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An experimental study of the lateral migration of a droplet in a creeping flow * 
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Abstract. The distribution of droplets in a plane Hagen-Poiseuille 
flow of dilute suspensions has been measured by a special LDA 
technique. This method assumes a well defined relation between 
the velocity of the droplets and their lateral position in the 
channel. The measurements have shown that the droplet distribu- 
tion is non-uniform and depends on the viscosity ratio between 
the droplets and the carrier liquid. The results have been com- 
pared with a theory by Chan and Leal describing the lateral 
migration of suspended droplets. 

List of symbols 

a particle radius, m 
d half width of the channel, m 
Re flow Reynolds number, = 2 Vm" d" 0/]2 
v flow velocity, m/s 
v m flow Velocity at the channel axis, m/s 
We Weber number, = 2 v 2- d- 0/y 
x distance from center line (x = 0) of the channel, m 
2 non-dimensional distance from the channel center line, 

= x / d  
y distance along the channel (y = 0 at channel inlet), m 
y non-dimensional distance along the channel, = y / 2  d 
3~ non-dimensional, normalized distance along the channel, 

: f i "  l) m " ] 2 / 7  

7 interfacial tension, N/m 
2 viscosity -ratio of dispersed (droplet) phase to viscosity of 

continuous phase 
]2 viscosity of continuous phase, Pa. s 

density of continuous phase, kg/m 3 
A 0 phase density difference, kg/m 3 

1 Introduction 

Microscopic observations by Karnis et al. (1966) of  drop- 
lets suspende d in a liquid flowing through a tube show 
that the droplets are deformed by the flow field and 
migrate towards the tube axis. However, due to the 
tedious experimental technique required, there have been 

v e r y  few laboratory investigations into the f low-of  the 
droplets and their density distribution along cross sections 
of  the tube. 

* Experiments were performed at Max-Planck-Institut, G/Sttingen 

The aim of  the present work was to apply a more 
accurate and convenient technique to find the distribution 
of  droplets in a flow through a plane channel. The idea of  
this method is based on the assumption that there exists a 
known relation between the velocity of  a particle and its 
lateral position in the channel. Thus, by measuring the 
velocity of  a particle its position within the channel can be 
calculated. For the flow of  a viscous fluid between two 
parallel planes the velocity profile is well defined and 
described by the two-dimensional Hagen-Poiseuille law: 

U =  U m (1--~2). (l) 

A small neutrally buoyant  droplet suspended in an 
immiscible carrier liquid has a velocity which is close to 
the local flow velocity for the pure carrier fluid. From 
theoretical considerations by Chan and Leal (1979) fol- 
lows that the relative velocity of  a droplet, the so called 
"slip velocity" with respect to a Poiseuille field, is in the 
first approximation: 

vs 2 + 3~ O (2) 

where a / d  is the droplet size relative to the channel depth, 
and 2 the ratio of  the viscosity of  the liquid forming the 
droplets to that of  the continuous phase. 

As in our experiment the relative droplets size was 
small ( a / d  = 0.064), it follows from the above formula that 
the difference between Poiseuille velocity and that of  the 
droplet is less than 1%. Therefore the position of  a droplet 
in the channel was obtained directly from the Eq. (1). 
A detailed description of  this method is given by Hiller 
and Smolarski (1975) and by Heertsch (1980). 

2 Experimental 

In our experimental setup the channel was formed by two 
plane glass plates held at a distance of  0.125 m m  by the 
side walls. The width of  the channel was 4 m m  and the 
length 80 mm. Thus the aspect ratio of  the cross section 
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Fig. 1. Schematic view of the 
experimental setup. (1) are 
Wollaston prisms which in com- 
bination with the double diode 
(3) followed by a differential 
amplifier (4) remove the 
pedestal noise of the Doppler 
bursts. 2 - duct, 3 - transient 
recorder, 6 - scope, 7 - com- 
puter, 8 - balance, 9 - thermo- 
couple 

was 32, so that the flow with exception of a small region at 
the corners could be treated as a plane Poiseuille flow. 

