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Abstract

The aim of this paper is to create new type of plastic limit de-

sign procedures where the influence of the limited load carrying

capacity of the beam-to-column connections of elasto-plastic

steel (or composite) frames under multi-parameter static load-

ing and probabilistically given conditions are taken into consid-

eration. In addition to the plastic limit design to control the

plastic behaviour of the structure, bound on the complemen-

tary strain energy of the residual forces is also applied. If the

design uncertainties (manufacturing, strength, geometrical) are

taken into consideration at the computation of the complemen-

tary strain energy of the residual forces the reliability based ex-

tended plastic limit design problems can be formed. Two numer-

ical procedures are elaborated. The formulations of the prob-

lems yield to nonlinear mathematical programming which are

solved by the use of sequential quadratic algorithm.
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3, Hungary

e-mail: majidmr@eik.bme.hu

Jaroslaw Knabel

Institute of Fundamental Technological Research, Polish Academy of Sciences,

ul. Pawinskiego 5B; 02-106 Warszawa, Poland, Poland

e-mail: jknabel@ippt.gov.pl

Piotr Tauzowski

Institute of Fundamental Technological Research, Polish Academy of Sciences,

ul. Pawinskiego 5B; 02-106 Warszawa, Poland, Poland

e-mail: ptauzow@ippt.gov.pl

1 Introduction

At the Twelfth International Conference on Civil, Structural

and Environmental Engineering Computing “CC2009” a special

session was organized to problems dedicated to robust optimal

design by stochastic optimization procedures. This paper is a

revised and extended version of the CC2009 Conference presen-

tation of Logo et al. [1]. Knabel et al. [10] gave a rather effec-

tive reliability based limit design method for skeletal structures

what is based on a response surface technique. A complex and

“real life” application was introduced by Kirchner and Vietor

[9] which can be a promising development in the field of vehi-

cle body development. The robust design of plane frames in the

case of uncertainty was discussed by Zier [17]. Here compari-

son of four approaches to the linear approximation of the yield

condition was presented. The numerical approach presented by

Beer and Liebscher [2] could be applied in combination with a

nonlinear structural analysis and any initial uncertainty analy-

sis, such as Monte Carlo simulation, interval analysis or fuzzy

analysis.

In engineering practice the uncertainties play a very important

role [13–15] and need intensive calculations. There are several

engineering problem where the designer should face to the prob-

lem of limited load carrying capacity of the connected elements

of the structures [8, 12]. Such problem can be found during the

rehabilitation of the old buildings with composite plates (floors)

or in the case of steel frame structures. The main structural el-

ements of steel frame multi-storey structures are the columns,

the beams and their connections. The assumption that the con-

nections are either rigid or pinned has been widely applied in

the past. The actual behaviour of the connections is however

somewhere between these limits and they are semi-rigid [6, 11].

This circumstance can influence significantly the behaviour of

the structure therefore has to be taken into account in the anal-

ysis and design. At the application of the plastic analysis and

design methods the control of the plastic behaviour of the struc-

tures is an important requirement. In structural plasticity the

static and kinematic limit theorems provide appropriate tools to

solve these complex problems [4, 7, 8].

Comprehensive reliability limit analysis of frames (structure
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with rigid connections) was considered by Corotis and Nafday

[3]. They proposed simulation method for failure probability es-

timation with assumed random nature of load and scatter of vari-

ables relevant to the resistance of the structure. Load variability

description comes from observations and appropriate probabilis-

tic distribution can easily be adjusted. However, resistance dis-

tribution in their work is defined by limit load multiplier which

is determined for each dominant failure mode associated with

variability ranges of all variables.

In classical plasticity the limit and the shakedown analysis

are among the most important basic problems. Since the shake-

down and limit analysis provide no information about the mag-

nitude of the plastic deformations and residual displacements

accumulated before the adaptation of the structure, therefore for

their determination several bounding theorems and approximate

methods have been proposed. Among others Kaliszky and Lógó

[8, 11] suggested that the complementary strain energy of the

residual forces could be considered an overall measure of the

plastic performance of structures and the plastic deformations

should be controlled by introducing a limit for magnitude of

this energy. In engineering the problem parameters (geomet-

rical, material, strength, manufacturing) are given or considered

with uncertainties. The obtained analysis and/or design task is

more complex and can lead to reliability analysis and design.

