hiller et al. 1993).

DPIV is performed by cross-correlating the image pairs. The
magnitude and direction of the velocity vectors are obtained by
applying a series of 2D DFT for small sections (square search
windows) of the whole image. Typically, the image of 480]480
pixels is divided into 48]48 (or 32]32) pixel matrices, which
are spaced in half window intervals (partly overlapping each
other). To improve the accuracy of the DPIV evaluation,
special filtering techniques implementing local contrast en-
hancements were developed. Additionally, an oversampling
technique is used, which doubles the dimension of the images
through interpolated pixel values. The evaluation of the images
is performed mainly on a Pentium PC (133 MHz) running
Linux OS. A typical DPIV analysis of one pair of images with
oversampling takes about 10 minutes (for the 48]48 search
window).

To obtain a general view of the flow pattern, several images
are recorded periodically within a given time interval and are
then superimposed in the computer memory. These images are
similar to multiple exposure photographs, showing the flow
structure (see Fig. 12).

1.3
Optical Flow for DPIV
Optical flow computation consists in extracting a dense
velocity field from an image sequence assuming that the
intensity (or colour) is conserved during the displacement.
Several techniques have been developed for the computation of
optical flow. In a survey and a comparative performance study,
Barrow et al. (1994) classify them in four categories: differen-
tial, correlation based, energy based, and phase based. Not all
of these are well suited for the DPIV problem. Many of these
require long image sequences that are not easily obtainable
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experimentally and/or do not perform very well on the particle
image texture (especially multi-resolution methods). The
technique that we choose for the DPIV application was
introduced by Quénot (1992) as the Orthogonal Dynamic
Programming (ODP) algorithm for optical flow detection from
a pair of images. It has been extended to be able to operate
on longer sequences of images and to search for subpixel
displacements (Quénot 1996). The ODP based DPIV will be
referred to as ODP-PIV. Compared with other optical flow
approaches or to the classical correlation based DPIV, the
ODP-PIV has the following advantages:

z It can be applied simultaneously to sequences of more than
two images.

z It performs a global image match by enforcing continuity
and regularity constraints on the flow field. This helps in
ambiguous or low particle density regions.

z It provides dense velocity fields (neither holes nor border
offsets).

z Local correlation is iteratively searched for in regions whose
shape is modified by the flow, instead of being searched in
fixed windows. This greatly improves the accuracy in regions
with strong velocity gradients.

z It is able to operate on multiband images.

2
Optical Flow using Dynamic Programming
Dynamic Programming is a very robust technique for search-
ing optimal alignments between various types of patterns
because it is able to include order and continuity constraints
during the search. However, it is applicable only for the
alignment of one-dimensional data sets (or arrays). This is
because Dynamic Programming requires a natural topological
order between data elements which does not exist in multi-
dimensional data sets. Therefore, its straightforward applica-
tion to image matching is not trivial (Otha and Kanade 1985;
Adam et al. 1986; Burg et al. 1985).

2.1
The Orthogonal Algorithm
The algorithm is based on the search of a transformation that
relates the second image to the first one and minimizes the
L

1
or L

2
distance between them. Ln is the Minkowski

distance: (+ i+ j D I0(i, j)[I1(i, j) Dn)1/n. Minimizing the Ln dis-
tance and minimizing + i+ j D I0(i, j)[I1(i, j) Dn is equivalent.
Therefore we will no longer consider the 1/n exponent in the
Ln distance expression. The matching is global and does
not require any previous segmentation or feature extraction.
The main idea is to transform the search problem for two-
dimensional displacements into a carefully selected sequence
of search problems for one-dimensional displacements, there-
by decreasing greatly the complexity.

Strip to strip matching
First, the two images are identically sliced into several parallel
overlapping strips (Fig. 2). Then, for every pair of strips, an
optimal match is searched for with displacements allowed only
in the slicing direction and identical for all the pixels in the
same column in the orthogonal (here horizontal) direction
(Fig. 3). A dense field of displacements (between column

Fig. 2. Image slicing

Fig. 3. Strip alignment

vectors) is found for every pair of strips minimizing the
distance L

1
or L

2
between them with the help of a dynamic

programming algorithm. This gives us a displacement value at
every point of the central fibre of all strips. Then, displacement
values for all other pixels of the image are interpolated (or
extrapolated) from the pixel values of the central fibre of the
nearest strips. A dense displacement field is obtained for the
whole image. This displacement field is then smoothed before
the following steps of the algorithm are applied.