The droplet velocity was measured by using a laser 
Doppler anemometer with a probe volume that was large 
compared to the depth of the channel. So, the measuring 
volume between the inner channel walls was of constant 
cross section and the probability of a particle to be de- 
tected does not depend on its lateral position. Each pas- 
sage of a droplet through the probe volume was registered 
as a Doppler burst. The mean droplet concentration was 
kept below 10 .6 by volume, so, generally only one droplet 
stayed in the probe volume at a time. However, even for 
such low concentrations it was possible that there were 
two droplets in the testing space at the same time, there- 
fore a special computer program analyzed each Doppler 
burst, checking its shape and amplitude. By this proce- 
dure only bursts generated by single droplets were select- 
ed, which were classified into one of the 30 equally spaced 
frequency channels. Each run of an experiment consisted 
of 3,000 Doppler bursts. Usually this took about one hour. 
Due to the statistic nature of the method,  we have to 
expect an error for the number of bursts registered in the 
single frequency channels which is inversely proportional 
to the square root of the number of events. If the channels 
were uniformly populated this error would be 10%. In 
practice, the error in the neighbourhood of the wall is 
larger as this region soon becomes depleted from particles, 
the flow velocity is low and the spatial width of the fre- 
quency channels is small. The variation bars shown in 
Fig. 2 are typical for all distributions. The accuracy of the 
single Doppler frequency measurements were within 2%. 

The scheme of the experimental setup is shown in 
Fig. 1. The channel was mounted vertically and could be 
moved up and down relative to the LDA focus. The mea- 
surements were performed in different places of the 
channel, starting from 10 mm up to 66 mm from the inlet. 
Three kinds of liquid systems were used; they differed 

mainly by the continuous phase viscosity, which was in 
system 1 higher than, in system 2 equal to, and in system 3 
lower than the viscosity of the dispersed phase. The 
physical and chemical properties of the systems employed 
and some hydrodynamic parameters of the flow are col- 
lected in Table 1. Droplet suspensions were prepared by 
pumping the liquid to be suspended through a fine hypo- 
dermic needle into the continuous phase. There the 
droplets were further dispersed by a mechanical mixer. 
Then, a vessel containing a small amount of the suspen- 
sion was carefully overlaid with the pure continuous 
phase. As the droplets had a slightly smaller specific 
weight they moved upwards at a velocity which depends 
on the particle size. So, they could be separated. The 
mean diameter of our particles measured by a microscope 
was 8 gm with a standard deviation of 4 pm. The flow rate 
was changed by varying the air pressure in the container 
supplying the channel. Flow rate and temperature were 
controlled during the experiments by a computer. 

The experiments were performed at relatively low flow 
rates (Re <- 1), so the entrance length is below 1 mm. 

Measurements of the velocity profiles for the flow of 
concentrated suspensions of small droplets (Kowalewski 
1980, 1984) show that for droplet concentrations below 5% 
by volume the velocity profile is not blunted. Thus it 
can be assumed that at our experimental conditions 
(x _-> 10 mm, volume concentration below 10 -6) we have a 
velocity profile defined by Eq. (1). 

3 Results and discussions 

An example of a typical result of the measurements i s  
shown in Fig. 2 in the form of graphs obtained directly 
from the computer. The dotted line displays the number 
of particles in each of the 30 frequency channels. Since the 
Doppler burst frequency is directly proportional to the 
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Table 1. Description of systems and physical properties of the fluids at 295 °K 
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System Continuous phase Dispersed 7 # 2 a/d A O Re We~Re 
phase N/m Pa '  s kg/m 3 

1 Castor oil Silicon oil 0.01 0.95 0.1 0.064 10 -5 10 - 4 -  10 -3 0.1 - 1 
AK 100 

2 Castor oil Silicon oil 0.01 0.1 1 0.064 10 -5 6 • 1 0  - 3  - -  5 • 1 0  - 2  0.05 -- 0.4 
+ methyl phthalate AK 100 
+ methanol 

3 Methanol Silicon oil 0.01 0.007 15 0.064 1 0  - 6  1 0.035 
+ methyl phthalate AK 100 
+ castor oil 
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Fig. 2. Measured droplet velocity spectrum N ( v )  ~m- (dotted line) 

and calculated spatial droplet density distribution N (1 - 2) (solid 
line): 2 = 0.1, y = 10 mm, Re = 1 0  - 4  

particle velocity this curve also displays the number  of  
particles observed during a run in the 30 corresponding 
velocity channels. In some cases we have repeated the 
experiments up to four times at the same flow conditions 
in order to test the reproducibility of  the system. In those 
cases we have averaged the results to reduce the statistic 
error. From the dotted curve the spacial particle density 
distribution N(2) ,  represented by a solid line, has been 
calculated using Eq. (1) and taking into account the par- 
ticle flux and the spatial width of  the channel. For  better 
representation N 07) has been smoothed by a spline inter- 
polation. The results are shown in Figs. 3 - 5 .  The particle 
flux calculated for the so obtained curves was found to be 
constant within 8%. 