Instead of variables influencing performance of the structure

(manufacturing, strength, geometrical) only one bound mod-

elling resistance scatter can be applied. The bound on the com-

plementary strain energy of the residual forces controlling the

plastic behaviour of the structure can be utilized. This bound has

significant effect for the limit load multipliers [11]. Moreover,

linear programming with complementary strain energy bound-

ary yields at once limit load multiplier conditioned by assumed

value of resistant failure probability. The reliability based ex-

tended plastic limit design problem can be formed and whole

limit load envelope for different directions of load can be de-

termined. In the case of semi-rigid connections the boundaries

between dominant failure modes are not clear. Therefore, suit-

able approximation of limit load envelope, so called response

surface method can be applied. It gives the best numerical ef-

ficiency required in engineering applications, e.g. see [4, 10].

Surrogate but analytical model of limit load envelope enables

application of any reliability analysis method, even the most ex-

pensive simulation, Crude Monte Carlo method.

The aim of this paper is to create new type of plastic limit de-

sign procedures where the influence of the limited load carrying

capacity of the beam-to-column connections of elasto-plastic

steel (or composite) frames under multi-parameter static loading

and probabilistically given conditions are taken into considera-

tion. In addition to the plastic limit design to control the plastic

behaviour of the structure, bound on the complementary strain

energy of the residual forces is also applied. This bound has

significant effect for the load parameter [12]. If the design un-

certainties (manufacturing, strength, geometrical) are expressed

by the calculation of the complementary strain energy of the

residual forces the reliability based extended plastic limit design

problems can be formed. Two numerical procedures are elabo-

rated: the first one is based on the extended plastic limit design

method with a direct integration technique and the uncertainties

are assumed to follow Gaussian distribution. The formulations

of the problems yield to nonlinear mathematical programming

which are solved by the use of sequential quadratic algorithm.

The nested optimization procedure is governed by the reliability

index calculation. The second procedure is based on the Crude

Monte Carlo simulation where the extended limit design pro-

cedure is applied [10]. The multi-parameter static loads follow

Gumbel distribution and the “design” uncertainties are assumed

Gaussian distributed data. Because of the demand of the high

efficiency, the response surface method is applied.

The parametric study is illustrated by the solution of exam-

ples.

2 Elements of the mechanical modelling and the anal-

ysis

2.1 Notations and loadings

In the paper the following notations are used:

Pd : dead load;

P1,P2 : Static working loads;

Me
h,M

e
d : Fictitious elastic moments calculated from the live

and dead loads assuming that the structure is purely elastic;

Qr ,Mr : residual internal forces and moments;

M
p

d ,M
p

h : plastic moments;

M
p

: limit moments of the bounded beam to column joints;

Wp0 : allowable complementary strain energy of the residual

forces;

σσσ y, E : yield stress and Young’s modulus;

Ai , Ii , S0i and `i : areas, moment of inertias of the cross-

sections and length of the finite elements (i = 1, 2, . . ., n),

respectively;

S j : stiffness of the semi-rigid connection.

F,K,G,G∗ : flexibility, stiffness, geometrical and equilibrium

matrices, respectively; ( j = 1, 2, . . ., k) is the number of

semi-rigid connections. They are subsets of (i = 1, 2, . . ., n).

β : reliability index;8−1: inverse cumulative distribution func-

tion (so called probit function) of the Gaussian distribution,

f
(
Wp0

)
: the Gaussian probability density function of the com-

plementary strain energy of the residual forces.

