The effect of titanium dioxide addition on physical and biological properties of Na2O–B2O3–P2O5 and CaO–Na2O–P2O5 glasses

Article · July 2016

CITATIONS
0

READS
31

10 authors, including:

Krzysztof Orlinski
Institute of Electronic Materials Technology
15 PUBLICATIONS 59 CITATIONS
SEE PROFILE

Lucja Rumian
AGH University of Science and Technology in Krakow
9 PUBLICATIONS 14 CITATIONS
SEE PROFILE

Dorota A. Pawlak
Institute of Electronic Materials Technology
112 PUBLICATIONS 1,124 CITATIONS
SEE PROFILE

Elzbieta Pamula
AGH University of Science and Technology in Krakow
103 PUBLICATIONS 946 CITATIONS
SEE PROFILE

All content following this page was uploaded by Krzysztof Orlinski on 13 March 2017.

The user has requested enhancement of the downloaded file.
THE EFFECT OF TITANIUM DIOXIDE ADDITION ON PHYSICAL AND BIOLOGICAL PROPERTIES OF Na₂O-B₂O₃-P₂O₅ AND CaO-Na₂O-P₂O₅ GLASSES

Oliwia Kalwasinska, Marcin Gajc, Andrzej Klos, Krzysztof Orlniński, Dorota A. Pawlak, Małgorzata Krok-Borkowicz, Lucja Ruman, Krzysztof Pietryga, Katarzyna Reczyńska, Elżbieta Pamula

1 Warsaw University of Technology, Faculty of Materials Science and Engineering, Wołoska 141, 02-507 Warsaw, Poland
2 Institute of Electronic Materials Technology, Wólczyńska 133, 01-919 Warsaw, Poland
3 Centre of New Technologies, Banacha 2C, 02-097 Warsaw, Poland
4 AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
5 E-mail: epamula@agh.edu.pl

Abstract

Two types of phosphate glasses 50Na₂O-20B₂O₃-30P₂O₅ (NBP) and 30CaO-20Na₂O-50P₂O₅ (CNP) with different content of TiO₂ (0, 3 and 5 mol%) have been prepared by melt-quenching process. TiO₂ was added to increase glass network stability. Physical properties of glasses were investigated by density measurements, differential scanning calorimetry and degradation in phosphate buffered saline (PBS). Biological performance of glasses in a direct contact with osteoblast-like MG-63 cells was analysed with the use of resazurin test and live-dead staining. The results show that TiO₂ addition increased density, glass transition temperature (T_g) and melting temperature (T_m) of both types of glasses. In the case of NBP glasses presence of TiO₂ resulted in their fast degradation in PBS and acidification of cell culture medium. As a consequence such glasses did not support cell adhesion and growth, but they can be considered for e.g. drug delivery systems. On the other hand addition of TiO₂ to CNP glasses resulted in enhanced cell adhesion and viability. Particularly positive results were found for CNP glass containing 5% TiO₂, so it can be a good candidate as a scaffold material for bone tissue engineering.

Keywords: phosphate glasses, bioactive glasses, titanium dioxide, tissue engineering

[Engineering of Biomaterials 134 (2016) 2-7]

Introduction

Treatment of bone defects caused by trauma or diseases is performed with the use of auto-, allo- and xenogeneic grafts, although their shortcomings are risk of disease transmission, limited amount, unpredictable resorption kinetics, etc. Therefore in the last two decades new biomaterials for replacement and regeneration of bone tissue defects have been intensively studied [3]. Particularly prospective alternatives are porous scaffolds, whose role is not only to support, but also to stimulate bone tissue ingrowth and remodelling. Fabrication methods of scaffolds include microsphere sintering, foam replication, electrospinning and rapid prototyping techniques [4]. Requirements for scaffolds and biomaterials from which they are made include:
• biocompatibility, no cytotoxic action,
• easy adhesion, proliferation and differentiation of cells on their surface,
• adequate degradation rate correlated with the tissue growth,
• bioactivity, i.e. the ability of formation of a direct bond between scaffold surface and bone tissue through low-crystalline hydroxyapatite layer,
• mechanical properties comparable to those of the replaced tissue,
• porous structure to facilitate tissue ingrowth,
• easy fabrication,
• susceptibility to sterilization [3,4,5].

