PAPER

Statistical radii associated with amino acids to determine the contact map: fixing the structure of a type I cohesin domain in the *Clostridium thermocellum* cellulosome

To cite this article: Mateusz Chwastyk et al 2015 Phys. Biol. 12 046002

View the article online for updates and enhancements.

Recent citations

- <u>Non-local effects of point mutations on the</u> <u>stability of a protein module</u> Mateusz Chwastyk *et al*
- <u>Structural Changes in Barley Protein LTP1</u> <u>Isoforms at Air–Water Interfaces</u> Yani Zhao and Marek Cieplak
- <u>Combining the MARTINI and structurebased coarse-grained approaches for the</u> <u>molecular dynamics studies of</u> <u>conformational transitions in proteins</u> Adolfo B. Poma *et al*

IOP ebooks™

Bringing you innovative digital publishing with leading voices to create your essential collection of books in STEM research.

Start exploring the collection - download the first chapter of every title for free.

OFFICIAL JOURNAL OF

Sociedad de Biofísicos

Physical Biology

RECEIVED 27 January 2015

REVISED 15 March 2015

ACCEPTED FOR PUBLICATION 10 April 2015

PUBLISHED 27 May 2015

Statistical radii associated with amino acids to determine the contact map: fixing the structure of a type I cohesin domain in the *Clostridium thermocellum* cellulosome

Mateusz Chwastyk, Adolfo Poma Bernaola and Marek Cieplak

Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland ' Author to whom any correspondence should be addressed.

E-mail: mc@ifpan.edu.pl

Keywords: cohesin, refinement, cellulosome, coarse-grained models, structure-based models Supplementary material for this article is available online

Abstract

PAPER

We propose to improve and simplify protein refinement procedures through consideration of which pairs of amino acid residues should form native contacts. We first consider 11 330 proteins from the CATH database to determine statistical distributions of contacts associated with a given type of amino acid. The distributions are set across the distances between the α -C atoms that are in contact. Based on this data, we determine typical radii of effective spheres that can be placed on the α -C atoms in order to reconstruct the distribution of the contact lengths. This is done by checking for overlaps with enlarged van der Waals spheres associated with heavy atoms on other amino acids.

The resulting contacts can be used to identify non-native contacts that may arise during the time evolution of structure-based models. Here, the radii are used to guide reconstruction of nine missing side chains in a type I cohesin domain with the Protein Data Bank code 1AOH. We first identify the likely missing contacts and then sculpt the corresponding side chains by standard refinement tools to achieve consistency with the expected contact map. One ambiguity in refinement is resolved by determining all-atom conformational energies.

1. Introduction

Experimentally determined protein structures are often incomplete. They may come with absent fragments of their backbones or with missing atomic coordinates of the side groups. The specifics of the allatom coordinates are of importance in many applications and, in particular, in the determination of the contact map, which defines which pairs of amino acid (denoted as AAs for short) may bind non-covalently. In structure-based coarse-grained models [1-8], the contacts play a dynamical role instead of being merely descriptive. The prediction of the positions of the side groups is a subject of many refinement methods [9-12]. Sometimes, however, these methods are not sufficient, because seemingly subtle adjustments in the orientation of the predicted side chain may give rise to different sets of the native contacts. Thus the determination of the contacts should also be taken into account in the refinement process.

Here, we propose a method to address this problem through a statistics-based determination of the optimal native contact map. The determination of the native contact map in regions involving the defective AAs may restrict the rotamer search in the refinement procedure applied to AAs in such contacts. Singlelength cutoff-based criteria for what makes a native contact are too simple to provide an adequate account of the dynamics [13], because they introduce many spurious interactions at short lengths and fail to include many important couplings at longer lengths.

Another way to construct a contact map—and one which is much more relevant for the dynamics—is by studying overlaps of spheres associated with the heavy atoms of AAs. The sizes of such spheres are given by the van der Waals radii [14] multiplied by a factor of 1.24 to account for attraction [15, 16]—they identify inflection points in an associated van der Waals potential (see table 1 in the supplementary information (stacks.iop.org/pb/12/046002/mmedia)).

Table 1. The values of $R_{\alpha C}$ and $R_{\beta C}$ obtained by the statistical method are listed in the second and fourth column, respectively. The first column gives the name of the amino acid. The third and fifth columns provide the values of the parameter *S* at the optimal matching. The last column provides the statistics of contacts in the full CATH structures.