The main problem with such strip alignment is that it is
possible that there is a shift between the strips in the direction
orthogonal to the slicing one (the alignment is searched only in
the slicing direction). An initial orthogonal shift between the
strips may cause confusion between the patterns to be aligned.
Our solution is to select the initial width to be large compared
with the maximal expected orthogonal shift (typically a ratio of
2 to 5 is used). The dominating effect of an overlapping section
within strips and the robustness of the dynamic programming
to local perturbations allows us to obtain a good global
alignment of the strip column vectors. The drawback of this
approach is that the spatial resolution of the displacement field
decreases with the increase of the strip width. This is why an
iterative multi-resolution process is introduced.

Orthogonal iterations
The displacement field found in the first step is used to deform
the second image relative to the first one. An image I @1(i, j ) is
built from the (vx(i, j ), vy(i, j )) displacement field and the
image I1(i, j ) as I @1(i, j )\I1(i]vx(i, j ), j]vy(i, j)). The image
I @1(i, j ) instead of I1(i, j ) is compared and now aligned to
I0(i, j ). Generally, the i]vx(i, j ) and j]vy(i, j ) have non
integer values. In this case, the I1(i]vx(i, j ), j]vy(i, j ))
value is obtained by bilinear interpolation from the four
nearest neighbors. Then, the previously described steps are
repeated with the slicing performed in the orthogonal (vertical)
direction and the alignment results ae used to update and
refine the (vx(i, j ), vy(i, j )) displacement field. The combina-
tion of a horizontal and a vertical pass results in an alignment
in both directions. Even though the horizontal pass provides
only a low spatial resolution field, it significantly reduces the
initial orthogonal shift between strips for the vertical pass.
After both passes are executed, the initial orthogonal shift is
reduced in both directions. To refine the accuracy of the
matching result, the whole process is reiterated several times

179



Fig. 4. Strip spacing and width reduction

in a pyramidal fashion by reducing spacing and width of
the strips (Fig. 4). At each horizontal—vertical iteration this
alignment significantly reduces the orthogonal shift between
corresponding strips, even if the spatial resolution of the
alignment field is limited to the width of the strips used. It
allows to reduce iteratively the strip width and spacing, while
the orthogonal shift remains small relative to the strip width.
Best results have been obtained with strips whose spacing is
reduced from one fourth of the image size to 1 pixel and by

applying a reduction factor of J2 at every horizontal—vertical
iteration. The strip width is simultaneously reduced from one
half of the image size down to 7 pixels.

2.2
Dynamic programming
Dynamic Programming (DP) is used in the orthogonal
algorithm because it appeared to be the most efficient way for
performing an optimal strip to strip matching. However, any
other efficient strip matching algorithm could be applied
instead. The DP algorithm for performing strip matching
is actually derived from a speech recognition algorithm.
In speech recognition, segments of a speech signal are
transformed into a 2D (time, frequency) strip representation.
Then, an optimal time alignment between them is searched
using the DP algorithm (Sakoe and Chiba, 1978). Our image
strips are matched exactly in the same way. The slicing
direction corresponds to the time axis (where the alignment is
performed) and the orthogonal direction corresponds to the
frequency axis (where column are fixed and moved globally).

Local matching residue
Strips of images 0 and 1 are represented by sequences of pixel
intensity vectors: s

0
(i, p) and s

1
( j, p), with 0OiOI and 0OjOI,

I]1 being the number of pixels of the image in the slicing
direction. Pixel intensity values are the components of the
vectors, indexed by p with [W/2OpOW/2, W being the width
of the strip and the length of the vectors. A ‘‘local matching
residue’’ between two p-indexed column vectors (s

0
(i, p)) and

(s
1
( j, p)) is defined as:

d(i, j)\
p/W/2
+

p/~W/2
a(p) . D s0 (i, p)[s1 ( j, p) D n

(L
n

norm). Usually n\1 or n\2 is chosen. Here we use n\1.
The factor a( p) is introduced to limit the window effect (step

function) in the direction orthogonal to the slicing. It reduces
the effects of the initial orthogonal shift. It also reduces the
‘‘effective’’ width of the strip, however this effect can be
diminished by starting with a larger initial width. We use the
a(p)\1]cos(2np/W) smoothing function.