Popular biomaterials for bone tissue engineering are bioactive glasses based on silica, especially 45S5 glass available under a trade name Bioglass®. However, despite its clinical application, for example for orthopaedic bone grafting (NovaBone) [6] these glasses have also some drawbacks, e.g.:
• prolonged biodegradation, which is difficult to control and causes problems with matching the degradation rate of the glass and the growth rate of new tissue,
• incomplete transition of glass into hydroxyapatite and presence of SiO₂ that may cause long-term side effects,
• difficult sintering process due to the viscous flow of the glass above its glass transition temperature (T_g) and the tendency to crystallize because of narrow window between T_g and crystallization temperature (T_c), which affects strength of the produced scaffold,
• high sintering temperature – addition of Na₂O and CaO decreases temperature, but it may simultaneously cause decrease in bioactivity, as a consequence of glass crystallization [3,7,8,9].

According to the above-mentioned drawbacks of the silica glasses, there is a rationale for the development of new bioactive glasses for tissue engineering. In comparison to the silica-based glasses, phosphate glasses have lower melting temperature, what makes fabrication of scaffolds easier. Moreover their biodegradation rate can be easily controlled by modifying the composition of glass, for example by the addition of TiO₂ and finally P₂O₅ is a component of hydroxyapatite, an integral part of bone extracellular matrix [8,10].

In this study we obtained and investigated phosphate glasses from two systems: Na₂O-B₂O₃-P₂O₅ (NBP) and CaO-Na₂O-P₂O₅ (CNP) as pure and modified with TiO₂. TiO₂ is known as a network modifier, which allows to control solubility of glasses and can improve cellular response [11]. Pure CNP glass and those glasses modified with TiO₂ were investigated in other studies [12]. According to our knowledge NBP glasses have not been examined so far as materials for bone tissue engineering.
Experimental

Glass synthesis
For glass fabrication we used conventional melt quenching process. NBP type glasses were prepared from Na₂CO₃ (99.99%), NH₄H₂PO₄ (pure) and H₂BO₃ (99.99%) in a 2.5:3:2 molar ratio as described before [13]. The synthesis of NBP glasses was carried out in the alumina mortar at 920°C. CNP type glasses were prepared from Na₂CO₃, CaCO₃, and P₂O₅ powders. The synthesis was two-step process including melting in the alumina mortar at 1075°C and then melting in the platinum crucible at 1050°C. The composition of obtained glasses is summarized in TABLE 1. FIG. 1 shows gross morphology of obtained glasses.

Density
We used pycnometer method to determine density of glasses. First, mass of the glass sample was measured, then mass of the pycnometer with water and mass of the pycnometer with water and sample were measured. Measurements were repeated three times for each sample. The density was calculated from the formula:

\[\text{d}_i = \frac{m_r \cdot d_w}{m_s + m_w - m_{ws}} \]

where:
- \(d_i \) – density of the sample
- \(m_r \) – mass of the sample
- \(m_w \) – mass of the pycnometer with water
- \(m_{ws} \) – mass of the pycnometer with water and sample
- \(d_w \) – density of water

Results are shown as average ± standard deviation.

Differential scanning calorimetry
Differential scanning calorimetry measurements were carried out on simultaneous thermal analyser (Netzsch STA 449F1 Jupiter®). We used powder samples of about 30 mg. Heating rate was 10°C/min. Measurements were carried out in argon atmosphere. Glass transition temperature \((T_g) \) was determined as characteristic inflection point on heating curve. Exothermic peak on heating curve was interpreted as crystallization of material; endothermic peak was connected with melting of material. Temperatures corresponding to the onset of crystallization process and melting process were determined as crystallization temperature \((T_c) \) and melting temperature \((T_m) \), respectively.