AA	$R_{\alpha C}$	S	$R_{\beta C}$	S	N_c
GLY	3.15	392.945	_		91300
ALA	3.35	590.941	_	_	151159
SER	3.30	208.813	2.65	28.1816	85907
ASP	3.50	336.216	3.15	71.8116	79177
THR	3.60	668.438	3.20	86.8286	96070
ASN	3.65	417.796	3.45	167.931	63208
GLU	3.65	665.146	3.55	285.902	103779
LYS	3.65	830.24	3.75	503.244	93602
CYS	3.70	230.31	3.25	90.2319	33040
PRO	3.70	596.032	3.50	188.403	65146
GLN	3.90	580.809	3.80	295.567	65047
ARG	3.95	1304.19	4.00	949.975	103114
VAL	4.00	1762.91	3.55	389.079	173342
HIS	4.00	604.623	4.00	347.322	45529
ILE	4.50	1833.15	3.95	679.089	156723
MET	4.50	741.289	4.25	448.451	55988
TYR	4.50	1499.52	4.30	1084.74	94188
LEU	4.60	2545.91	4.15	1189.12	241132
PHE	4.60	1931.98	4.55	1400.32	113959
TRP	4.70	824.557	4.75	637.204	43447

These enlarged spheres will be referred to as effective van der Waals spheres. Two AAs are said to be in a native contact if they have at least one overlapping pair of the effective spheres associated with the heavy atoms belonging to the two AAs. We have checked (see section 4) that this van der Waals-based criterion captures most of the specific (i.e., non-dispersive) contacts that can be obtained from the CSU server [17], which involves considerations that are more chemical in nature. In particular, the CSU approach involves checking whether one can place a molecule of water between the pair of AAs under study.

If the coordinates of the heavy atoms beyond β -C are missing, one may ask: what is the most likely radius, $R_{\beta C}$, of an effective sphere that can be associated with the β -C of the corresponding AA to identify the native contacts correctly? Notice that the contacts may arise both from the side chain and from the backbone. One may disregard the distinction and

ask a simpler question: what is the most likely radius, $R_{\alpha C}$, of an effective sphere that can be associated with the α -C to get the right set of the native contacts? We answer these two questions by considering 11 330 fully resolved proteins that represent the CATH database [24]. Once the values of $R_{\alpha C}$ and $R_{\beta C}$ are determined, we use them to establish contacts with the defective AAs. Finally, we perform refinement within these contacts while keeping their environments frozen.

In this paper, we illustrate applications of the statistical method by considering a type I cohesin domain with the Protein Data Bank (PDB) structure code 1AOH [18]. This protein is one of the particularly stable modules found in the Clostridium thermocellum cellulosome [19–21]. Its large mechanical stability has been demonstrated by Valbuena et al [22] through single-molecule force spectroscopy. The sequential length of the chains in 1AOH is 147. The resolved structure of chain A of 1AOH has no α -C atoms in the first four AAs (at the N-terminus) and no coordinates of the side-chain atoms beyond β -C in nine AAs: 9-LYS, 16-LYS, 47-ASN, 50-GLU, 53-GLU, 77-ARG, 110-SER, and 136-LYS, 138-GLN. In the sequentially identical chain B, no α -Cs are missing, but there are still nine defective side groups whose list partially overlaps that for chain A.

Here, we reconstruct locations of the missing atoms in 1AOH by employing the statistical method, combined with the usage of standard software tools, to design the side group conformation to an accuracy that is sufficient for molecular dynamics studies within coarse-grained models. The tools involved are MODELLER [9], which constructs a viable side group, and the sculpting tool from the Pymol software [23] to adjust the orientation of the side group to obtain consistency with the presence of the expected contacts. We show that the procedure is essentially unique for eight missing residues in 1AOH. However, the ninth one, 9-LYS, may adopt one of two alternative orientations, and additional criteria are needed to make the choice. We settle the issue by comparing chain A to chain B and through small-scale molecular dynamics simulations. The simulations would be needed if there ware no chain for comparison.

The $R_{\alpha C}$ derived here can be valuable in molecular dynamics studies of proteins within coarse-grained structure-based models: they can be used to identify non-native contacts that may arise during time evolution of structure-based models.

2. The statistical method

In order to determine $R_{\alpha C}$ s and $R_{\beta C}$ s, we derive probability distributions of contacts arising at a distance of l_{ij} between two α -C atoms *i* and *j*, provided at least one of the AAs is of a given type, say, arginine. The distributions are obtained by using the set of 11 330 PDB complete structures. Figure 1 gives examples

Figure 1. The top two panels illustrate the determination of the optimal size, $R_{\beta C}$, of a sphere associated with the β -C atoms for LYS and ARG. The thickest solid lines (in black) in the panels correspond to the undoctored distributions of contacts with the AA studied. The thin solid lines in green, delimiting the shaded areas, correspond to the distributions of contacts obtained when atoms beyond β -C on all AAs of the type studied are removed. The beaded lines in blue show the distribution obtained for the optimal selection of $R_{\beta C}$ (as listed in table 1). The bottom two panels illustrate the determination of the optimal size, $R_{\alpha C}$, of a sphere associated with the α -C atoms for LYS and ARG. The thick solid lines are the same as in the corresponding top panels. The beaded lines in blue (denoted by 'spheres') show the optimal reconstructions of the distributions.

of such distributions for arginine and lysine (results for other AAs are presented in the SI). These are the histograms which are drawn by heavy solid lines and are denoted by the label 'full'. They are non-Gaussian, as they come with a substantial tail at large values of l_{ij} .