Global matching residue
A ‘‘matching path’’ between two strips is searched within
a neighbourhood of the i\j diagonal corresponding to
a maximum absolute displacement m. In order to allow
outermost portions of the strips to float one relatively to
another, the path should start at the i]j\m line and end at
the i]j\2I[m line. Also, it must specify a continuous and
monotonic increasing function (Fig. 5). A global matching
residue is defined for each matching path as the sum of the
local residua along it. An optimal matching path is defined as
the one minimizing the global residue. It may be not unique.
In that case, one optimal path is selected using additional
heuristics like alternative for the shortest or least distorted
path. An (i, j)-optimal path between the begin line and the (i, j)
point is defined as a path minimizing the sum of the local
residue given for all the paths between these extremities. An
‘‘accumulated residua function’’ D(i, j) is defined as the sum
over an (i, j)-optimal path of the local matching function d.
Due to the discrete form and the increasing and continuous
character of the searched optimal paths, any (i, j)-optimal path
must be an extension of one of the (i[1, j)-, (i[1, j[1)- or
(i, j[1)-optimal paths. Moreover, the D function follows
a recursive equation:

D(i, j)\minG
D(i, j[1)]d(i, j[1)]d(i, j)

D(i[1, j[1)]2](d(i[1, j[1)]d(i, j))

D(i[1, j)]d(i[1, j)]d(i, j )

We chose a sum computed on the matching path, seen as
a parametric curve, with a ds\dx]dy weight. Therefore, all
paths have the same length. The D function may then be
computed by recursion within the search area according to

Fig. 5. Dynamic Programming. Image strips and the matching path in
the disparity matrix
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the following initial conditions:

D(i, j)\G
0 if i]j\m

R for D i[j D[m or i]j\m

The minimum of D on the i]j\2I[m line gives the end of
the optimal path. Backtracking from this minimum along the
‘‘minimal’’ path with respect to the recursive equation provides
the optimal path (or one of them in the case of non unique-
ness). This path is extrapolated continuously outside of the
begin and end lines. The alignment found, corresponding to
the minimum of the sum, does not depend on the direction
chosen for the computations. It is the same for left to right or
right to left recursion. With each horizontal-vertical iteration
the m parameter as well as the width of strips and spacing are
decreased. Several enhancements made to the original ODP
algorithm are detailed in the following sections.

2.3
Extension to multi-band images
Multi-band images are images where pixel values have several
components (for instance: red, green and blue components
for colour pixels). They can be seen as several independent
monochrome images (bands). The ODP algorithm can be easily
extended to the alignment of multi-band images simply by
extending the pixel to pixel difference in the local matching
residue definition. This extension is done by summing the
differences per component. The local matching residue defini-
tion becomes:

d(i, j)\
p/W/2
+

p/~W/2
a(p) )A

b/B
+
b/1

D s0(i, p, b)[s1( j, p, b) DnB
with b being the band index and B the number of bands.
Everything else in the algorithm remains unchanged. The use
of the colour information usually improves the quality of the
obtained displacement field as compared to the use of intensity
information alone.

2.4
Computation of the velocity field at intermediate times
The ODP method results with a displacement vector for each
individual pixel of the image. Hence, the velocity field may be
computed as v

0
at time t

0
of image 0 by relating image 1 to

image 0, or as the velocity v
1

at time t
1

of image 1 for the reverse
case (reversing the vector sign, of course). The velocity
field can also be computed as vj at any intermediate time
tj\(1[j)]t

0
]j]t

1
by relating both images to a fictitious

image j that would have been taken at the time tj . In fact, there
is a single ‘‘physical’’ velocity field but the actual set of
numerical values v(i, j) depends on the corresponding defini-
tion of the inter-image displacement. It is possible to define the
velocity field relative to the ‘‘form’’ extremity, relative to the
‘‘to’’ extremity or relative to an intermediate point defined
by the parameter j. In practice, due to the small interpixel
distance, any representation may be chosen for the computa-
tion. In our application we chose the intermediate representa-
tion corresponding to j\0.5.

The optimal path inside the disparity matrix (Figure 5) may
be written as: i

0
\ij[j]vj(ij) and: i

1
\ij](1[j)]vj(ij). If

j\0 or j\1 we fall in one of the original cases (computation

at time t
0

to t
1
). For other values of j, ij has a non-integer value.

