WE HAVE A LOT TO CELEBRATE!

OF THE POLISH SOCIETY FOR BIOMATERIALS

20 years

ANNIVERSARY CONFERENCE ON BIOMATERIALS

25th Anniversary Conference

13 – 16 October 2016 Bytow, Poland

Number 138
Special Issue
Numer 138
Numer specjalny
Volume XIX
Rok XIX

DECEMBER 2016
GRUDZIEŃ 2016

ISSN 1429-7248

PUBLISHER: WYDAWNICTW
Polish Society for Biomaterials
In Krakow
Polskie Stowarzyszenie
Biomateriałów w Krakowie

EDITORIAL COMMITTEE:
KOMITET RĘDAKCYJNY:
Editor-in-Chief
Redaktor naczelný
Jan Chlopek

Editor
Redaktor
Elżbieta Pamula

Secretary of editorial
Sekretarz redakcji
Design
Projekt
Katarzyna Trała
Augustyn Powroźnik

ADDRESS OF EDITORIAL OFFICE:
ADRES REDAKCJI:
AGH-UST
30-059 Krakow, Poland

Issue: 260 copies
Nakład: 250 egz.
INTRODUCTION
Polymerization shrinkage of the resin-based dental composites constitutes a risk of the failure of the interfacial bonds as a consequence of shrinkage stresses. It may result in marginal leakage, premature failure of the restoration, and even micro-cracking of the tooth [1,2]. The color restorative materials are very desirable product at the market. They are used especially in milk tooth as fissure sealing, for marking root canal openings or as decoration (tooth tattoo) [3]. In this study, the research of polymerization shrinkage of flow-type dental composites was conducted.

METHODS
Volumetric shrinkage was measured using micro-CT scanner SkyScan 1174 (Bruker microCT) with accuracy of 6.5 μm. A drop of composite material was shaped into a semi-sphere on the tip of the Teflon pin of diameter 3 mm (FIG 1). Volume of material used was about 3 mm³. Scanning was started after 3 min. to allow material spreading on the tip surface and get a spherical shape. Samples were scanned in angular range of 0-180° with step of 1°. Then composite was cured (for the time specified by manufacturer) using halogen lamp (Cromalux 75, Mega-Physik). The tip of the gun was positioned 2 mm above the sample. One minute after curing the next scan was started to obtain volumetric data of cured material [3]. After reconstruction the volume of specimen was obtained before and after curing. The volumetric shrinkage was calculated as the ratio of difference between uncured and cured material volume to uncured composite volume. Each composite was measured 10 times and results were statistically analyzed using Statistica software (StatSoft Inc.).

RESULTS & DISCUSSION
Flow-Art composites had a volumetric shrinkage of about 3.2% (FIG. 2) and there was no significant differences observed in relation to shade. Coloured composites (FC) had the same basic components (mix of resins and fillers) and the main difference was the pigment addition, which resulted in different light transmission and depth of cure. The value of polymerization shrinkage was slightly dependent of colour in case of FC composites. In details, it was almost exactly an inverse relation in polymerization depth. Differences statistically significant occurred in case of yellow and FAA1, violet, blue and green composite as well as pink/violet and pink/orange.

ACKNOWLEDGMENTS
Authors acknowledge ARKONA Laboratorium Farmakologii Stomatologicznej for sharing materials to the tests.

REFERENCES

CONCLUSIONS
All tested materials showed low value of polymerization shrinkage, comparable with other commercial flow-type composites. The relation between depth of cure and the polymerization shrinkage was demonstrated.