In order to determine $R_{\beta C}$ we remove the coordinates of the heavy atoms beyond β -C in all AAs of a given type in the set (say, VAL). Similarly, for calculation of $R_{\alpha C}$, we remove all side chains of the studied type of AA. This step necessarily depletes the numbers of detected contacts, as shown in the top two panels of figure 1 in the context of $R_{\beta C}$ (the parts that are shaded). We now represent the missing atoms on all crippled AAs by spheres of the tentative radius $r_{\beta C}$ and centered at the β -C atoms or by spheres of the tentative radius $r_{\alpha C}$ and centered at the α -C atoms. We check for overlaps of the spheres with the effective van der Waals spheres on the remaining types of residues (or with another tentative sphere if the contact is within the same kind of residue). We keep adjusting $r_{\beta C}$ or $r_{\alpha C}$ until the corresponding distribution of contacts matches the original distribution as closely as possible. The optimal situation for any target AA is identified by minimizing

$$S^{2} = \frac{1}{N_{b}} \sum_{m=1}^{N_{b}} \left(n_{m} - n'_{m} \right)^{2}, \qquad (1)$$

where N_b is the number of bins in the histogram and n_m is the number of contacts in an *m*th bin in the original full distribution, whereas n'_m is the number of

observations in the same bin with the approximate rendering of the missing side-chain atoms. $R_{\alpha C}$ and $R_{\beta C}$ are defined as the optimal values of $r_{\alpha C}$ or $r_{\beta C}$, respectively. They are listed in table 1. It should be pointed out that equation (1) deals with the distributions of the numbers of contacts and not the normalized probability distributions, because each choice of $r_{\beta C}$ or $r_{\alpha C}$ comes with a different total number of contacts. The goal here is to optimize not only the shape of the distribution but also the similarity in the actual number of contacts. In principle, the function S^2 defined in equation (1) depends on the bin widththe basic value used here is 0.5 Å. However, reducing the width by a factor of 2 is found not to affect the radii listed in table 1. Doubling the width has only a 1% effect. If one modifies the definition of S so that it involves $|n_m - n'_m|$, then the results change within 2%, which may be considered as providing the error bars on the results.

We now consider 1AOH. Chain A turns out to be more interesting to focus on, as there are somewhat different results, depending on whether one adds the structure in the missing 1–4 segment or not. We begin by adding the segment. This can be accomplished by taking it from chain B and attaching it to the original A by translation and small adjustments implemented through the use of MODELLER. There are no defects in this segment. We then replace the α -Cs on the defective residues (i.e., with the missing side chains) by spheres with the radii listed in table 1 and check for overlaps with all other AAs. In this way, we identify the

Figure 2. The native state of protein 1AOH after the reconstruction. Reconstructed side chains are displayed in red. The side chains on residues 1–4 are shown in orange. The two possible orientations for 9-LYS are marked in red (IN) and blue (OUT). Choice OUT is consistent with having the 9-LYS–141-ASP contact. Choice IN would be consistent with two additional predicted contacts (9-LYS–141-ASP and 9-LYS–42-TYR)–shown here as straight purple lines—and choice OUT only with one: 9-LYS–141-ASP. The remaining predicted contacts (5-ALA–138-GLN, 44-TYR–50-GLU, and 46-PRO–50-GLU) are also shown here as straight purple lines, and they are the same for both the IN and OUT states.

Table 2. The coordinates (*x*, *y*, and *z*) of the heavy atoms in the native state of 9-LYS in 1AOH. The subscript N refers to the native coordinates as available in the file. The subscripts IN and OUT refer to the two rotamers discussed. OUT is considered to be the most likely solution. The values highlighted in boldface are either those predicted through the statistical method combined with sculpting or those that needed small adjustments.

	9-LYS								
Atom	x _N	$y_{\rm N}$	z_{N}	x _{IN}	$y_{\rm IN}$	$z_{ m IN}$	<i>x</i> _{OUT}	<i>Y</i> _{OUT}	$z_{\rm OUT}$
N	24.487	28.756	46.073	24.487	28.756	46.073	24.487	28.756	46.073
CA	25.469	29.026	47.106	25.264	30.366	45.906	25.469	29.026	47.106
С	26.830	29.382	46.548	26.830	29.382	46.548	26.830	29.382	46.548
0	27.308	28.761	45.599	27.308	28.761	45.599	27.308	28.761	45.599
CB	25.578	27.835	48.031	24.877	31.288	46.389	25.578	27.835	48.031
CG				23.228	32.013	46.569	26.584	27.818	49.118
CD				22.877	33.337	47.421	26.712	29.002	50.032
CE				22.870	34.684	48.488	27.301	28.608	51.383
NZ				22.521	35.747	48.012	26.956	29.610	52.415

contacts which are very likely to be missing. These are: 5-ALA–138-GLN, 9-LYS–42-TYR, 9-LYS–141-ASP, 44-TYR–50-GLU, and 46-PRO–50-GLU.