A simple linear interpolation gives vj at any ij integer position.
During the ODP iterations, images to be sliced and aligned are
the source images 0 and 1 transformed to the j image index
using the [j]vj and (1[j)]vj velocity fields, respectively.

The high spatial resolution of the resulting displacement
field permits us to compute virtual images at intermediate time
steps. It allows us to construct a continuous sequence of frames
(movie) for the analyzed time period. Replaying such a se-
quence of images on the computer screen is very helpful for
a visual analysis of complex flow structures.

2.5
Extension to image sequences
The original ODP algorithm operates by using only a pair of
images. When a longer image sequence is available, a pair
of images has to be manually selected to get optimal displace-
ments. A natural extension is to automatically select a pair of
images within the sequence. The optimal way to do this is to
change the selected pair during the the execution of the
algorithm. Simultaneously to the reduction of the spacing and
width of the strips, the spacing of the images may be increased
up to an optimal value that is adaptively determined by the
allowed maximum displacement or by the available number of
images. In this way, the dynamic range of the method can be
increased enormously, limited only by the flow relaxation time.

2.6
Search for subpixel displacements
The original ODP algorithm is able to search only for integer
(in pixels) displacements at each iteration. Due to the applied
interpolation and smoothing procedure, our algorithm is
already able to find subpixel displacements. An additional
accuracy improvement is still possible through the direct
search of subpixel displacement components during strip
alignment. This is achieved by shrinking around the diagonal
line the set of points used for the dynamic programming
computations (Fig. 6). This corresponds to searching for

Fig. 6. Subpixel resolution search. The point set no longer forms
a square grid, it is also no longer aligned with pixel positions in the
image strips
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a matching column vector in the strip having a non-integer
displacement (still a discrete set but with less than 1 pixel
spacing). The main effect of this is that the points at which
local residua are computed are moved out of the pixel grid.
Hence, the corresponding segments obtain new non-integer
coordinates. These segments have to be interpolated from the
nearest segments of integer coordinates. Within the original
algorithm, the spacing and width of the strips and the width of
the search window around the diagonal are reduced by a factor

of J2 at each horizontal-vertical iteration. The subpixel
iterations are added after the iterations of the original
algorithm. At this point the spacing, width of the strips and the
width of the search window around the diagonal are kept
constant at their minimal value. Here, ten additional subpixel
iterations are performed, reducing each time the distance
of the points to the diagonal line of the disparity matrix by

a factor of J2. The subpixel iterations significantly improve
the accuracy of the computed velocity field.

2.7
Use of multi-image distances
When more than two images are available, it is possible to
select adaptively a pair of images during the ODP iterations
optimizing an accuracy/distortion compromise (section 2.5).
When the selected images are separated by one or more
intermediate images, it is suitable to add the constraint that all
the strips of the intermediate images or at least a few of them
are aligned with the strips of the outermost images (Fig. 7).
This was achieved by the following generalization of pixel to
pixel distance: Dp

1
[p

0
D to a ‘‘multi-pixel distance’’ defined

either by: (max i/N~1
i/0

pi)[(mini/N~1
i/0

pi) or: + i/N~2
i/0

Dpi`1[pi D .
Like for the subpixel iterations, the segments of the intermedi-
ate images generally have non integer coordinates and have to
be interpolated from the nearest integer coordinates.

2.8
Added smoothed bands
An additional enhancement specific for the DPIV problem has
been implemented to the ODP algorithm. It is based on adding
additional smoothed bands to the original (monoband) image.
Each new band is derived from the previous one by smoothing
it with a 3]3 Gaussian-like filter. We intuitively guessed that
this would help by reducing the local texture ambiguity and by
enlarging the spectral structure of the images (rather concen-
trated around high frequencies). Compared with a simple
smoothing, adding bands does not imply any loss of informa-

Fig. 7. Multi-image strip alignment

tion. This is possible since the ODP algorithm is able to operate
on multiband images. As expected, this option yields a signifi-
cant improvement in the quality of the results. We found that
the optimal number of added bands was between 3 and 5.