For the first system with a viscosity ratio 0.1 it was 
observed that there is a pronounced peak of  the droplet 
distribution located near the wall. This peak appears at 
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Fig. 3. Spatial droplet distribution for different distances from the 
channel inlet: 2=0.1; R e =  1 0  . 4  for )~==. 53 and R e =  1 0  . 3  for 

= 528 

the channel inlet and moves slowly towards the center line 
of  the flow as the distante from the inlet increases, dis- 
appearing finally far from the inlet (Fig. 3). Such a "wall 
peak" is also typical for measurements performed with 
the second and third system. For  droplets of  viscosity ratio 
2 = 1 (Fig. 4) the "wall peak" rises with increasing dis- 
tance from the inlet and also moves slowly towards the 
axis of  the channel. In the central part of  the channel the 
number of  droplets decreases, which indicates that they 
migrate slowly towards the wall, as is the case for rigid 
spheres. The results for the third system ()L = 15) are very 
similar to the previous one, except for a more pronounced 
nonuniformity of  particle distribution observed near the 
center line of  the channel (Fig. 5). 

The most complete theoretical analysis of  droplet 
migration in a two-dimensional flow was given by Chan 
and Leal (1979). They consider the effect of  shape de- 
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Fig. 4. Spatial droplet distribution for different distances from the 
channel inlet: 2 = 1, Re = 5 • 10 -2 
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Fig. 5. Spatial droplet distribution for different distances from the 
channel inlet: 2 = 15, Re = 1 

formation on the motion of a liquid drop in a unidirec- 
tional shear flow. Assuming small droplet deformation, 
small relative droplet size and creeping flow conditions, 
the force induced on the droplet has been found by the 
method of "reflections". 

The authors define two hydrodynamic interactions 
responsible for drop migration. The first one is the inter- 
action between the deformed drop and the wall of the 
channel. This interaction quickly decreases with increasing 
distance from the wall and causes the drop to move away 
from the wall. Assuming that their formula for the shear 
flow is valid locally for two-dimensional Poiseuille flow, 
the migration velocity of the droplets, due to the inter- 
action with the channel walls is: 

( a )  4 ~"m'fl . (  4 4 ) 
W=--Vmg 2" ~ " 7 ~(I__x) 2 ( l+g)2  ~-2~ 

3 (16+ 192) (54+ 972+ 5422 ) 
4,480" (1 +2) 3 (3) 
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Thus the migration velocity depends on the non-dimen- 
sional parameter Vm'/2/7, which is the ratio of Weber 
number to Reynolds number, and on the fourth power of 
the relative droplet size a/d. The viscosity ratio 2 does not 
influence significantly the value of w. 

The second type of interaction is the interaction be- 
tween the flow field and a deformed drop. This inter- 
action vanishes for simple shear flow, but plays an impor- 
tant role in the quadratic flow field. 

For two-dimensional Poiseuille flow, according to 
Chan and Leal (1979), the migration velocity of the 
droplet due to this interaction far from the walls is: 

(1+2)2(2+32) 
16+192 

• 4 2 . ( 2 + 3 2 ) .  (4+2) . ( 1 3 - 3 6 2 - 7 3 2 2 + 2 4 2 3  ) 