In order to obtain the actual structures of the defective side chains we have used MODELLER [9] and then the Pymol sculpting tool [23] to construct the tentative side chains and then guide them toward positions that would be consistent with the predicted contact map. The idea is to sculpt the side chains so that the contacts that are likely to arise are actually built in. At this stage, we use the overlap criterion with the effective van der Waals spheres representing all heavy atoms. It is straightforward to set the corresponding rotamers in a unique way to generate these contacts, except for 9-LYS, for which there are two possibilities: either the side group points into the body of the protein or away from it. The two orientations are illustrated in figure 2 and are denoted as IN and OUT, respectively. The reconstruction corresponding to choice IN required making slight adjustments in the positioning of the α -C and β -C atoms. No such adjustments turned out to be needed for choice OUT and for the other eight defective AAs, except for β -C at 50-GLU. The resulting refined structures are shown in tables 2 and 3. The coordinates of other atoms are listed in the PDB file for 1AOH.

When we repeat the procedure using β -C, we replace the β -Cs on the defective residues by spheres with the radii listed in table 1 but also assign the effective van der Waals spheres to the backbone atoms: N, α -C, C, and O. Checking for overlaps with all other AAs leads to the identification of just one missing contact: 5-ALA–138-GLN. Enlargement of $R_{\beta C}$ by 10% (to account for the tails in the in the distributions of the effective radii) brings in the mechanically important 9-LYS–141-ASP contact. One can do proper refinement with these two contacts, but, clearly, the method based on the α -C atoms appears to be much

1-THR					2-	ASP		3-LEU				4-ASP			
Atom	x	у	Z												
N	17.295	24.714	54.855	Ν	15.444	24.596	51.961	Ν	13.836	22.084	50.484	Ν	12.144	22.368	48.270
CA	17.370	24.326	53.397	CA	14.126	24.297	51.469	CA	13.903	21.100	49.389	CA	11.320	22.756	47.138
С	15.967	23.928	52.967	С	14.223	23.336	50.275	С	13.051	21.413	48.148	С	11.885	23.997	46.448
0	15.404	22.985	53.522	О	14.616	23.729	49.171	0	13.228	20.814	47.091	О	11.285	24.528	45.506
CB	18.359	23.258	53.114	CB	13.475	25.635	51.110	CB	13.628	19.685	49.893	CB	9.892	23.000	47.607
CG2	18.111	22.588	51.742	CG	12.062	25.508	50.611	CG	14.637	19.262	50.953	CG	9.243	21.735	48.145
OG1	19.673	23.826	53.195	OD1	11.503	24.397	50.522	CD1	14.319	17.889	51.459	OD1	9.307	20.677	47.444
				OD2	11.502	26.561	50.264	CD2	16.031	19.320	50.385	OD2	8.708	21.790	49.282
16-LYS				47-ASN				50-GLU				53-GLU			
atom	x	у	z												
N	45.376	33.602	50.616	N	37.812	46.450	47.480	N	39.749	41.629	43.674	N	37.759	37.453	36.359
CA	46.324	34.480	51.250	CA	39.037	46.908	48.118	CA	39.646	42.212	42.340	CA	36.890	36.839	35.357
С	46.407	35.693	50.359	С	39.843	45.689	48.595	С	39.104	41.097	41.458	С	35.845	35.998	36.057
0	46.141	35.580	49.164	О	41.014	45.809	48.912	0	39.741	40.062	41.287	О	36.000	35.654	37.222
CB	47.689	33.796	51.306	CB	38.689	47.830	49.299	СВ	39.034	43.344	42.977	CB	37.728	35.920	34.420
CG	47.660	32.653	52.323	CG	38.099	49.143	48.781	CG	38.342	44.055	42.549	CG	37.517	35.070	34.940
CD	47.237	31.353	51.637	ND2	38.811	49.712	47.813	CD	37.501	44.561	41.415	CD	36.657	34.483	35.982
CE	46.920	30.286	52.687	OD1	37.065	49.610	49.232	OE1	37.441	45.720	41.010	OE1	36.199	33.527	36.033
NZ	46.793	28.961	52.040					OE2	36.872	43.690	40.957	OE2	36.461	35.207	37.126

. . • c:... .hl. 7 h £a . . . aigh dafa: J. T.a .1 f 50 CLU th riginal citic f R C is 10 086 12 661 . . . 11 8/1 T

ы

Table 3. (Continued.)