3
Calibration on synthetic images
The ODP algorithm for optical flow computation has
been benchmarked already for standard image
sequences available at the public computer domain
(ftp://csd.uwo.ca/pub/vision). Its performance ap-
peared to be at least as good as or better than the one obtained
using classical optical flow methods (Quénot, 1996). The
images used for flow velocimetry are different in several
aspects. They are characterized by specific noncontinuous
textures of particles, and recorded displacement fields are
rather different from those obtained from typical image scenes.
Hence, to perform the accuracy tests, an appropriate set
of benchmark images is required for DPIV and ODP-PIV
algorithms. With this in mind, a complete set of the test
sequences (synthetic and real) was developed for the evalu-
ation of the ODP-PIV technique. It is now available for
comparative evaluations from the public LIMSI ftp server at:
ftp://ftp.limsi.fr/pub/quenot/opflow/testdata/piv.

Several test sequences of four images were generated using
a synthetic image representative of the random particle texture
and a velocity field taken from a numerical solution obtained
for two-dimensional flow around a pair of cylinders (Lu 1996).
These images, numbered from 0 to 3, represent particle
textures calculated at four time steps: [3/2, [1/2, 1/2 and 3/2.
The velocity field v is defined (and searched for) in the
‘‘central’’ image of the sequence (which has the image index
3/2). Images 0, 1, 2 and 3 are generated by applying the velocity
fields [3v/2, [v/2, ]v/2, and ]3v/2 respectively to the
central image. The central image is not a part of the sequence.

The sequence labelled ‘‘Perfect’’ is generated ideally from the
velocity field and the texture image. The sequences labelled
‘‘Noise N%’’ are identical to the ‘‘Perfect’’ sequence except
that the intensity of all four images is modulated by adding
to each pixel randomly generated noise from the interval
[[255.N/100, 255.N/100] (with saturation in case of overflow
or underflow). The sequences labelled ‘‘Add/rm N%’’ are
identical to the ‘‘Perfect’’ sequence except that N% of the
particles are randomly removed and N% of other particles are
randomly added between the first and the last image. For the
intermediate images, these particles fade gradually between on
and off. This simulates the effect of the third velocity compon-
ent of the physical flow that conveys particles across the light
sheet. Though particle appearance/disappearance and noise
are obviously not related, sequences mixed with the ‘‘Noise
N%’’ and ‘‘Add/rm N%’’ effects added are generated and
labelled ‘‘Mixed N%’’ simply to set reference points with both
perturbations.

For all sequences the interior of the circles that represent
the cylinders around which the particles flow are filled with
a fixed texture distinct from the particle texture. The motion
at these boundaries and inside the cylinders must be zero.
The original velocity field leads to a mean displacement
module of 7.58 pixel/frame and a maximum displacement of
13.5 pixel/frame for the default sampling period. The ‘‘Perfect’’
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Fig. 8. Synthetic particle image
(top) and the ‘‘Correct’’ velocity
field, magnified twice, (bottom).
Average velocity module is
7.58 pixel/frame

and ‘‘Mixed N%’’ test sequences have also been generated with
higher displacements, scaled by a factor of 1.5 and 2. This is
equivalent to scaling the velocity field values or the sampling
period by the same factor. The mean displacement module
becomes, respectively, 11.4 pixels/frame (maximum displace-
ment 20.2 pixes/frame) and 15.2 pixels/frame (maximum
displacement 27.0 pixels/frame). Figure 8 shows one image of
a synthetic sequence and the original velocity field used to
generate the synthetic sequences. For clarity, in the figure, the
number of vectors is reduced 8 times in both directions and
their magnitude is doubled.

The sequences of synthetic images were evaluated using the
classical 2D DFT based DPIV method and the new ODP-PIV
algorithm. For the cross-correlation DPIV two search window
sizes were applied: 32]32 (DPIV32) and 48]48 (DPIV48). For
the ODP-PIV evaluation three variants were investigated. The
first one (ODP2) uses only 2 images (indices 1 and 2) like in the
classical DPIV. The second (ODP4S) and third (ODP4M)
variant use 4 images (indices 0, 1, 2 and 3). They differ in the
pixel to pixel distance definition. The ODP4S variant uses the
d(p

0
, p

1
, p

2
, p

3
)\+ i/2

i/0
Dpi`1[pi D , whereas the ODP4M variant

uses the d(p0, p1 , p2 , p3)\(max i/3i/0 pi)[(mini/3i/0 pi) definition
of the multi-pixel distance. For all ODP-PIV variants subpixel
iterations and the added smoothed bands option (5 added

bands for the ODP2 and 3 added bands for the ODP4S and
ODP4M) were used.

