Size effect in indentation tests: experimental and numerical investigations

Assoc. Prof. Stanisław Kucharski, Professor Stanisław Stupkiewicz, Professor Henryk Petryk

Institute of Fundamental Technological Research, Warsaw, Poland

The size effect in inelastic behavior of materials is currently studied by many researchers, and indentation test is a well-established tool used to investigate this phenomenon [1]. However, there is still no general agreement concerning its interpretation [2]. In the paper, we follow this line and we provide some experimental and numerical results of indentation tests performed with spherical tips of different radii. As the spherical tips are used, the stress concentration is much lower than in the case of sharp indentation, and therefore the numerical simulation of the test using complex material laws is more reliable. The indentation tests were performed on single crystal copper (in micro- and nano-scale) and the topography of residual impressions was measured. The indentation size effect is apparent: for the same relative penetration depth h/R, the slope (stiffness) of normalized loading curve increases and the normalized pile up height decreases when the tip radius decreases. Recently, a new model of gradient-enhanced plasticity of metal single crystals has been proposed [3] and applied to simulate indentation tests. The comparison of numerical and experimental results is discussed.

Fig. 1 Depth-hardness relation for fixed ratio h/R: comparison of numerical and experimental results


All the abstracts included in the EUROMAT 2017 USB stick, have been added exactly as submitted by the authors. Requests for changes received after August 30th 2017, are not applicable to the current version
All the abstracts included in the EUROMAT 2017 USB stick have been added exactly as submitted by the authors. Requests for changes received after August 30th 2017, are not applicable to the current version.