Degradation
Degradation of glass samples was investigated in phosphate-buffered saline (PBS, Life Technologies). The composition of PBS was KH₂PO₄ (144 mg/L), NaCl (9000 mg/L), Na₂HPO₄·7H₂O (795 mg/L); pH was 7.4. We prepared set of three samples of each type of glass for several time points: 1 h, 3 h, 6 h, 12 h, 24 h, 3 days and 7 days for pure glasses and 3 h, 6 h, 12 h, 24 h, 3 days and 7 days for glasses modified with TiO₂. Masses of the samples were in the range of 30-50 mg. Each sample was placed in sterile polystyrene container with 10 mL of PBS. Degradation test was carried out at 37°C and pH of PBS was measured. At each time point samples were collected, dried and then weight of the samples after drying to a constant weight was measured.

Biological evaluation
Before in vitro tests glass plates (1 cm x 1 cm) were sterilized by immersion in 70% ethanol for 5 min followed by UV exposition for 20 min for both sites and placed in 12-well cell culture plates (EuroClone). MG-63 osteoblast-like cells (European Collection of Cell Cultures, Salisbury, UK) suspended in minimal essential medium (MEM, PANTM BIOTECH, Germany) supplemented with 10% foetal bovine serum, 1% penicillin/streptomycin, 2 mM/L-glutamine (PAA, Austria) were seeded on each sample at initial density of 1x10⁴ cells/ml at 37°C under 5.0% CO₂ atmosphere and cultured for 24 h, 3 days and 7 days. Tissue culture polystyrene (TCP5, i.e. bottom of the well plates) was used as control. Cell viability was evaluated using In Vitro Toxicology Assay Kit, based on resazurin (Sigma Aldrich). 0.1 ml of reazurin reagent was added to each well and the cells were incubated for 4 h at 37°C. Reduction of resazurin was measured fluorescently (excitation wavelength 530 nm, emission wavelength 590 nm) (FLUOstar Omega, BMG labtech, Germany) and calculated according to the formula:

\[\% \text{Reduction of resazurine} = \frac{S^* - S_{\text{control}}}{S_{100\% \text{ reduced}} - S_{\text{control}}} \times 100\% \]

where:
- \(S^* \) – fluorescence of samples
- \(S_{\text{control}} \) – fluorescence of medium without cells
- \(S_{100\% \text{ reduced}} \) – fluorescence of reagent reduced in 100% (reagent with medium was placed in autoclave for 15 min at 121°C).

Results were expressed as average ± standard deviation (SD) from three independent samples performed in triplicate. Statistical significance was evaluated according to the unpaired t-test; p<0.05 was considered significant.

TABLE 1. Composition of obtained glasses.

<table>
<thead>
<tr>
<th>Type of glass</th>
<th>P₂O₅ % mol</th>
<th>Na₂O % mol</th>
<th>B₂O₃ % mol</th>
<th>CaO % mol</th>
<th>TiO₂ % mol</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBP</td>
<td>30</td>
<td>50</td>
<td>20</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>CNP</td>
<td>50</td>
<td>20</td>
<td>-</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>NBP: 3% TiO₂</td>
<td>30</td>
<td>47</td>
<td>20</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>NBP: 5% TiO₂</td>
<td>30</td>
<td>45</td>
<td>20</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>CNP: 3% TiO₂</td>
<td>50</td>
<td>17</td>
<td>-</td>
<td>30</td>
<td>3</td>
</tr>
<tr>
<td>CNP: 5% TiO₂</td>
<td>50</td>
<td>15</td>
<td>-</td>
<td>30</td>
<td>5</td>
</tr>
</tbody>
</table>

FIG. 1. Gross morphology of glass samples: a) NBP; b) NBP 3% mol TiO₂; c) NBP 5% mol; d) CNP; e) CNP 3% mol TiO₂; f) CNP 5% mol TiO₂.
To visualize cell attachment and distribution on the samples, the cell cultures were observed using fluorescence microscopy (Zeiss Axiovert, Germany). A live-dead staining was performed to evaluate cell viability. Samples were rinsed with PBS (PAN™ BIOTECH, Germany) and the supernatant was replaced by 1 ml PBS solution containing 2 µl (1 mg/ml) calcein AM and 2 µl (1 mg/ml) propidium iodide (Sigma-Aldrich).

