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Abstract. We propose the use of graphs as basic objects in security
protocols. While having all the functionality of their number based coun-
terparts; such protocols can have extended capabilities, especially useful
in the field of verification and analysis. The scalability and transitivity
for graph related properties allow for addressing protocols of increasing
complexity. These features also cater for new challenges in the future,
for instance ones resulting from a quantum computing paradigm.
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1 Introduction

The main goal of this paper is to stimulate discussion on alternatives in secu-
rity protocol design, which should have a great effect on protocol analysis and
verification.

When it comes to cryptology, number theory is king, as it underlies the ma-
jority of cryptographic algorithms and protocols. Claude Shannon, in his funda-
mental Mathematical Theory of Communication ([1]), introduced a description
of information as a string of bits. Usually a bit string has been thought of as
a binary number. Binary numbers are easy to manipulate, hence this approach
underlies virtually all modern computing. Yet, theoretically speaking, binary
strings can also represent other objects, like graphs. When they are used to de-
scribe the structure of a graph, they actually contain much more information
than only about the structure.

In order to benefit from this observation one needs to make practical use of
the surplus information. One possibility is to use a conversion between graphs
and numbers, for example methods based on Goedel’s numbering ([2]). There
are other numerous ways to do so (see [3], [4]). When some additional conditions
are met, such conversion allows one to use traditional, number theory based
cryptographic methods, while also gaining the advantage from graph embedded
information. Such opportunity is especially interesting taking into account con-
nections between graph theory and other branches of mathematics like: coding
theory, topology and knot theory (see [5]).
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Graph theory provides us with a variety of interesting problems, many of
which are known to be of NP class (e.g., [3]). Examples are: graph colouring,
graph isomorphism and Hamiltonian paths, all of which can be used to provide
extended capabilities for security protocols.

One should remember that problems from the same complexity class can be
used interchangeably, at least in the graph case. Very good examples are zero-
knowledge proofs, that were designed independently for various graph problems,
for instance isomorphism (e.g., [6]) and colouring (e.g., [7]). In [6], Goldreich
et al. have shown that any NP-complete problem can be turned into a zero-
knowledge proof. Hence, the choice of problem to work with is only a matter of
individual taste.

On the other hand, the above mentioned problems are handy when it comes to
the issue of provable security (e.g., [8], [9]). In this paper we wish to concentrate
on the most promising field: verification and analysis of the protocols in the
provable security context.

In security protocols the role of the graphs has mainly been limited to mod-
elling the data structures. Although significant results have been obtained, with
the proposed approach we hope to go much further.

The goal of this paper is to discuss the advantages of using graphs as the
building blocks for security protocols. In Section 2 we briefly describe an example
of graph colouring based verifiable secret sharing (VSS). Section 3 is meant to
stimulate discussion on the interactions between graph object(s) that underlie
the protocol and graph based data models. At the outset we outline two graph
related properties: scalability and transitivity. Next, we discuss how they can
be applied to handle increasing protocol complexity. At the end of the section,
we briefly refer to problems resulting from quantum computing methods. The
conclusions are provided in Section 4.

2 Graph Colouring Based Verifiable Secret Sharing

In this section an illustrative example, from research into Verifiable Secret Shar-
ing, will be presented. First, we provide some background information on secret
sharing.

Everybody knows situations, where permission to trigger certain action re-
quires approval of several selected entities. Equally important is that any other
set of entities cannot trigger the action. Secret sharing allows a secret to be split
into different pieces, called shares, which are given to the participants, such that
only certain groups (authorized sets of participants) can recover the secret.

The access structure is the set of all authorized subsets of participants.
Good general references for secret sharing are the books by Stinson [10] and
by Pieprzyk et al. [11]; an interested reader can also consult the bibliography
list by Stinson [12].

Once secret sharing was introduced, it was found that it can be easily compro-
mised by misbehaving parties. Hence, the ability to perform secret consistency
verification and detection of cheaters is very important. One of solutions is to
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use Verifiable Secret Sharing (VSS). The verification capacity usually comes at
a price. This fact is related to the paradox stated by David Chaum, that no
system can simultaneously provide privacy and integrity.

At ESORICS2002 in Zurich, a verification method that works for any under-
lying secret sharing scheme was described ([13]). It is based on the concept of
verification sets of participants, related to an authorized set of participants. The
participants interact (with no third party involvement) in order to check validity
of their shares, before they are pooled for secret recovery. Verification efficiency
does not depend on the number of faulty participants. One of the pillars of the
method is the use of a proper verification function; a very promising one results
from the graph colouring check-digit scheme described in [14]. This proposal
requires conversion of the given number into a graph and checking its vertex
colouring on both sides of the communication channel. The quantitative argu-
ment presented shows that the feasibility of the proposed scheme increases with
the size of the number whose digits are checked, as well as, overall probability
of digits errors.

Joining both results ([13], [14]) produces a graph-based shares verification
method. The method depends heavily on graph colouring properties that in
turn are handy in the formal security analysis. To some extent it seems even to
bypass (or at least weaken) the Chaum paradox. In the case of described method
one does not get a free lunch, but at least can have a free starter.