77-ARG			110-SER			136-LYS				138-GLN					
atom	x	у	z	atom	x	у	z	atom	x	у	z	atom	x	у	z
N	29.821	50.270	42.439	N	47.060	42.382	47.691	Ν	11.048	28.776	42.968	N	16.598	30.011	47.009
CA	28.621	49.897	43.191	CA	48.217	42.171	48.554	CA	11.389	29.327	44.290	CA	17.124	30.310	48.321
С	28.808	48.583	43.976	С	48.139	42.686	49.988	С	12.904	29.138	44.412	С	18.602	30.525	48.022
0	27.894	48.121	44.659	0	48.734	42.085	50.884	О	13.466	28.147	43.923	0	19.293	29.612	47.520
CB	27.389	49.832	42.285	CB	49.459	42.649	47.892	CB	10.638	28.556	45.422	CB	16.888	29.125	49.286
CG	27.142	51.197	41.639	OG	49.702	41.895	46.713	CG	10.887	29.234	46.771	CG	16.504	28.472	49.693
CD	26.908	52.253	42.720					CD	10.165	30.582	46.820	CD	16.322	27.008	49.702
NE	26.885	53.603	42.113					CE	10.533	31.327	48.105	NE2	16.975	26.443	50.766
CZ	27.048	53.842	40.795					NZ	9.727	32.562	48.222	OE1	15.743	26.192	49.030
NH1	27.244	52.838	39.961												
NH2	27.012	55.109	40.329												

Table 4. Additional contacts created in the refined structure of chain A through the statistical method. The 4-ASP–136-LYS contact is not listed, as it comes from the overlap with the backbone part of 136-LYS. It is hydrophilic-hydrophilic. The superscripts IN denote contacts which appear only for the IN conformation of 9-LYS. The remaining 9-LYS–141-ASP is common for the IN and OUT conformations. However, it is specific only in the OUT state.

No.	i	j	l_{ij}	Nature of the contact
1	5-ALA	138-GLN	6.6867	hydrophilic-hydrophilic
2	9-LYS IN	42-TYR	9.2569	hydrophobic–hydrophobic
3	9-LYS IN	121-PHE	7.9983	not specific
4	9-LYS IN	139-PHE	5.5637	hydrophobic-hydrophobic
5	9-LYS	141-ASP	6.2004	hydrophilic–hydrophilic
6	44-TYR	50-GLU	9.4219	hydrophilic–hydrophilic
7	46-PRO	50-GLU	5.6474	hydrophobic–hydrophobic
8	50-GLU	75-PRO	8.4961	not specific
9	53-GLU	103-THR	8.2496	not specific

more effective than the one with the β -C atoms. This is despite the fact that coordinates of the backbone heavy atoms and of the β -C atoms are provided by the PDB structure file. Furthermore, consideration of β -C does not resolve the ambiguity about the IN- and OUTsolutions for 9-LYS.

Both orientations IN and OUT come with the 9-LYS–141-ASP contact, which turns out to be crucial for the emergence of large mechanostability, but the IN choice generates three additional contacts, which affects the mechanostability further. In chain B the structure of 9-LYS happens to be set, and it is in the OUT state, so the OUT choice for chain A should be correct.

Table 4 lists the derived additional contacts for chain A of protein 1AOH. Six of them have been obtained through the statistical method. Three contacts would exist only in the IN state, and they come as a result of refinement. The nature of the contacts is established by using the CSU server.

3. Tests of the optimality of the refined side chains

For 9-LYS we have found two solutions. Now, we demonstrate that orientation OUT is favored by consideration of energies calculated within an allatom model. Our molecular dynamics simulations were conducted by using version 2.9 of the NAMD simulation package [26] with the CHARMM22 force field [27, 28] for conformations IN and OUT as the starting states. Our simulations were conducted in a water box of size 85 Å in length, 80 Å in width, and 81 Å in height. It contained more than 50 000 TIP3P molecules of water [29]. The system was made charge neutral with the use of eight Na⁺ ions. The total number of atoms in the system was 52 274 and 52 259 for conformations IN and OUT, respectively. The periodic boundary conditions were employed.

The first stage of the simulations involves energy minimization of the system for 100 000 conjugate gradient steps of 1 fs each. The second stage implemented heating of the system up to the temperature of 310 K. The heating process was done in three steps of 0.5 ns each. The first of them was done at temperature 110 K in the NVT ensemble. The second was done in the same ensemble but at 210 K. The last equilibration step was conducted in the NPT ensemble at 310 K. Each new stage used the coordinates and velocities of the atoms obtained from the previous stage. The temperature was controlled by the standard Langevin algorithm and the pressure by the Langevin piston pressure control algorithm.

When the system is prepared in the OUT state (from the very beginning of the procedure) it persists in it for at least 0.5 ns. On the other hand, when it is prepared in the IN state, it stays there for about 0.2 ns, and then it converts to the OUT state, which confirms the preference for the OUT structure. The same conclusion is reach through the consideration of energy as monitored during the 0.2 ns during which the system remains in the state it was prepared in. Specifically, we monitored the conformational potential energy $(E_{\rm conf})$ of the system and the root mean square fluctuations (rmsf) in the positions of the side-chain atoms. We used the MDenergy plugin from the VMD package [30] for this purpose. The conformational energy is a sum of $E_{\rm b}$ and $E_{\rm nb}$, where the former is a collection of the bonded terms (i.e., bonds, angles, dihedrals, and improper dihedrals) and the latter of the non-bonded either electrostatic or van der Waals terms. Table 5 lists the average values of these energies, and it also provides the energy of the interactions of the protein with water, E_{pw} . It is observed that 9-LYS_{OUT} leads to a lower conformational energy than $9\text{-}\text{LYS}_{\text{IN}}$ and also to lower binding with water, even though 9-LYS_{OUT} is more exposed. We also find that the RMSF values for 9-LYS are higher in the OUT state than in the IN state -movements in the OUT state are less restricted.

