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Abstract. We apply Maxwell’s averaging method to find effective values of electric
permeability of two-phase composite one phase of which has a complex dielectric
coefficient.

1 Introduction

The semi-classical Drude’s dispersion relation indicates that for certain range
of light frequencies the negative values of refraction index are possible. Victor
Georgievich Veselago indicated that negative refraction can occur if both the elec-
tric permittivity and the magnetic permeability of a material are negative, [1]. This
idea was confirmed when David Smith built a composite material with negative re-
fractive index, and John Pendry showed that the planar lens proposed by Veselago
is providing improved resolution, cf. [2] - [8].

There is also an unconventional alternative to a lens. Material with negative
refractive index will focus light even when in the form of a parallel-sided slab of
material. Snell’s laws of refraction at the surface are still obeyed as light inside the
medium makes a negative angle with the surface normal.

One obtains also an amplitude increase when light passes by a slab of thickness
d. Not only the overall transmission coefficient is increasing but also the amplitude
of the electric field vector. There is no back-reflected wave at the faces of the slab
since the amplitude Fresnel coefficients for reflection are equal to zero and those
for transmission equal to unity. The consequence of this is that for a macroscopic
thickness of the slab and atomic size point sources the amplitude of the electric
field can easily reach values beyond the breakdown of any material, cf. [1, 3].

In metamaterials i.e. artificially structured materials with negative refractive
index, inclusions replace the atoms and molecules of conventional materials. The
scale of these inclusions is smaller than that of the used electromagnetic wavelength,
so that application of homogenisation is possible. Smith and Pendry presented a
homogenisation technique in which macroscopic fields are determined via averaging
the local fields.
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In this contribution we propose another way of averaging, after Maxwell’s orig-
inal averaging method [9].

2 Maxwell’s averaging

James Clerk Maxwell proposed the following method of determining properties of a
substitute homogeneous material replacing the material with spherical inclusions.

After Maxwell, we take into account no spheres of radius a1 and complex di-
electric coefficient ε1, placed in the medium whose complex dielectric coefficient is
ε2, at such distances from each other that their effects of disturbing the course of
electrical lines may be taken as independent of each other. These spheres are all
contained within a sphere of radius a2. The ratio of volume of the no small spheres
to that of the sphere which contains them is p = noa

3
1/a

3
2. The whole sphere of

radius a2 had been made of a material of effective dielectric coefficient ε. We find
an expression for the dielectric coefficient of a compound medium consisting of a
substance of dielectric coefficient ε2, in which are disseminated small spheres of
dielectric coefficient ε1, the ratio of the volume of all the small spheres to that of
the whole being p.

2.1 Dielectric sphere in uniform electric field

Let the permittivity of a dielectric sphere of radius a1 be ε1, and permittivity of
its surrounding medium be ε2. Moreover, let the dielectric sphere be immersed in
an otherwise constant electric field Eo, directed along the z-axis. The potential
outside the sphere is given by

ϕ =

(
Eor +m

1

r2

)
cos θ (1)

where

m =
ε1 − ε2
ε1 + 2ε2

a31Eo (2)

denotes an induced electric dipole moment of the sphere.

2.2 Maxwell’s sphere

The small spheres, each of radius a1 are all in number no contained within a sphere
of radius a2 and dielectric coefficient is ε2.
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By extension of (1), the potential of n dielectric spheres (contained within a
sphere of radius a2) in an otherwise uniform electric field Eo is

Φ =

(
Eor + nom

1

r2

)
cos θ (3)

or

Φ = Eo

(
r + no

ε1 − ε2
ε1 + 2ε2

a31
1

r2

)
cos θ (4)

This expression is written under assumption that distances between small spheres
are such that their effects of disturbing the course of electrical lines may be taken
as independent of each other.

The ratio of volume of the no small spheres (radius a1) to that of the sphere
(radius a2)

p =
noa

3
1

a32
(5)

Hence

a31 =
pa32
no

(6)

Therefore

Φ = Eo

(
r +

ε1 − ε2
ε1 + 2ε2

pa32
1

r2

)
cos θ (7)

Now, if the whole sphere of radius a2 had been made of a material of dielectric
constant εeff , we should have had

Φ = Eo

(
r +

εeff − ε2
εeff + 2ε2

a32
1

r2

)
cos θ (8)

That the one expression should be equivalent to the other one should put

ε1 − ε2)

ε1 + 2ε2
p =

εeff − ε2
εeff + 2ε2

(9)

Hence

εeff =
ε1 + 2ε2 + 2p(ε1 − ε2)

ε1 + 2ε2 − p(ε1 − ε2)
ε2 (10)
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This, therefore, is the effective dielectric coefficient of a compound medium consist-
ing of a substance of dielectric coefficient ε2, in which are scattered small spheres
of dielectric coefficient ε1, the ratio of the volume of all small spheres to that of
whole being p. In order that the action of these spheres may not produce higher
order effects depending on their interference, their radii must be small compared
with their distances, and hence p must be a small fraction. If p = 0, εeff = ε2.