V0 : represents the total limit volume of the structure.
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Two problem class are considered. In the first group of prob-

lems the dead and working (pay) loads considered deterministic,

while in the second one the working (pay) loads follow Gumbel

distribution. The structure is subjected to a dead load Pdand

two independent, static working loads P1 and P2 with multi-

pliers m1 ≥ 0,m2 ≥ 0. In the analysis five loading cases

(h = 1, 2, . . ., 5) shown in Table 1 are taken into considera-

tion. For each loading case a plastic limit load multiplier m ph

can be calculated. Making use of these multipliers a limit curve

can be constructed in the m1,m2 plane (Figure 1). The structure

does not collapse under the action of the loads m1P1, m2P2 if

the points corresponding to the multipliers m1,m2 lies inside or

on the plastic limit curve, respectively.

Tab. 1. Loading combinations

h Multipliers Loads
Load multipliers

Plastic limit state

1 m2 = 0 Q1 = P1 m p1

2 m1 = 0 Q2 = P2 m p2

3 m1 = 0.5m2 Q3 = [0.5P1, (0.5P1 + P2),P2] m p3

4 m1 = m2 Q4 = [P1, (P1 + P2),P2] m p4

5 m1 = 2m2 Q5 = [2.0P1, (2.0P1 + P2),P2] m p5

Fig. 1. Limit curve and safe domain

In the second case the working (pay) loads are P1,P2 two

random variables with Gumbel distribution. m ph,ψ (Wp0) is the

admissible plastic limit load multiplier, calculated by the use of

the assumed Wp0 and constituting the limit load envelope.

mψ (P) is the plastic limit load multiplier depending on the

realization of the random vector of load P.

Both limit load multipliers m ph,ψ (Wp0) and mψ (P)depend

on the direction of load P defined by angles ψi -(0− 90)-.

2.2 Modelling of the semi-rigid connections

The typical general behaviour of the semi-rigid connection

can be illustrated by a moment-rotation relationship shown in

Figure 2. In this paper this relationship will be approximated

[6,12] by three different elasto-plastic models given in Figure 3.

Here M
p

is the plastic limit moment and S̄ is the stiffness of the

semi-rigid connection. Their magnitudes can be assumed from

the results of experiments. These models are incorporated in the

elementary stiffness matrix of the beam elements.

Fig. 2. Real behaviour of the semi-rigid connection

2.3 Reliability-based control of the plastic deformations

Introducing the basic concepts of the reliability analysis and

using the force method the failure of the structure can be defined

as follows:

g (XR,XS) = XR − XS ≤ 0; (1)

where XR indicates either the bound for the statically admissible

forces XS or a bound for the derived quantities from XS . The

probability of failure is given by

P f = Fg (0) ; (2)

and can be calculated as

P f =

∫
g(XR ,XS)≤0

f (X) dx . (3)

At the application of the plastic analysis and design methods

the control of the plastic behaviour of the structures is an im-

portant requirement. Since the limit analysis provides no in-

formation about the magnitude of the plastic deformations and

residual displacements accumulated before the adaptation of the

structure, therefore for their determination several bounding the-

orems and approximate methods have been proposed. Among

others Kaliszky and Lógó [8, 11] suggested that the comple-

mentary strain energy of the residual forces could be considered

an overall measure of the plastic performance of structures and

the plastic deformations should be controlled by introducing a

bound for magnitude of this energy:

1

2

n∑
i=1

Qr
i Fi Qr

i ≤ Wp0 (4)

Here Wp0 is an assumed bound for the complementary strain

energy of the residual forces. This constraint can be expressed

in terms of the residual moments Mr
i,ai and Mr

i,bj acting at the

ends (ai and bj) of the finite elements as follows:

1

6E

n∑
i=1

`i

Ii

[
(Mr

i,ai )
2
+ (Mr

i,ai )(M
r
i,bj )+ (M

r
i,bj )

2
]
≤ Wp0.

(5)
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a) Pinned connection b) Rigid connection c) Semi-rigid

Fig. 3. Models of the semi-rigid connection.

