XXIII Konferencja Naukowa „Pojazdy Szynowe 2018”
23th Scientific Conference „Rail Vehicles 2018”

22-25 maja 2018 roku
Katowice-Chorzów-Szczyrk

Politechnika Śląska,
Wydział Transportu
Katedra Transportu Kolejowego

Współorganizator - partner przemysłowy:
ALSTOM
Komitet naukowy:

Bogusław Łazarz – przewodniczący Komitetu Naukowego

Roman Bogacz Jan Matej
Włodzimierz Choromański Marian Medwid
Andrzej Chudzikiewicz Jerzy Merkisz
Włodzimierz Czyczuła Jerzy Mikulski
Janusz Ćwik Jakub Młyniczak
Juri Diomin Marek Młyniczak
Zbigniew Durzyński Sergej Myamlin
Janusz Dyduch Miroslaw Nader
Piotr Folęga Tomasz Nowakowski
Kazimierz Furmanik Jerzy Nowicki
Kurt Frischmuth Georg-Peter Ostermeyer
Włodzimierz Gąsowski Marek Pawelczyk
Juraj Gellici Paweł Piec
Ignacy Góra Jerzy Piotrowski
Iwona Grabarek Dariusz Pyza
Jan Gronowicz Tadeusz Ryś
Wiesław Grzesikiewicz Miroslaw Siegiejczyk
Andrzej Grzyb Marek Sitarz
Jerzy Hajduk Jacek Skorupski
Marek Idzior Bogdan Sowiński
Mariana Jacyna Włodzimierz Stawecki
Antoni Jankowski Anna Stelmach
Ewa Kardas-Cinal Andrzej Surowiecki
Jarosław Korzec Adam Szelał
Władysław Koc Elżbieta Szychta
Jerzy Kwaśniski Franciszek Tomaszewski
Tomasz Krzyżyński Tadeusz Uhl
Tomáš Lack Adam Weintrit
Zbigniew Lozia Wojciech Wawrzyński
Mirosław Luft Wiesław Zabłocki
Zbigniew Łukasik Grzegorz Zając
Jerzy Madej Krzysztof Zboiński
Jerzy Manerowski István Zobory
Adam Mańka Andrzej Żurkowski
Józef Marciniak

Komitet organizacyjny:

Przewodniczący:
Jarosław Konieczny

Członkowie komitetu:
Krzysztof Krawiec, Krzysztof Labisz, Joanna Michalska-Ćwiek, Szymon Surma, Łukasz Wierzbicki, Justyna Winter

Redaktor naczelny:
Krzysztof Krawiec

KATOWICE – CHORZÓW – SZCZYRK, 2018
Modeling of Dynamic Aspects of Operation Railway Vehicle Traction Drive System Including the Electromechanical Coupling

Robert Konowrocki

Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Pawińskiego 5B, 02-106 Warszawa
E-mail: rkonow@ippt.pan.pl

Abstract

In the paper, a dynamic electromechanical interaction between the wheelset of railway vehicle and its driving electric motors is investigated. This is the high-speed train driven by the electric motors through elastic hollow shaft with linear characteristics. In particular, there is considered an influence of negative electromagnetic damping generated by the motor on a possibility of excitation of resonant torsional vibrations. Conclusions drawn from the computational results can be very useful during a design phase of these devices as well as helpful for their users during a regular maintenance.

1. Introduction

Torsional vibrations occur in every drive train. If a simple drive train consists of an electrical motor, shaft flexible and a load, the system has two basic torsional vibration modes, the rigid-body mode and the first elastic mode. The knowledge about the torsional vibrations in drive transmission systems of railway vehicles is of a great importance in the fields dynamics of mechanical systems [1,2,3]. Parts elements of driving system are not fully rigid, it is common to have fluctuation of torques in different sizes and phases leading to shaft and wheelset torsional vibration [6]. For a reliability and security of drive system of railway vehicles drive by electric motors, the electromagnetic output traction force and torques should drive stably, otherwise the shaft train vibration caused by motor torque ripple will affect the fatigue life of the drive components and the operation security of the driven railway vehicles [4,5,6]. Since railway drive can be divided into electrical and mechanical part of systems, the influence of the electric motor should also be taken into account in the analyzes.

2. Summary

Presented in the paper results have demonstrated that the electromagnetic transient processes generated in the electric motor should be taken into account for the use of the assessing the stability of the system. The knowledge about stability of drive transmission systems of railway vehicles is of a great importance in the field of dynamics and material fatigue of the drive systems component.

In the paper, a dynamic interaction between the torsionally vibrating rotor railway drive system driving electric motor was investigated. In analyzed case we focused attention on the stiffness and damping coefficients associated with the electromagnetic field of DC motor. The less mechanical damping in the driven system, the greater possibility of severe torsional resonances, particularly when in such a drive train an semi elastic connection as hollow shaft with a linear characteristic is used. The obtained results can be very useful during a design phase of these devices as well as helpful for their users during a regular maintenance.
Reference