2.3 Effective coefficient for medium with complex dielectric inclusions

We assume that the dielectric coefficient ε1 is a complex quantity, and we write

ε1 = ℜε1 + iℑε1 (11)

From Maxwell’s relation (10) we get

εeff =
ℜε1 + iℑε1 + 2ε2 + 2p(ℜε1 + iℑε1 − ε2)

ℜε1 + iℑε1 + 2ε2 − p(ℜε1 + iℑε1 − ε2)
ε2 (12)

or

εeff =
(1 + 2p)ℜε1 + 2(1− p)ε2 + i(1 + 2p)ℑε1
(1− p)ℜε1 + (2 + p)ε2 + i(1− p)ℑε1

ε2 (13)

We remind that ε2 is purely real dielectric coefficient, ε2 ≡ ℜε2. After further
transformations one gets

εeff =
L
M

(14)

where

L = ℜL+ iℑL (15)

and

ℜL = (1−p)
{
(1 + 2p)((ℜε1)2 + (ℑε1)2) + 2(2 + p)ε22

}
+(4+p+4p2)ℜε1ε2 (16)

ℑL = 9p(ℑε1)ε2 (17)

M = {(1− p)ℜε1 + (2 + p)ε2}2 + (1− p)2(ℑε1)2) (18)

We observe that the real part of numerator ℜL can be negative if the second term
(4 + p+ 4p2)ℜε1ε2 is negative and its modulus is sufficiently large.
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3 Drude-Lorentz’ description of dispersion in materials

Drude and Lorentz (ca. 1900) developed a classical theory to account for the com-
plex index of refraction and dielectric coefficients of materials, as well as their
variations with the frequency of light. The model is treating electrons as damped
harmonically bound particles subject to external electric fields. The frequency de-
pendence of the dielectric coefficient is as follows

ε(ω) = 1 + 4π
e2

m

∑
ν

Nν

ω2
ν − ω2 − iγνω

(19)

Here e and m are the electrical charge and mass of electron, respectively, the sum is
taken after different bonds of electrons in the substance, while Nν denote number
of electrons of belonging to the bond of type ν, cf. e.g. [10, 11]. For complex ε

ε(ω) = [n(ω) + ik(ω)]2 (20)

where n(ω) and k(ω) stand for refractive and extinction coefficients, respectively.
It was shown that wire structures with lattice spacings of the order of a few

millimeters behave like a plasma with a resonant frequency, ωp, in the GHz region,
[3]. The ideal dielectric response of a plasma is given by

ε = 1−
ω2
p

ω2
(21)

and takes negative values for ω < ωp.
At optical frequencies several metals behave like a nearly perfect plasma with

a dielectric function modelled by the last equation: silver, gold, and copper are
perhaps the best examples. The magnetic properties of known materials are less
obliging.

The dielectric coefficient of metals, such as silver, copper, and gold is described
by a simplified formula, when only one type of electronic bond is taken into account

ε1(ω) = 1− ω2
o

ω2 + iγω
(22)

with parameters for gold: ωo = 1.38 · 1016s−1 and γ = 1.07 · 1014s−1, cf. [13].
Visible light has wavelength in a range from about 380 nanometres to about 740

nm, what corresponds to a frequency range of about 405 THz to 790 THz, (1 THz
= 1012 Hz = 1012 1/s). We observe that ωo is more than one order greater than
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typical frequency of the visible light ωmean = 4 · 1014 1/s, and, we observe also that
ωo is two order greater than γ.

The equation (22) can be reduced to the form

ε1(ω) =
ω2 + γ2 − ω2

o

ω2 + γ2
+ i

ω2
o

ω2 + γ2
(23)

and when γ2 can be neglected in comparison with ω2 and ω2
o, the real part of ε1(ω)

takes the form of (21).
From Eq.(23) we get

ℜε1 =
ω2 + γ2 − ω2

o

ω2 + γ2
and ℑε1 =

ω2
o

ω2 + γ2
(24)

and these expressions should be substituted to Eqs. (16) - (18) to obtain the
description of the averaged permittivity εeff given by Eq. (14).

4 Plasma-type components

Let two components of composite have plasma-type dispersion characteristics, cf.
Eq.(21),

ε1 = 1− ω2
1

ω2
and ε2 = 1− ω2

2

ω2
(25)

After Eq.(10) we find

εeff =
1− ω2

1
ω2 + 2

(
1− ω2

2
ω2

)
− 2p

ω2 (ω
2
1 − ω2

2)

1− ω2
1

ω2 + 2
(
1− ω2

2
ω2

)
+ p

ω2 (ω
2
1 − ω2

2)
ε2 (26)

or

εeff =

{
1− 3p

ω2
1 − ω2

2

3ω2 − (1− p)ω2
1 − (2 + p)ω2

2

}(
1− ω2

2

ω2

)
(27)

This expression is no more of simple structure of the plasma dispersion (21) and
we see the interplay of positive and negatives values of above two factors, one in
curly brackets and second in parentheses decide about sign of dielectric coefficient
of composite. We observe that apart from the critical value ω2 of the matrix, the
second critical value appears ωcrit =

√
[(1 + 2p)ω2

1 + (2− p)ω2
2]/3 appears which

decides about sign of expression in curly brackets.
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