By the use of eq. (5) a limit state function can be constructed:

g
(
Wp0,M

r
)
= Wp0

−
1

6E

n∑
i=1

`i

Ii

[
(Mr

i,ai )
2
+ (Mr

i,ai )(M
r
i,bj )+ (M

r
i,bj )

2
]
.

(6)

The plastic deformations are controlled while the bound for the

magnitude of the complementary strain energy of the residual

forces exceeds the calculated value of the complementary strain

energy of the residual forces:

g
(
Wp0,M

r
)
= Wp0

−
1

6E

n∑
i=1

`i

Ii

[
(Mr

i,ai )
2
+ (Mr

i,ai )(M
r
i,bj )+ (M

r
i,bj )

2
]
> 0.

(7)

Let assumed that due to the uncertainties the bound for the mag-

nitude of the complementary strain energy of the residual forces

is given randomly and for sake of simplicity it follows the Gaus-

sian distribution with given mean value W̄p0 and deviation σw.

Due to the number of the probabilistic variables (here only sin-

gle) the probability of the failure event can be expressed in a

closed integral form:

P f,calc =

∫
g(Wp0,Mr)≤0

f
(
W̄p0, σw

)
dx . (8)

By the use of the strict reliability index a reliability condition

can be formed:

βtarget − βcalc ≤ 0; (9)

where βtarget and βcalc are calculated as follows:

βtarget = −8
−1
(
P f,target

)
; (10)

βcalc = −8
−1
(
P f,calc

)
. (11)

(Due to the simplicity of the present case the integral formu-

lation is not needed, since the probability of failure can be de-

scribed easily with the distribution function of the normal distri-

bution of the stochastic bound Wp0.)

2.3.1 Random loading

The entire problem can be treated alternatively [10]. The

limit load multiplier m ph,ψ (Wp0) represents the structural re-

sistance independently from the real load P. The complemen-

tary strain energy Wp0 expresses all uncertainties characterizing

structure that influences on the value of their limit load multi-

plier m ph,ψ = m ph,ψ (Wp0) for the fixed direction of the load

vector, angle ψi -(0 − 90)-. Hence, established the admissible

value of failure probability P[Wp0 ≤ ŵp0] ensures the safety

level of the structural resistance. Here ŵp0 means the boundary

value on complementary strain energy. The limit load envelope

m̂ ph(Wp0, ψ) for the established value of the complementary

strain energy wp0 can easily be determined.

Also the random nature of the load can be considered. Vec-

tor of the limit loads P describes variability of maximum real-

izations of loads in considered period of time (e.g. lifetime of

the structure). The Gumbel distribution with joint probability

density function (pd f ) fP1,P2...Pn(p1, p2, . . .pn) = fP (P) is

used to model extreme values of loads. Following the paper [3]

the vector of random loads P can be expressed by means of its

length D = ‖P‖ and vector of n angles 9 = [91, 92, ..., 9n]

linked by the formula pi = mcos(ψi ), where m is the load

multiplier. The last angle can be calculated in the following

way ψn = cos−1((m2
− p2

1 − ... − p2
n−1)

1/2/m). The rela-

tionship fD,9(m, ψ) = |J| f p(p)) comes from the theory of

derived distributions, where |J| is the Jacobian of the trans-

formation. It allows to obtain conditional pdf fD|9 (m, ψ) =

fD,9(m, ψ) f9(ψ) where f9(ψ) is joint pd f of random angles

9. Limit load multiplier mψ = mψ (p) is determined by load

vector realization p, or by the length and direction of the vec-

tor. Deriving from the classical reliability approach, Limit State

Function (LSF) can be defined by the formula

gψ (Wp0, P) = m ph,ψ (Wp0)− mψ (P) (12)

For a given realization of random loads, resistance of the struc-

ture represented by load multiplier m ph,ψ should be bigger than

applied loads represented by load multiplier mψ (p) that means

safe state gψ (Wp0, P) > 0, or it is not bigger that means fail-

ure gψ (Wp0, P) ≤ 0. It should be noted the LSF is determined

for a given loads direction ψ and corresponding probability of
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failure is given by