10+112 (8_2+322)1  (4) 
+ 10-----~ 

Note that this migration velocity depends on the third 
power of relative droplet size, and thus the interaction 
with the velocity field is stronger than the "wall effect". 
Another interesting feature of the last formula is that u 
depends essentially on the viscosity ratio 2. Hence the 
droplets of viscosity ratios 2 greater than 10 and lower 
then 0.5 migrate towards the center line of the channel. 
But for intermediate values of 2 the migration velocity u 
changes sign, and the droplets migrate towards the walls 
of the channel due to the interaction with the velocity 
profile. However, as both types of interactions take places 
simultaneously and in opposite directions, the equilibrium 
position for 2 e [0.5, 10] will be not on the center line of 
the channel, but at some point between the wall and the 
center line. This equilibrium position, where both forces 
are equal, depends strongly on the viscosity ratio 2 and on 
the relative droplet size a/d. Taking into account both 
above formulas for droplet migration velocity, and as- 
suming that the droplet moves along the tube with a 
velocity: 

2 + 3 2  ' (5) 

we can find its path in the channel. It is given by 

~ (x) 
9 (g, Xo) - Vm" ~ . f dx (6) 

2"7 ;o- u ( x ) + w ( x )  

where p is the normalized, nondimensional distance along 
the channel; x is position of the droplet and g0 is initial 
position of the droplet• 

In Figs• 6 and 7 we show paths of droplets of relative 
size 0.064 calculated from Eq. (6) for 2 = 0.1 and 2 = 1. 
It can be seen that in both cases the droplet migration is 
very fast near the wall of the channel whereas in the 
central part it is much slower. 
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Figs. 6 and7. Calculated droplet paths 

Figures 8-10  show numerically calculated distribu- 
tions of droplets at four different distances from the inlet 
of the channel. We assume that at the inlet (y= O) 
droplets are distributed uniformly. It can be seen that for 
all cases close to the inlet a peaked droplet distribution 
forms near the channel wall. This peak moves slowly 
towards the equilibrium position as the distance from the 
inlet increases. For 2=0.1  almost all droplets reach 
equilibrium at the axis when y = 2,000, whereas for Z = 15 
they need a distance ) )~  10,000 to reach the equilibrium 
position in the channel. For viscosity ratio ,t, = 1 and rela- 
tive droplet size a/d = 0.064 the equilibrium position is at 
:f = 0.44 and is reached for )) ~ 10,000. 

Note that the maximum of the droplet distribution 
near the wall has also been observed for highly concen- 
trated droplet suspensions (Kowalewski 1984). The exis- 
tence of this maximum may be understood in view of the 
above theory as a consequence of a short range interaction 
between the droplets and the wall. Droplets develop this 
maximum when forced away from the wall. At larger 
distances from the channel wall this force becomes negli- 
gible and the droplets slowly migrate from the wall due to 
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Figs. 8-10. Droplet distributions calculated for different dis- 
tances from the channel inlet 

the interaction with the velocity field. This migration is 
directed to the center line of the channel for viscosity 
ratios 2 < 0.5 and Z > 10. For intermediate values of 2, 
the stable equilibrium position of the particle is shifted 
off the center line; as the forces induced by the flow field 
and by the wall have opposite sign and cancel each other 
between wall and center line. 

The present observations confirm this trend; however 
quantitative comparison with the theory of Chan and Leal 
is not possible. The theory does not predict the observed 
minima between "wall peak" and channel axis. It seems 
that "wall interaction" of the droplet is more complex 
than described by the theoretical model. In the present 
experiment migration velocities were too small to observe 
the asymptotic spatial distribution of the droplets. How- 
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ever the development o f  the wall maximum seems to be in 
accordance with that predicted by the theory. 

The exact matching of  the results with the theory is not 
possible due to 50% scatter within the droplet size in our 
experiment. The velocity o f  migration as calculated from 
Eqs. (3) and (4) changes rapidly with the size of  the drop- 
lets. Also the value of  interfacial tension - which for 
"normal" conditions is 10 -2 N / m  - can be questioned for 
droplets of  only several micrometers in size, as used in our 
experiments and even very slight contaminations could 
effect both tangential and normal stresses, too. 

It is possible to use this theory - which gives qualita- 
tively good results - for polydispersed suspensions to try 
to obtain better agreement with the experiments. It would 
also be advisable to perform further experiments using 
suspensions of  smaller scatter of  droplet size. However, it 
should be remarked that the calculations of  Chart and 
Leal assume zero Reynolds number,  wall interaction in a 
simple shear flow and flow field interaction in an un- 
bounded flow. This means that by simply adding these 
solutions we may expect only qualitatively correct results. 
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