For each evaluated case the velocity error is computed for the
whole image (no border offset), except at the inner surface of the
circles the particles are moving around. The mean velocity error
and its standard deviation (^) are collected in Tables 2—4. Table
1 displays the angle error as defined by Barron et al. (1996). This
is the angle (in degrees) between the correct and computed
3-component (j, vx, vy) vectors representing the flow field. Table
2 displays the absolute displacement error which is given as the
L1 norm of the difference between the correct and computed
displacement in pixels/frame. Tables 1 and 2 display the error
for the original velocity field which leads to a mean displace-
ment module of 7.58 pixels/frame and a maximum of
13.5 pixels/frame. Table 3 and 4 display error results for the
scaled velocity fields (mean displacement modules of
11.4 pixel/frame and 15.2 pixels/frame respectively). Hence, the
absolute displacement error is also scaled by the factor of 1.5
and by the factor of 2 respectively. Figure 9 shows the velocity
field obtained using ODP-PIV (for the mixed 20% test, ODP4M)
and the error as the module of the difference between the correct
and evaluated velocity field displayed in form of the grayscale
image (non linear scale). Table 5 gives the error histogram for
the three ODP variants.
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Table 1. Angle error with a mean
displacement module of
7.58 pixels/frame

DPIV32 DPIV48 ODP2 ODP4S ODP4M

Perfect 5.95^13.9 9.35^18.3 1.23^2.24 1.07^4.05 0.62^1.44
Noise 5% 6.49^14.6 9.69^19.0 1.83^3.84 0.91^1.96 0.78^1.59
Noise 10% 8.75^17.9 10.8^20.0 4.01^10.8 1.40^4.01 1.01^1.83
Noise 20% 35.0^35.5 31.0^30.4 6.70^11.8 2.36^5.39 1.77^2.88
Add/rm 5% 6.04^13.8 9.35^18.3 1.27^2.35 0.77^1.81 0.67^1.50
Add/rm 10% 5.94^13.5 9.52^18.5 2.61^9.94 1.13^4.29 0.73^1.60
Add/rm 20% 6.11^14.2 9.77^19.2 1.42^2.54 1.45^5.23 0.86^1.81
Mixed 5% 6.40^14.4 9.59^19.0 1.77^2.87 1.24^4.10 0.84^1.67
Mixed 10% 10.2^19.6 11.3^20.8 4.30^11.7 1.58^4.49 1.20^2.14
Mixed 20% 40.8^34.5 38.3^29.7 6.15^9.01 3.46^8.89 2.33^3.69

Table 2. Absolute displacement
error with a mean displacement
module of 7.58 pixels/frame

DPIV32 DPIV48 ODP2 ODP4S ODP4M

Perfect 0.55^0.94 0.87^1.46 0.13^0.10 0.13^0.54 0.07^0.07
Noise 5% 0.61^1.18 0.86^1.49 0.21^0.46 0.10^0.13 0.08^0.08
Noise 10% 0.77^1.57 0.91^1.59 0.53^1.44 0.17^0.53 0.11^0.09
Noise 20% 3.11^4.14 2.06^2.88 0.88^1.58 0.30^0.68 0.20^0.14
Add/rm 5% 0.55^0.90 0.86^1.45 0.14^0.11 0.08^0.11 0.07^0.08
Add/rm 10% 0.55^0.93 0.87^1.47 0.34^1.28 0.14^0.56 0.08^0.09
Add/rm 20% 0.56^0.99 0.88^1.52 0.16^0.12 0.18^0.69 0.10^0.10
Mixed 5% 0.60^1.12 0.86^1.51 0.20^0.13 0.15^0.53 0.09^0.08
Mixed 10% 0.91^1.89 0.93^1.66 0.57^1.71 0.20^0.59 0.13^0.11
Mixed 20% 3.73^4.39 2.49^3.19 0.74^0.52 0.43^1.08 0.27^0.22

Table 3. Absolute displacement error with a mean displacement
module of 11.4 pixels/frame

ODP2 ODP4S ODP4M

Perfect 0.29^1.08 0.51^1.87 0.37^1.37
Mixed 5% 0.38^1.24 0.57^1.95 0.41^1.40
Mixed 10% 0.64^1.59 0.61^1.95 0.44^1.42
Mixed 20% 1.20^2.13 0.96^2.47 0.85^2.16