P f |ψ = P[m ph,ψ (Wp0)− mψ (P) ≤ 0] =∫∫
m ph,ψ≤mψ

fD|9(m, ψ) fwp0|9 (Wp0)dwp0dm, (13)

where fwp0|9 (Wp0) is conditional pd f of complementary strain

energy. Assumed safety level of structural resistance results

from fixed ŵp0 value. Hence, optimization procedure with ran-

dom constrain yields to limit load multiplier m̂ ph,ψ (ŵp0) =

m̂ ph(ŵp0, ψ) that corresponds to cumulative distribution func-

tion (cdf) FWp0|9 (ŵp0), which is equal to the admissible value

of failure probability P[Wp0 ≤ ŵp0], obtained in optimization

procedure for all possible angles

FWp0|9 (ŵp0) = FWp0
(ŵp0) = P[Wp0 ≤ ŵp0]. (14)

Thus, integral (13) can be reformulated

P f |ψ =

∞∫
0

fD|9(m, ψ)

 ŵp0∫
0

fwp0|9 (wp0) dwp0

 dm =

= FWp0|9 (ŵp0)

∞∫
m̂ ph,ψ (ŵp0)

fD|9(m, ψ)dm =

= FWp0
(ŵp0)

∞∫
m̂ ph,ψ (ŵp0)

fD|9(m, ψ)dm

(15)

Probability of failure covering whole variability of ψ can be ex-

pressed in the following way

P f =

ψ2∫
ψ1

FWp0|9 (ŵp0)

∞∫
m̂ ph,ψ (ŵp0)

fD|9(m, ψ)dm f9(ψ)dψ =

= P[Wp0 ≤ ŵp0]

ψ2∫
ψ1

∫
∞

m̂ ph(ŵp0,ψ)
fD|9(m, ψ)dmdψ =

= P[Wp0 ≤ ŵp0]

∞∫
p̂ŵp0

fP (p)dp

= P[Wp0 ≤ ŵp0]P[pŵp0
≤ P] =

= P fwP f p

(16)

where vectors ψ1 and ψ2 determinate lower and upper bounds

of ψ , envelope m̂ ph(ŵp0) after transformation to the load space

can be expressed by the function ŵp0(p). As can be seen, in

this specific case, failure probability P f due to complementary

strain energy P fw and loads P f p can be considered separately.

Firstly, limit load multiplier envelope for assumed value of P fw

can be determined, and then, P f p can be calculated. Response

surface seems to be best suited method of reliability analysis of

this case, but Crude Monte Carlo [10,16] also can be utilized. It

consists in numerical integration over the failure domain.

3 Extended plastic limit design

3.1 Basic design formulations

Determine the maximum load multiplier m ph and cross-

sectional dimensions under the conditions that (i) the structure

with given layout is strong enough to carry the loads (Pd +

m phQh), (ii) satisfies the constraints on the limited beam-to-

column strength capacity, (iii) satisfies the constraints on plastic

deformations and residual displacements, (iv) safe enough and

the required amount of material does not exceed a given limit.

The design solution method based on the static theorem of limit

analysis [11] is formulated as below:

Maximize m ph (17)

Subject to

G∗M
p

d + Pd = 0; (18)

G∗M
p

h + m phQh = 0; (19)

Me
d = F−1GK−1Pd; (20)

Me
h = F−1GK−1m phQh; (21)

−2S0iσy ≤ (M
p

di +max M
p

hi ) ≤ 2S0iσy, (i = 1, 2..., n); (22)

−2S0iσy ≤ (M
p

di +min M
p

hi ) ≤ 2S0iσy, (i = 1, 2..., n); (23)

−M
p

j ≤ (M
p

d j +max M
p

hj ) ≤M
p

j , ( j = 1, 2..., k); (24)

−M
p

j ≤ (M
p

d j +min M
p

hj ) ≤M
p

j , ( j = 1, 2..., k); (25)

Mr
i =

[(
max Me

hi +Me
di

)]
−
[(

max M
p

hi +M
p

di

)]
,

(i = 1, 2..., n);
(26)

βtarget − βcalc ≤ 0; (27)

∑
i

Ai`i − V0 ≤ 0. (28)

Here eqs. (18)–(19) are equilibrium equations for the dead loads

and for the live (pay) loads, respectively. Eqs. (20)–(21) express

the calculations of the elastic fictitious internal forces (moments)

from the dead loads and from the live (pay) loads, respectively.