It is interesting to observe that the energy balance changes when the 1–4 segment is not included and the 4-ASP–136-LYS disappears. The IN state is now not observed to be unstable, and it actually comes with a lower conformational energy than the OUT state (table 5).

We now assess the impact of the corrections in the structure file on mechanostability. When one stretches

Table 5. Average values of the energies for chain A in 1AOH for two orientations of the 9-LYS side chain. The energies are in the units of kcal mol⁻¹. The upper half of the table refers to the situation in which the *N*-terminal segment 1–4 is included and the monitoring run is 0.2 ns long. The lower half refers to the situation in which the segment is not included and the run is 0.4 ns long: the IN state appears to be stable. The error bars are the standard deviations obtained over the duration of the runs.

side chain	$\langle E_{\rm nb} \rangle$	$\langle E_{\rm pw} \rangle$	$\langle E_{\rm conf} \rangle$	N-terminal segment
9-LYS _{IN}	-2064.63 ± 58.21	-5476.77 ± 94.99	301.17 ± 64.32	with 1–4
9-LYS _{OUT}	-2319.66 ± 76.74	-5344.85 ± 140.83	37.76 ± 75.63	with 1–4
9-LYS _{IN}	-2079.03 ± 57.98	-5227.18 ± 120.21	217.30 ± 60.53	without 1-4
9-LYS _{OUT}	-2047.98 ± 55.15	-5215.46 ± 116.81	240.70 ± 63.36	without 1-4

cohesin corresponding to 1AOH experimentally, one obtains a characteristic force for mechanical unravelling, F_{max} , which is close to 480 ± 14 pN at the constant pulling velocity, v_p , of 400 nm s⁻¹ [22]. Previously, we have stretched 1AOH within a structure-based coarsegrained model [8, 22, 25] constructed by fixing the structure file by introducing a 7.5 Å cutoff in l_{ii} s if at least one of the AA involved had missing side chains. This procedure has resulted in the introduction of several tens of extra contacts. In [22], we did not include the first four missing residues-we took the structure file of chain A as it was. The model incorporated an overdamped molecular dynamics involving only the α -C atoms. The stretching simulations for the reconstructed structures have been accomplished at several values of v_p . By extrapolating to the experimental speed, F_{max} has turned out to be equal to about 3.7 ϵ /Å, where ϵ is the energy parameter—it is the depth of the potential well associated with a native contact. By using the calibration of ϵ /Å being approximately equal to 110 pN [25], the theoretical extrapolated result is 410 pN. At v_p of 0.005 Å/ $\tau \sim 500\,000$ nm s⁻¹ it is $4.2 \pm 0.2 \epsilon$ /Å, i.e., about 460 pN. The error bars are determined based on 100 trajectories.

We now repeat these simulations for the case with the reconstructed side chains and when the 1-4 residues are included and, therefore, with one of the mechanically important contacts 4-ASP-136-LYS. The simulations were performed by using a stochastic dynamics in order to mimic random kicks by molecules of the implicit solvent. The dynamics of the individual α -Cs was governed by a Langevin equation: $m\ddot{r} = -\gamma \dot{r} + F_c + \Gamma$, where F_c is the total force on an atom due to molecular potentials and Γ is a Gaussian noise term with dispersion $\sqrt{2\gamma k_{\rm B}T}$ ($k_{\rm B}$ is the Boltzmann constant). The friction coefficient γ is taken to be equal to $2m/\tau$, where τ is the characteristic time scale in the model. It is expected to be of order 1 ns, as it is associated with the diffusive (instead of ballistic) coverage of molecular distances. The molecular potentials involve [8] the native contacts of the Lennard-Jones form, repulsive non-native contacts, and the local backbone stiffness represented by a chirality potential [7] that effectively takes into account the dihedral terms. The equation of motion is solved by a fifth-order predictor-corrector scheme. In the

stretching simulation, the native contacts are considered to be broken only if the distance r_{ij} between AAs *i* and *j* involved in the process is larger than $1.5\sigma_{ij}$ (close to the inflection point of the Lennard-Jones potential) for the last time.