Results and discussion

Density

TABLE 2 shows results of density measurements. Density of pure NBP glass is slightly lower than density of pure CNP glass. TiO\textsubscript{2} addition increases density of both types of glass. For NBP glasses densities vary from 2.548 ±0.016 g/cm3 for pure NBP glass to 2.601 ±0.017 g/cm3 for NBP glass with 5 mol% TiO\textsubscript{2}. Addition of 5 mol% TiO\textsubscript{2} in the case of CNP glasses changes density from 2.588 ±0.004 g/cm3 for pure CNP glass to 2.621 ±0.007 g/cm3.

It has been reported that TiO\textsubscript{2} addition changes the structure of sodium borophosphate and soda-lime phosphate glasses by formation of P-O-Ti bond instead of P-O-P and P-O-B bonds [12,14,15]. Presence of titanium ions leads to increase in network cross-links and results in denser packing of the structure, hence we observed increase in density for glasses containing TiO\textsubscript{2} [14].

Differential scanning calorimetry

TABLE 3 shows characteristic temperatures of glasses. Glass transition temperature (T\textsubscript{g}) of NBP is 432.5°C and increases to 436.9°C for NBP glass containing 3 mol% TiO\textsubscript{2} and to 447.7°C in the case of 5 mol% TiO\textsubscript{2} addition. Similarly, TiO\textsubscript{2} addition causes increase in melting temperature (T\textsubscript{m}). In contrast, addition of 3 mol% TiO\textsubscript{2} decreases crystallization temperature (T\textsubscript{c}) from 596.7°C to 579°C, but addition of 5 mol% TiO\textsubscript{2} slightly increases T\textsubscript{c} to 603.2°C. In comparison to NBP glass, CNP glass has slightly lower glass transition temperature of 412.3°C. TiO\textsubscript{2} addition to CNP glasses causes increase of T\textsubscript{g} from 412.3°C to 437.4°C, and T\textsubscript{c} from 536.7°C to 603.4°C and T\textsubscript{m} from 682.5°C to 749°C. Increase in thermal stability as well as increase in densities for TiO\textsubscript{2} containing glasses is a result of modification of glass network by TiO\textsubscript{2} which is due to depolymerisation of borate and phosphate chains and formation of P-O-Ti bonds [14,16].

FIG. 2 shows DSC curves for NBP type and CNP type glasses. Presence of multiple endothermic and exothermic peaks is connected with transformations of different glass phases. For unmodified CNP glass we observe two crystallization peaks and three melting peaks. Two crystallization peaks and two melting peaks appear for CNP glass containing 3 mol% TiO\textsubscript{2}. For CNP glass with 5 mol% TiO\textsubscript{2} we observe two crystallization peaks and one melting peak.

<table>
<thead>
<tr>
<th>Type of glass</th>
<th>Density [g/cm3]</th>
<th>Type of glass</th>
<th>Density [g/cm3]</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBP</td>
<td>2.548 ±0.016</td>
<td>CNP</td>
<td>2.588 ±0.004</td>
</tr>
<tr>
<td>NBP 3 mol% TiO\textsubscript{2}</td>
<td>2.586 ±0.010</td>
<td>CNP 3 mol% TiO\textsubscript{2}</td>
<td>2.595 ±0.004</td>
</tr>
<tr>
<td>NBP 5 mol% TiO\textsubscript{2}</td>
<td>2.601 ±0.017</td>
<td>CNP 5 mol% TiO\textsubscript{2}</td>
<td>2.621 ±0.007</td>
</tr>
</tbody>
</table>

TABLE 3. Characteristic temperatures of glasses.