Eqs. (22)–(23) are the yield conditions. Eqs. (24)–(25) are used

as yield conditions of the semi-rigid connections. Eq. (26) is

used to calculate the residual forces. Eq. (27) is the reliability
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condition. The material redistribution is controlled by eq. (28).

The goal is to find the maximum of the statically admissible load

multiplier m ph .

This is a nonlinear mathematical programming problem

which can be solved by any appropriate solution method (e.g.

SPQL method). Selecting one of the semi-rigid connection

models for each loading combination Qh; (h = 1, 2, . . . , 5) a

plastic limit load multiplier m ph can be determined, then the

limit curve of the plastic limit state can be constructed with the

optimal cross-sectional dimensions. Due to the mathematical

nature of problem . (17)–(28) an iterative procedure was elabo-

rated which is governed by solving the equation (27).

3.2 Alternative design formulation

By the use of a simple modification of problem (17)–(28)

one can obtain the “classical” minimum volume design prob-

lem. Interchanging the objective function -eq. (29)- and the last

constraint -eq. (28)- an alternative design formulation can be for-

mulated:

Minimize V =
∑

i

Ai`i (29)

Subject to

G∗M
p

d + Pd = 0; (30)

G∗M
p

h + m phQh = 0; (31)

Me
d = F−1GK−1Pd; (32)

Me
h = F−1GK−1m phQh; (33)

−2S0iσy ≤ (M
p

di +max M
p

hi ) ≤ 2§0iσy, (i = 1, 2..., n); (34)

−2S0iσy ≤ (M
p

di +min M
p

hi ) ≤ 2S0iσy, (i = 1, 2..., n); (35)

−M
p

j ≤ (M
p

d j +max M
p

hj ) ≤M
p

j , ( j = 1, 2..., k); (36)

−M
p

j ≤ (M
p

d j +min M
p

hj ) ≤M
p

j , ( j = 1, 2..., k); (37)

Mr
i =

[(
max Me

hi +Me
di

)]
−
[(

max M
p

hi +M
p

di

)]
, (i = 1, 2..., n);

(38)

βtarget − βcalc ≤ 0; (39)

m ph − m0 ≤ 0. (40)

Here all the equations have the same meanings as it was before

in Eqs. (18)–(27). Eq. (40) gives an upper bound for the external

loads.

This is also a constrained nonlinear mathematical program-

ming problem which leads to same optimal solution as prob-

lem (17)–(28) in the case of the same boundary conditions. The

equivalence can be proved by the comparison of the optimality

conditions of problems (17)–(28) and (29)–(40).

4 Numerical examples

To demonstrate the theories introduced above, two procedures

are elaborated for the limit design problem. The first one is to

determine the safe loading domain and cross-sectional dimen-

sions of a simple frame with deterministic loading data with

probabilistic bound for the magnitude of the complementary

strain energy of the residual forces. The second one presents

the safe load multipliers and cross-sectional dimensions for the

same steel frame with Gumbel distributed loads.

The application is illustrated by an example shown in Fig-

ure 4. At the joints 2 and 4 the portal frame has semi-rigid con-

nection. The working loads are P1 = 10k̇N, P2 = 15 kN and

Pd = 0.

Fig. 4. Portal frame as test problem

The yield stress and the Young’s modulus are σy =

21 kN/cm2 and E = 2.07 · 106 kN/cm2.