The inset of figure 3 shows typical force–displacement (F - d) patterns for the two choices of positioning of the side group on 9-LYS at $v_p = 0.005 \text{ Å}/\tau$. (The two traces are obtained for the same string of random numbers in the Langevin noise that controls thermal fluctuations.) After averaging over 50 trajectories, the correct orientation OUT yields 4.2 e/Å (the black line, also repeated in the main part of the figure), whereas orientation IN yields 4.4 e/Å (the blue dotted line). If the missing side chains are not reconstructed (the green line), we get 3.7 e/Å. Thermal fluctuations are of order 0.1 $e/\text{\AA}$ at the temperature $T = 0.3 e/k_{\text{B}}$ used here.

If the 1–4 segment is removed, the IN-solution yields F_{max} of 4.2 ϵ /Å (as shown by the magenta line in the main part of figure 3), and the OUT-solution yields 4.0 ϵ /Å. We conclude that one can mimic the mechanical effect of contact 4-ASP–136-LYS in the *truncated* A chain by adopting the IN-orientation and thus incorporating the three extra contacts that come with this choice.

4. Properties of the contact map comparisons to CSU

Figure 4 compares the contact maps in the fully fixed native structure of 1AOH (orientation OUT) obtained by using the overlap criterion (denoted as OV) to that derived through the CSU approach. The overlapbased method introduces 382 contacts, including those derived by the statistical method, and the CSU procedure adds 25 specific contacts. In the CSU approach, the contacts are considered specific if they correspond to the hydrogen bonds, hydrophobic couplings, and stacking interactions. The ionic bridges count as non-specific, but they are typically captured by the OV-based approach (which is not concerned with the sizes of the water molecules). The CSU method gives rise to 270 specific contacts. Of these, 5-ALA-138-GLN, 9-LYS-42-TYR, and 9-LYS-141-ASP are predicted by our statistical method, whereas 44-TYR-50-GLU and 46-PRO-50-GLU are absent.

Figure 3. Typical force–displacement traces for chain A. Solid black line: an example of an F - d trace for stretching the corrected 1AOH structure at constant speed. The side group of 9-LYS is in the OUT position. The first peak is the largest, and its height defines F_{max} . Dotted magenta line: the F - d pattern when 9-LYS is in the IN position but the 1–4 amino acids are missing—as a result the force peak is moved to the left. The inset compares the solid trace of the main figure (the OUT situation) to the one corresponding to position IN in the immediate vicinity of the major force peak (blue dotted line) and to the situation in which the missing side groups are not fixed (the green solid line).

Figure 4. The native contact map for 1AOH. Contact maps are expected to be symmetric. (There are exceptions that arise when using the CSU.) In the upper part, the open squares show the 270 contacts obtained using the CSU-based approach and the blue solid squares—20 contacts that are additionally predicted by the overlap (OV) criterion. In the lower part, the blue open squares show the 382 contacts predicted by the overlap criterion and the black squares—25 contacts that are additionally predicted by CSU. The dotted rectangles indicate contacts that are responsible for the large value of *F*_{max}.

The overlap criterion adds 20 contacts to those found through CSU. Overall, both contact maps look broadly similar. We think that molecular dynamics simulations within the structure-based coarse-grained models should employ either the overlap contact map combined with the extra specific CSU contacts or the CSU maps with the extra contacts obtained through overlap. The contacts responsible for the large mechanostability are marked off by the dotted rectangle in figure 4.

It is interesting to ask what kind of contact map arises as a result of replacing all AAs, not only the defective ones, by the spheres of radius $R_{\alpha C}$. Figure 5 shows such a map—it is denoted as CA. It is seen that it captures the pattern of the overlap-based contact map of figure 4, but it has 43 more contacts. This constitutes about 11% of the contacts generated through the overlaps of the effective van der Waals spheres associated with the heavy atoms of the repaired structure. The CA map comprises 425 contacts, out of which 119 are not in the original OV map, and 76 of the underlying OV map are missing in the CA map.

5. Conclusions

We have shown that considerations of contact-making in a protein can influence the refinement process in a meaningful and constructive way. Any arising ambiguities coming from the existence of possible but less optimal solutions can be resolved by performing small-scale, all-atom molecular dynamics simulations. For chain A of the cohesin domain of type I discussed here, this procedure yields results that are consistent with the structure of chain B (for which the repaired contact map turns out to be almost the same as the repaired contact map for chain A) and also compatible with the experimental results on mechanostability.

We have focused on one procedure that defines the contacts and found that the overlaps of spheres associated with the α -C atoms placed on the defective atoms work better than those associated with the β -C atoms.

The modifications in the contact map CA relative to OV are substantial and lead to a 19% increase in F_{max} : from 4.20 \pm 0.15 ϵ /Å to 5.00 \pm 0.17 ϵ /Å. We observe that for each of the two contact maps, and between the maps, all F - d patterns look similar, indicating the presence of just one pathway. A sample of 25 trajectories is shown in figure 6 in the SI. Despite the difference in F_{max} , it appears that using the α -Ccentered spheres may still be a sensible strategy to apply in situations where structural information is missing. One example is multi-protein complexes, such as cellulosomes, where only some substructures are resolved and interactions between them are unknown. Another is large conformational changes, arising either during stretching or folding, which generate non-native attractive contacts as a result of time evolution.