<table>
<thead>
<tr>
<th>Type of glass</th>
<th>Glass transition temperature T\textsubscript{g} [°C]</th>
<th>Crystallization onset temperature T\textsubscript{c} [°C]</th>
<th>Melting onset temperature T\textsubscript{m} [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBP</td>
<td>432.5</td>
<td>596.7</td>
<td>743.9</td>
</tr>
<tr>
<td>NBP 3 mol% TiO\textsubscript{2}</td>
<td>436.9</td>
<td>579.0</td>
<td>759.2</td>
</tr>
<tr>
<td>NBP 5 mol% TiO\textsubscript{2}</td>
<td>447.7</td>
<td>603.2</td>
<td>760.9</td>
</tr>
<tr>
<td>CNP</td>
<td>412.3</td>
<td>536.7</td>
<td>682.5</td>
</tr>
<tr>
<td>CNP 3 mol% TiO\textsubscript{2}</td>
<td>420.5</td>
<td>581.2</td>
<td>738.7</td>
</tr>
<tr>
<td>CNP 5 mol% TiO\textsubscript{2}</td>
<td>437.4</td>
<td>602.4</td>
<td>749.0</td>
</tr>
</tbody>
</table>

FIG. 2. DCS curves of: a) NBP type glasses; b) CNP type glasses.
Degradation

FIG. 3 shows weight loss results of NBP (FIG. 3a) and CNP (FIG. 3b) type glasses as a function of incubation in PBS. Weight loss of NBP glass after 24 h is about 61 ±9%, but it decreases within the following days. Interestingly, after longer incubation time in PBS weight loss of NBP glass decreases. It can be connected with precipitation of new mineral phase on the glass surface [18]. Addition of TiO$_2$ as a network modifier does not improve stability of NBP glass (FIG. 3a). On the contrary, it results in very rapid glass dissolution: NBP 3% TiO$_2$ dissolves faster than that containing 5% TiO$_2$. CNP glass is much more stable: it starts to dissolve after 10 h and after 3 days its weight loss is about 7.7 ±2.5% (FIG. 3b). Addition of TiO$_2$ improves stability of CNP glasses. After 7 days weight loss of CNP glass with addition of 3 mol% TiO$_2$ is only 1.6 ±0.6%. Addition of 5 mol% TiO$_2$ causes that CNP glass is very stable and even after 7 days weight loss is not observed.

FIG. 4 shows picture of cell culture wells with cell culture medium (MEM) after 5 min from introduction of analysed glass samples. It is apparent that CNP glasses do not cause change in pH, which is 7.2, i.e. the same as on control TCPS. NBP glass causes acidification of cell culture medium: pH drops to 6.8 for NBP, and it drops again when the NBP structure contains TiO$_2$: 3%TiO$_2$ results in pH 6.0 and 5%TiO$_2$ results in pH 6.2.

Despite of increase in T_g temperature for TiO$_2$-containing NBP glasses, which could be connected with higher stability of glass structure, results of pH of cell culture medium and also weight loss measurements show that TiO$_2$ does not cause reinforcement of the NBP glass network. Hence, we observe pH decrease for glasses with TiO$_2$ addition, as shown by others [19].

The results of pH of PBS as a function of incubation of analysed glasses for 7 days are shown in FIG. 5. Incubation of NBP glass in PBS results in a small increase of pH from 7.2 to 7.5 after 1 h and after 7 days the pH of PBS increases to 8.4 (FIG. 5a). NBP glass containing TiO$_2$ causes decrease of pH to 7.02 ±0.05 for NBP with 3 mol% TiO$_2$ and 6.97 ±0.05 for NBP with 5 mol% TiO$_2$ after 7 days (FIG. 5a).

The differences in the pH of cell culture medium and PBS can result from the fact that these two media have different chemical compositions. Moreover the ratio of glass mass to medium volume was higher for cell culture medium than for degradation test in PBS. Incubation of CNP glasses (FIG. 5b) in PBS causes slight increase of pH from 7.2 to 7.35-7.55, which is coherent with the results observed for samples incubated in cell culture medium (FIG. 4).
FIG. 5. pH of PBS in contact with glass samples as a function of time: a) NBP type glasses; b) CNP type glasses.