Table 4. Absolute displacement error with a mean displacement
module of 15.2 pixels/frame

ODP2 ODP4S ODP4M

Perfect 0.34^1.27 1.92^3.80 9.17^10.3
Mixed 5% 0.67^2.23 2.01^3.84 8.91^9.85
Mixed 10% 0.82^2.21 2.57^4.21 8.68^9.35
Mixed 20% 1.53^2.84 3.38^4.62 23.3^17.8

There are some interesting differences between the collected
DPIV and ODP-PIV results. For the classical DPIV the vector
set is sparse (about 0.3% density), whereas it is dense (100%
density) for the ODP-PIV. The DPIV method appears to be
rather insensitive to particle appearance/disappearance, but on
the other hand, it is very sensitive to the introduced noise. As
one would expect for the classical DPIV method, expanding the
search window size increases its robustness to noise but,

simultaneously, decreases the accuracy. The ODP-PIV appears
equally sensitive to both introduced disturbances, but its
performance is far better than that of the DPIV in all
investigated cases.

We may notice that there is not a strict monotonic increase
of the error relative to perturbations for the ODP-PIV. For
instance, in Table 2, ‘‘Perfect — ODP4S’’ test is worse than
expected and ‘‘add/rm 20% — ODP2’’ is better than expected. If
some erroneous or correct matches randomly occur, they are
amplified by the global constraints. This implies that, for
any ambiguous region, the matching is correct or wrong
globally. Spurious vectors are concentrated in spurious
regions (comp. Figure 9). They can be easily detected by
inspecting the appearance of the velocity field and animations
constructed using the extracted velocity field and the original
images.

4
Results on real sequences
Numerical velocity fields obtained using a finite differences
code (Yeoh 1993), and their DPIV counterparts are displayed
for a differentially heated cavity in Fig. 10. A freezing front
advances from the cold left wall. Two main recirculating flow
regions can be observed: clockwise in the lower-right part of
the cavity and counter-clockwise in the upper region. A sudden
change of the flow direction in the right lower corner, as well as
a colliding region of both recirculations on the left side are
difficult to accurate evaluate by the traditional DPIV. This is
mainly due to the relatively large search windows used (48
pixel). The direction and magnitude of flow velocity change
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Fig. 9. Velocity field, magnified
twice, obtained with the OPD 4M
variant from the 4-image ‘‘mixed
20%’’ synthetic sequence (top)
and distribution of the
corresponding velocity error
(bottom), bright spots indicate
regions of larger error (non-
linear scale)

Table 5. Absolute displacement error histogram with a mean dis-
placement of 7.58 pixels/frame mixed 20% test sequence

Error ODP2 ODP4S ODP4M

0.0Oe\0.1 21.6% 32.7% 32.6%
0.1Oe\0.2 5.3% 23.2% 22.3%
0.2Oe\0.3 7.5% 18.6% 17.8%
0.3Oe\0.4 8.2% 11.2% 11.8%
0.4Oe\0.5 8.2% 6.0% 7.2%
0.4Oe\0.6 7.7% 3.0% 4.1%
0.6Oe\0.7 7.0% 1.3% 2.1%
0.7Oe\0.8 6.1% 0.6% 1.1%
0.8Oe\0.9 5.1% 0.3% 0.5%
0.9Oe\1.0 4.3% 0.1% 0.2%
eP1.0 19.0% 3.0% 0.4%

immensely within the window, hence locally the error of the
evaluation becomes unacceptably high. On the other hand,
further decrease of the window size deteriorates signal statis-
tics necessary for the effectiveness of the DFT method.