It would be interesting to generalize our statistical method to other definitions of contacts, such as those based on the CSU approach or on introducing a length cutoff. The overlap-based method used here is a compromise between the simplicity of use and the possibility of accounting for the physical differences between the AAs.

It should be noted that, generally, the absence of AA fragments in crystallographical structures may indicate experimental difficulties or the presence of segments with no unique stable conformations, such as disordered loops and flexible linkers. 1AOH is an example of the former, as evidenced by making comparisons between chains A and B. However, our method can also find applications of the latter, as it can pin down possible fixed choices while leaving the contactless regions free to move.

Acknowledgments

We appreciate illuminating discussions with A Gomez-Sicila, M Gunnoo, B Różycki, M Sikora, and D Thompson. The computer resources were financed by the European Regional Development Fund under the Operational Programme Innovative Economy Nano-Fun POIG.02.02.00-00-025/09. This work has been supported in part by the EU 7th Framework Programme under the project NMP4-SL-2013-604530 (CellulosemePlus) and by the ERA NET grant ERA-IB (EIB.12.022) (FiberFuel). It was also co-financed by the Polish Ministry of Science and Education from the resources granted for the years 2014-2017 in support of international scientific projects.

References

- [1] Hoang T X and Cieplak M 2000 J. Chem. Phys. 113 8319
- [2] Clementi C, Nymeyer H and Onuchic J N 2000 J. Mol. Biol. **298** 937
- [3] Karanicolas J and Brooks CL III 2002 Protein Sci. 11 2351
- [4] Cieplak M, Hoang T X and Robbins M O 2002 Proteins: Struct. Funct. Bio. 49 114
- [5] Takada F, Koga N and Takada S 2003 Proc. Natl Acad. Sci. USA 100 11367
- [6] Levy Y, Wolynes P G and Onuchic J 2004 Proc. Natl Acad. Sci. USA 101 511
- [7] Sułkowska JI and Cieplak M 2008 Biophys. J. 95 3174
- [8] Sułkowska J I and Cieplak M 2007 J. Phys.: Cond. Mat. 19 283201
- [9] Sali A and Blundell T L 1993 J. Mol. Biol. 234 779

- [10] Afonine PV, Grosse-Kunstleve RW, Echols N, Headd JJ, Moriarty NW, Mustyakimov M, Terwilliger TC, Urzhumtsev A, Zwart P H and Adams P D 2012 Acta Cryst. D **68** 352
- [11] Canutescu A A, Shelenkov A A and Dunbrak R L 2003 Prot. Sci. **12** 2001
- [12] Summers N L and Karplus M 1989 J. Mol. Biol. 210 785
- [13] Cieplak M and Hoang T X 2003 Biophys. J. 84 475
- [14] Bondi A 1964 J. Phys. Chem. 68 441
- [15] Tsai J, Taylor R, Chothia C and Gerstein M 1999 J. Mol. Biol. 290 253
- [16] Settanni G, Hoang T X, Micheletti C and Maritan A 2002 Biophys. J. 83 3533
- [17] Sobolev V, Sorokine A, Prilusky J, Abola E E and Edelman M 1999 It Bioinformatics 15 327
- [18] Tavares G A, Beguin P and Alzari P M 1997 J. Mol. Biol. 273 701
- [19] Beguin P and Lemaire M 1996 Crit. Rev. Biochem. Mol. Biol. 31 201
- [20] Bayer E A, Chanzy H, Lamed R and Shoham Y 1998 Curr. Opin. Struct. Biol. 8 548
- [21] Bayer E A, Belaich J P, Shoham Y and Lamed R 2004 Annu. Rev. Microbiol. 58 521
- [22] Valbuena A, Oroz J, Hervas R, Vera A M, Rodriguez D, Menendez M, Sułkowska J I, Cieplak M and Carrion-Vazquez M 2009 Proc. Natl Acad. Sci. USA. 106 13791
- [23] The PyMOL Molecular Graphics System, Version 1.5.0.4 Schroedinger, LLC (http://pymol.org)
- [24] Sillitoe I et al 2013 Nucl. Acids Res. 41 D490
- [25] Sikora M, Sułkowska J I and Cieplak M 2009 PloS Comp. Biol. 5 e1000547
- [26] Phillips J C, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel R D, Kale L and Schulten K 2005 J. Comp. Chem. 26 1781
- [27] MacKerell A D et al 1998 J. Phys. Chem. B 102 3586
- [28] MacKerell A D Jr, Feig M and Brooks C L III 2004 J. Comp. Chem. 25 1400
- [29] Jorgensen WL, Chandrashekar J, Madhura JD, Impey R W and Klein M L 1983 J. Chem. Phys. 79 926
- [30] Humphrey W, Dalke A and Schulten K 1996 J. Mol. Graphics 1433