FIG. 6. Viability of MG-63 cells measured by resazurin reduction test. Statistic significant for TCPS is p<0.001 for all samples (not marked in the figure). Asterisks indicate significant differences (p**<0.01 and p***<0.001) compared to control CNP and hashtags indicate significant differences (p##<0.01 and p###<0.001) between day 3 and day 7.

FIG. 7. Morphology and distribution of MG-63 cells stained live/dead on different glasses and control TCPS after 24 h, 3 days and 7 days. Scale bar 100 µm on all pictures.
Biological performance

Cell viability test (FIG. 6) shows that metabolic activity of MG-63 cells for CNP-type samples was reduced as compared to TCPS. The cells showed the tendency to increase their viability with culture time on CNP-type samples with increased concentration of TiO₂. After 3 and 7 days on CNP3 and CNP5 cell viability was significantly higher than on CNP. CNP5 exhibited the highest viability of cells as compared to CNP and CNP3. On NBP, NBP3 and NBP5 viability of cells was very low. It was due to the fact that the glass samples were dissolved in culture medium and pH of the medium became too acidic for cells to survive (FIG. 4).

FIG. 7 shows morphology of cells on the surface of the glasses stained in green (live cells) and red (dead cells). On CNP-type samples the number of adhered cells was smaller than on TCPS; the cells were round and poorly spread. After 3 days the cells on CNPs grew in agglomerates and some red dead cells were visible, especially inside the agglomerates. After 7 days on CNP5 the cells were homogenously distributed and formed monolayer (similar to that on TCPS), while on CNP and CNP3 big agglomerates containing both live (green) and dead cells (red) were visible. The number of cells at NBP-type glasses was very low and the observed cells were stained in red, i.e. they were dead (data not shown).

In vitro tests show that CNP-type glasses support adhesion and proliferation of bone cells but NBP-type glasses do not, which is connected with their too rapid degradation in aqueous environment.

Conclusion

We investigated physical and biological properties of glasses from two systems: Na₂O-B₂O₃-P₂O₅ (NBP) and CaO-Na₂O-P₂O₅ (CNP) as pure and doped with 3 or 5 mol% TiO₂. Increasing content of TiO₂ caused changing in density, thermal stability and degradation behaviour of glasses. In the case of NBP glass we observed increase in density, glass transitions temperature and melting temperature. Addition of 3 mol% TiO₂ did not increase crystallization temperature. NBP glasses were found to dissolve in aqueous environment and as a result they did not support growth of bone cells.

TiO₂ addition to CNP glasses caused increase in their density, glass transition temperature, crystallization temperature and melting temperature. Compared to NBP glass, increase in these characteristic temperatures was much more significant for CNP glass. This suggests that TiO₂ addition can change the structure of NBP and CNP glasses in a different way, hence we observed various influence of TiO₂ on their physical properties. CNP glasses supported adhesion, growth, proliferation and viability of osteoblast-like cells. The best properties as regards biological performance had CNP5 glass, although adhesion of cells was impeded at shorter time points (24 h, 3 days). Interestingly after 7 days the cells had similar morphology as on control TCPS, however their viability was still significantly lower.

To sum up NBP-type glasses are not suitable support for cell culturing, because they dissolve in cell culture medium and acidify it, provoking cell death, but they can be considered as drug delivery systems. On the other hand CNP-type glasses (especially those containing 5% TiO₂) can be used as a substrate for bone tissue engineering scaffolds. However further studies are needed to provide more clinically relevant evidences in this matter.

Acknowledgements

The financial support was provided from MAESTRO Project (2011/02/A/ST5/00471) from National Science Centre, Poland and from statutory works (11.11.160.616) of AGH University of Science and Technology (Faculty of Materials Science and Ceramics, Department of Biomaterials).

References