3 Advantages of Graph Based Security Protocols

Before entering into a discussion of what graphs can do for security protocols,
we need to outline two graph related properties:

a. Scalability. The fastest informal description is that the level of complication
in a graph increases exponentially with the number of vertices, while testing
for basic graph properties can be usually done in polynomial time. Very good
instances are bounds on chromatic numbers (e.g., [3], [15]).

Example 1.
Definitions:
The degree of vertex in the graph is the number of edges connected to that
vertex.

The complete graph is the graph, such that every vertex is linked with all
remaining vertices.

The odd cycle is a connected graph, having odd number of vertices, with
each vertex having degree equal to 2.

Theorem by Brooks (1941): Let G be a connected graph. If G is neither
complete nor an odd cycle, then its chromatic number is smaller or equal to
the maximum degree of vertex in G. •

Scalability is used in the graph colouring check-digit scheme (see [14]).
It also works well in formal analysis of access structures in secret sharing
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protocols. If the graph representing an access structure belongs to some
instance graph theoretical class, specified information theoretical properties
of the secret sharing method are conserved (e.g., [10]).

b. Transitivity (proliferation). Given any graph, even a small alteration made
to the structure (or the way the graph property is described), may have far
reaching consequences. This can be understood figuratively and literally –
resulting changes can pop up far away in the graph. Again, graph colouring
is a very good example. Even a single vertex or edge modification made to
the structure can dramatically change colouring (for an example see [4]). On
the other hand, for a given colouring of a graph, alteration of one vertex
colour can proliferate through an entire system (e.g., [4]).

By its nature, scalability is very useful when managing complexity. This may
even start at the protocol design stage. The example given in the Section 2 falls
into this category. In this case, the access structure design can be refined, until
it represents the best quality in the information theoretical meaning. We present
an example coming from the book by Stinson ([10]).

Example 2.
Let’s denote:
E as set of edges for the given graph G;
V as set of vertices for the given graph G;
cl(E) as the closure on the set E.
Definitions:
The complete multipartite graph, such that vertices can be partitioned in the

finite number of disjoined sets such that:

a. vertices in one set are not linked be the edge;
b. each vertex is linked with all the vertices outside the set.

A secret sharing scheme is ideal if its information rate is 1, so the length of the
secret equals to the length of a share held by a participant. The information rate
is defined in the Shannon sense (see [1]).

Theorem: Suppose G is a complete multipartite graph. Then there is an ideal
scheme realizing the access structure cl(E) on participant set V . •

Yet, more interesting applications of scalability arise when dealing with anal-
ysis and verification of the protocols. When the protocol is a complex collection
of the interacting parts (or even protocols), there are two basic techniques: cryp-
toanalytic and formal. Unfortunately both schools rarely interact (e.g., [16]).
Scalability, together with the application of graph based protocols, offers an op-
portunity to reconcile both approaches to the protocol analysis and verification.

The underlying (graph based) parts would be treated in the cryptoanalytic
style, while their interaction would be investigated on a higher level. Both levels
of analysis would deal with objects of the same type. Hence, merging them
into one, more abstract, construct should be possible. On the other hand, use
of scalability would facilitate good information theoretical description of the
resulting construct.
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The second property addresses the issue of how small changes in one place
can have an effect on the whole system. This is a handy add-on for the approach
outlined above. Adding transitivity into the picture would address the problem
of losing the details when trying to abstract some concepts. This natural process
has proven to be dangerous in the analysis of the protocols. The introduction
of the transitivity allows for taking care of the details that should not be lost
during a shift to higher levels of abstraction. Hence, in the analysis of security
protocols, transitivity should be used together with scalability, compensating for
its possible weaknesses.

A graph based approach provides capabilities for handling potential prob-
lems resulting from quantum computing methods. Once quantum algorithms
(or protocols) are embedded into the system, apart from the normal considera-
tions, one should take care about resulting quantum effects, like interference or
entanglement (e.g., [17]).

Informally speaking, entanglement means that the properties of a composite
(quantum) system, even when the components are distant and non-interacting,
are linked. In general they cannot be fully expressed by descriptions of the prop-
erties of all the component systems. Hence, the system is more than only the
sum of all components.

Transitivity seems to be very well suited, at least partially, to address-
ing issues resulting from the quantum entanglement. It is noteworthy that the
same description as for entanglement fits problems in vertex colouring of the
graphs.

4 Conclusions

We advocate using graph based security protocols. They result in the situation
where one abstract type simultaneously underlies and models the protocol. This,
in turn, allows one to see interaction of the protocol parts in a new light. The
example from graph colouring and secrets sharing was used in order to illustrate
the proposal, as well as to stimulate the discussion. Nevertheless, the graph
theory provides much more opportunities. In general terms the most important
is the chance for a unified approach to protocol analysis and verification, and
also for the emerging quantum computing paradigm.

We hope that graph based protocols will bring new insight into the way
that complex systems interact. Other opportunities arise from investigations
into the interactions between graph theory and other branches of mathematics
(e.g., [5]).
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