The two pairs of images from the experiment (Figure 10) are
analyzed using the ODP-PIV method. Figure 11 shows the
velocity fields obtained from the ODP2 variant (2 images are
used for these sequences). The original velocity fields are dense
(1 vector for each individual pixel). For clarity, in the figure,
the number of vectors is reduced 12 times in both direc-
tions, and their magnitude is doubled. At time step 660 s,
the evaluated velocity module averaged over the whole
image equals about 4.2 pixels/frame (it turns into about
5.5 pixels/frame for the area where the flow is present). The
maximum velocity module equals 15.0 pixels/frame. At
time step 100 min the flow apparently slows down. The average
velocity equals about 2.5 pixels/frame (i.e. about 5.0 pixels/
frame for the flow area) and the maximum evaluated velocity
equals 12.2 pixel/frame. According to our calibration, we
estimate that the average accuracy of the evaluated vectors
is better than 0.5 pixel/frame. The vector field looks quite
reasonable except for some small spots at the 100 min time
step (it appears that the particle density is very low in the
corresponding area of the images). The improvement in
comparison with the DPIV evaluation is obvious.
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Fig. 10. Freezing in the differentially heated cavity. Velocity fields at two time steps: 660 s (left) and 100 min (right) after initiating the
flow; 496]496 pixel particle images (top row), numerical calculations (middle row), DPIV evaluated vectors (bottom row), for pairs of images
taken at 1.5 s intervals
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Fig. 11. ODP-PIV results for the 2-image real sequences. Velocity field at 660 s (left) and 100 min (right)

The ODP-PIV method is used for a four image sequence
taken from the second experiment with the lid cooled cavity.
A conical ice crystal develops at the cavity top wall. The four
images are taken every 200 ms, at 308 s after the temperature
difference T

h
[T

c
is set (Fig. 12).

Figure 12 shows one of the image of the sequence, fifteen
similar images superimposed and the velocity fields obtained
from the ODP-PIV using the ODP2, and the ODP4S variants.
The average module of the extracted velocity field is about
4.4 pixels/frame with a maximum of 27.4 pixels/frame. Accord-
ing to our calibration, we estimate that the average accuracy
is below 0.5 pixel/frame for the ODP2 variant and below
0.2 pixel/frame for the ODP4S and the ODP4M variants. The
vector field appears more accurate with the ODP4S variant
than with ODP4M variant (not shown). This has been observed
with several other 4-image sequences and it is not consistent
with the calibration on synthetic sequences which indicates
better results for the ODP4M variant. This may come from the
fact that in the real experiments there is a weak constant
background that does not follow the particle flow against which
the ODP4S variant is more robust. The calibration experiments
also showed that the ODP4S variant is more robust for large
displacements.

For N]N images, the asymptotic computation time is
O(N3 log N) for all the ODP variants but there is a portion
of the algorithm with a O(N2 log N) computation time that
still has a significant impact for N values within a few
hundreds. Practically, doubling the image size N increases the
computation time by roughly six times. It is possible to turn
off some quality options and significantly reduce (by up to
three times) the computation time at the price of loss of
accuracy. Using a 250 MHz R4400 Indigo2 workstation for
496]496 images the ODP2, ODP4S and ODP4M variants take
20, 210 and 200 minutes CPU time, respectively. Similar

computation times where obtained for Pentium 200 MHz
under Linux OS.

5
Summary and Conclusions
An Optical Flow technique based on the use of Dynamic
Programming has been succesfully applied to Particle Image
Velocimetry yielding a significant increase in the accuracy and
spatial resolution of the velocity field. Results have been
presented for calibrated synthetic sequences and for real
sequences from the experiment on natural convection in
freezing water. Using the ODP-PIV a dense velocity vector field
for every pixel of the image is obtained. The accuracy is better
than 0.5 pixel/frame for two-image sequences and below
0.2 pixel/frame for four-image sequences even with a 10%
noise level and a 10% rate of appearance and disappearance of
particles. Though computation time of the ODP-PIV method is
rather long (compared to classical DPIV), its high accuracy and
high spatial resolution allows us to use it for code validations
— which nowadays has become a very important task in fluid
mechanics.

Future work will be conducted in three directions:

1. Better characterization of the result quality: statistical
estimation of the accuracy of the velocity field from the
particle density (or texture), the smoothness of the extrac-
ted field and the reconstruction error.

2. Improvement of the measuring process: optimal choice of
the average velocity value (through time interval between
images) and the particle density to minimize the relative
error.

3. Direct search of the three-dimensional velocity field for
which Dynamic Programming based Optical Flow search is
very well suited.
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Fig. 12. Freezing in the lid cooled cavity. Results for a 4-image real sequence. Particle image (top left), 15 superimposed images (top right),
Velocity field obtained with the ODP2 variant using 2 images (bottom left) and with the ODP4S variant using 4 images (bottom right),
non linear scale
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