The conference is held under the patronage of:

MINISTER OF INFRASTRUCTURE AND CONSTRUCTION
JM RECTOR OF WARSAW UNIVERSITY OF TECHNOLOGY
PRESIDENT OF OFFICE OF RAIL TRANSPORT
PRESIDENT OF POLISH STATE RAILWAYS JSC
POLISH ACADEMY OF SCIENCES COMMITTEE OF TRANSPORT
SPONSORS OF THE CONFERENCE

MABO

CONTROL PROCESS

ZAKŁADY AUTOMATYKI

KOMBUD SA

Alma

SMarter World

HUTREM SERWIS
Scientific Committee

Chairman
Andrzej Żurkowski (Railway Research Institute)

Honorary Chairman
Henryk Baluch (Railway Research Institute)

Mariusz Chaberek (University of Gdansk)
Włodzimierz Choromański (Warsaw University of Technology)
Andrzej Chudziński-Wyczółkowski (Warsaw University of Technology)
Paloma Cucula (Instituto de Investigacion Tecnologica) Spain
Iuriu Domin (Volodomyr Dahl East Ukrain National University) Ukraine
Antonio Fernandez (Instituto de Investigacion Tecnologica) Spain
Maria Franekova (University of Žilina) Slovakia
Gebhard Hafer (bbw Hochschule Berlin) Germany
Mariana Jacyna (Warsaw University of Technology)
Władysław Koc (Gdansk University of Technology)
Valeri Kuznetsov (Dnepropetrovsk National University of Railway Transport) Ukraine
Borys Lapidus (VNIIZT) Russia
Andrzej Lewiński (University of Technology and Humanities in Radom)
Bogusław Łazarz (Silesian University of Technology)
Zbigniew Łukasik (University of Technology and Humanities in Radom)
Andrzej Massel (Railway Research Institute)
Jerzy Merkisz (Poznan University of Technology)
Jerzy Mikulski (Polish Association of Transport Telematics)
Vitalij Nichoga (Lviv Polytechnic National University) Ukraine
Wojciech Paprocki (SGH Warsaw School of Economics)
Marek Pawlik (Railway Research Institute)
Iwan Prudyš (Lviv Polytechnic National University) Ukraine
Dariusz Pyza (Warsaw University of Technology)
Jolanta Radziśewska-Wolińska (Railway Research Institute)
Karel Rášočný (University of Žilina) Slovakia
Efrim N. Rozenberg (Research&Design Institute for Information Technology, Signalling and Telecommunications on Railway Transport)
Mariusz Siergiejczyk (Warsaw University of Technology, Railway Research Institute)
Juraj Špalek (University of Žilina) Slovakia
Wiesław Stawowicz (Cracow University of Technology)
Włodzimierz Stawecki (The Rail Vehicles Institute “TABOR”) Poland
Anna Stelmach (Warsaw University of Technology)
Nikolay Stepov (JSC VNIIZhT) Russia
Viktor Sychenko (Dnepropetrovsk National University of Railway Transport)
Adam Szarata (Cracow University of Technology)
Adam Szeliąg (Warsaw University of Technology)
Franciszek Tomaszewski (Poznan University of Technology)
Wojciech Wawrzyński (Warsaw University of Technology)
Sławomir Wiak (Lodz University of Technology)
Andrzej Wojciechowski (Polish Scientific Society for Recycling)
Władimir Zajćew (NDKTI) Ukraine
Krzysztof Zboński (Warsaw University of Technology)

Organizing Committee

Chairman
Mariusz Siergiejczyk (Warsaw University of Technology, Railway Research Institute)

Vice-Chairman
Eliza Wawrzyn (Railway Research Institute)

Conference Secretary
Renata Barcikowska (Railway Research Institute)

Dorota Adamska (Railway Research Institute)
Jolanta Cybulska-Drchal (Railway Research Institute)
Dorota Galkowska (Railway Research Institute)
Izabella Grzegrzółka (Railway Research Institute)
Agnieszka Jagodzińska-Kurt (Railway Research Institute)
Agnieszka Marchela (Railway Research Institute)
Małgorzata Ortel (Railway Research Institute)
Andrzej Szmigiel (Warsaw University of Technology)
STABILITY ANALYSIS OF THE RAILWAY VEHICLE DRIVE WITH ELECTROMECHANICAL COUPLING EFFECTS

Robert Konowrocki
Institute of Fundamental Technological Research, Polish Academy of Sciences

Keywords: electromechanical coupling, electric drive, electric motor, torsion vibrations, railway drive

Introduction
Aiming at the torsional vibration in the electromechanical driveline system for railway trains [1], this article introduces a stability analysis of the drive system with electromechanically coupling. For a reliability and security of drive system of railway vehicles drive by electric motors, the electromagnetic output traction force and torques should drive stably, otherwise the shaft train vibration caused by motor torque ripple will affect the fatigue life of the device and the operation security of the driven object. For this reason an investigation of the dynamic response and stability of a electromechanical drive train system was done. For this purpose a dynamic model integrated with an electric motor to simulate the vibration in the component parts of the drive system were created. Such an approach for modelling of the considered electrical drive systems coupled with elements of a driven vehicle is particularly important when the purpose of such modelling is to obtain an information about the transient phenomena of system operation.

Considered the research problem
In the study the electric locomotives with the fully sprung wheelset drive is considered. In this drive system the DC traction motor is integrated with drive unit. The output driving torque is transmitted via coupling (flexible multirod) to the hollow shaft, which surrounds the wheelset axle. On the opposite end of the hollow shaft the torque is transmitted by means of a coupling (flexible multi-rod or flexible claw coupling) to the disc-wheel. Using the energy balance of the natural modes of oscillations for the model of a railway traction drive are obtained expressions for determining the influence of electromagnetic parameters of an electric motor (stiffness and damping of electromagnetic field ) on its stability in relation to torsion oscillations of the driveline.

Fig. 1. Scheme of principle of fully sprung wheelset drive
Summary
The obtained results have demonstrated that the electromagnetic interaction generated in the electric motor should be taken into account for the use of the assessing the stability of the system. The knowledge about stability of drive transmission systems of machines and railway vehicles is of a great importance in the field of dynamics and material fatigue of the mechanical systems. Results obtained from the computer simulations demonstrated key influence mutual electromechanical couplings on the system and can be reference for the design of electromechanical drive systems in the railway electrical vehicles and not just there, example [2,3] and another [4]. Using the energy balance of the natural modes of oscillations for the model of a railway traction drive are obtained expressions for determining the influence of electro-magnetic parameters (stiffness and damping of electromagnetic field) on its stability in relation to friction self-oscillations.

Literature