The two solution techniques are demonstrated below as exam-

ple 1 and example 2. The constrained nonlinear mathematical

programming problem was solved by SQP (sequential quadratic

programming) method. The problem is to determine the max-

imum load multipliers and cross-sectional dimensions corre-

sponding to a given volume and safety level. Using the problem

formulations (17)–(28) and (29)-(40), the results of the solution

are illustrated in Figures 5–8 and Figures 9–10, respectively.

4.1 Example 1.

The results of the first solution technique are presented in Fig-

ures 5–8 where deterministic loading is considered. The results

are in very good agreement with the expectations.

In Figures 5–6 one can see the safe loading domains in func-

tion of different expected probability and different limit volume,

respectively. In Figure 7 the variation of the base (see Table 1)
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Fig. 5. Safe loading domain for limit design

load-multiplier is presented in function of the connection rigidi-

ties and limit volumes. As it is seen the stiffnesses of the semi-

rigid connection influence significantly the plastic behaviour of

the frame. In Figure 8 the optimal cross-sectional dimensions

are presented.

Fig. 6. Safe loading domain for plastic limit design

4.2 Example 2.

Safety level of structural response has been assumed to be

P fw = 0.00069 (it corresponds to ŵp0 = 1.9798). Calculated

envelopes m̂ ph(ŵp0) are piecewise linear with 10 points calcu-

lated for different m1/m2 ratios. Gumbel distribution as model

of loads has been considered. It is often used in industry to

model extreme values associated with environmental loads. It

describes variability of maximum realizations of loads in con-

sidered period of time (e.g. lifetime of structure). Monte Carlo

analysis has been performed for two cases:

Full rigid connections and gradual deterioration of rigidity,

see Figure 9. The flexibility of the spring of connections in-

creases from 0.0 (fixed connection) to 7.5 · 10−8 (semi-rigid).

Assumed parameters of random loads are P1(µ1 = 19 kN,

σ1 = 5 kN)) and P2(µ2 = 22.5 kN, σ2 = 6 kN). Sample of

Fig. 7. Variation the base load-multiplier for plastic limit design

Fig. 8. Variation of the optimal sections

Fig. 9. Monte Carlo analysis, full rigid connections and gradual deteriora-

tion of rigidity, sample of n = 250 000 realizations.

n = 250000 realizations have been performed accordingly to

joint pd f of loads f p(p1, p2).

Zero rigidity connections and gradual increase of rigidity,

see Figure 10. The flexibility of the spring of connections in-

creases from 1.5 (representing the semi-rigidity) to 100.0 · 10−6

(almost fixed connection). Assumed parameters of random

loads are P1(µ1 = 7 kN,σ1 = 2 kN) and P2(µ2 = 10.5 kN,

σ2 = 2.25 kN). Sample of n = 100000 realizations have been
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performed accordingly to joint pd f of loads f p(p1, p2)

Fig. 10. Monte Carlo analysis, zero rigidity connections gradual increase of

rigidity, sample of n = 100 000 realizations.

5 Conclusions

In this paper the semi-rigid behaviour is described by appro-

priate models and to control the plastic behavior of the structure

probabilistically given bound on the complementary strain en-

ergy of the residual forces is applied. Fast and accurate failure

probability assessment of elastic-plastic frame structures sub-

jected to stochastic loading and random plastic displacement

(modelled by means of complementary strain energy) is pos-

sible. Limit curves and optimal cross-sections are presented for

the plastic limit load. The numerical analysis shows that the

stiffness of the semi-rigid connections, the mean value and the

standard deviation of the bound of the complementary strain en-

ergy of the residual forces can influence significantly the mag-

nitude of the plastic limit load multipliers and in some cases the

results are very sensitive on the stiffness of the semi-rigid con-

nections. In the case of designed full rigid connections, deteri-

oration of connections rigidity leads to increase of failure prob-

ability (decrease of reliability). In the case of designed zero

rigidity connections (means in practice presence of semi-rigid

connections) leads to decrease of failure probability (increase

of reliability). The presented investigation drowns the attention

to the importance of the problem but further investigations are

necessary to make more general statements.
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