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Abstract. In the paper a new schedule of S-boxes design is considered.
We start from motivation from block cipher practice. Then, the most
popular S-box design criteria are presented, especially a possibility of
application of Boolean bent-functions. Finally, we propose integrating
neural networks (playing a role of Boolean functions with appropriate
properties) in the design process.

1 Foundations

Almost all modern block ciphers have iterative structure. This means that the
complicated encryption of a block of text is due to multiple iterations of a simple
round function. In the case of Feistel permutation, which was introduced in
Lucifer and then widespread in 1977 through American standard DES [1], the
input 64-bit block is divided into two 32-bits sub-blocks L; and R;. The round
transformation, represented as:

L =R;_1, (1)
Ri=Li_1®f(Ri-1,K,),

substitutes the right subblock R;_; the from previous round as the left subblock
L; at present and calculates bit-wise XOR of the left subblock L; 1 from the pre-
vious round with the output of the round function f taken on the right subblock
R;_1 from the previous round and the round key K;, substituting the result as
the new right subblock R;. Such a structure makes the cipher invertible (if de-
crypting we put the round keys in inverse order) and secure, provided the round
function f has specific properties. These properties (e.g., diffusion and confusion,
see [2]) make that during multiple iterations the plaintext bits mix strongly with
themselves and bits of the secret key, so they cannot be reconstructed from the
ciphertext without knowledge of the key. Usually, the two properties are real-
ized in the round function by two layers of transformations: the diffusion by
permutations and the confusion by key-dependent non-linear transformations.
Description of permutations is quite simple (it is a table of substitutions), while
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writing down an arbitrary non-linear transformation mapping n bits block (e.g.,
n = 32 for DES) on n bits block is very complicated.

The problem of non-linear maps was practically solved by the concept of
substitution boxes (S-boxes). For example, in DES (and earlier in Lucifer) the
confusion layer contains a number of parallel S-boxes. Each S-box transforms 6
bit inputs to 4 bit output. It is a table of 4 rows and 16 columns. The elements
of the table are the outputs (elements of the set {0,1,2,...,15}), equivalent to
4 bit blocks {0000, 0001, ...,1111}. The element of the table is chosen according
to the value of the input block: two bits (the first and the last) point the row
number while the outstanding four bits give the number of the column. In the
whole layer DES uses 8 different S-boxes.

The idea of application of S-boxes of proved to be very fruitful in constructing
cryptographic algorithms. For example, in new American encryption standard
AES [3] 16 x 16 S-boxes were applied. The Russian encryption standard GOST
[4] also uses a layer of S-boxes, but with content left to the users’ invention.
S-boxes are used not only in block ciphers but also in certain stream ciphers [5]
and hash algorithms.

In the cryptographic practice there is no mathematically precise theory of the
S-boxes design. However, there are some intuitive rules and conditions imposed
on the S-boxes. Returning to the classical example of DES we can give some
properties of all its eight S-boxes:

— No S-box is a linear of affine function of its input (they are non-linear func-
tions)

— Every row in any S-box is a permutation (it contains equal number of zeros
and ones)

— Changing one bit of input we change at least two bits of the output of S-box
(the avalanche property)

— If one input bit is fixed, an S-box minimizes the difference of zeros and ones
on the output.

The particular properties of the S-boxes presented above resulted in more
general properties of the whole DES cipher: its (maximally possible) resistance
to the linear [6] and differential [7] cryptanalysis. This result became a foundation
of a practical method of constructing S-boxes: first one should generate the S-
box putting its contents at random and then test its statistical properties (as
a binary map) to obtain the maximal resistance against the two attacks. The
assumed dimension of the S-box and some prior constraints on the S-boxes must
be carefully discussed in the context of a cryptographic algorithm the S-box is
to be installed. The higher dimension of the S-box, its statistical analysis more
complicated both for the algorithm designer and a hostile cryptanalyst.

At present the methods of S-boxes design are based on two parallel method-
ologies. The first one uses mainly mathematical theories and statistical investi-
gations, while the other is additionally supported by practitioners experience To
find a link between the both methodologies we propose the application of the
neural networks learning methodology in the S-box design procedure.
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2 Neural Networks

Neural networks are a form of multiprocessor matrices with simple processing
elements, simple scalar messages and adaptive interaction between elements. The
working element of the network is neuron. Its mathematical model is presented
at Fig. 1.
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Fig. 1. The mathematical model of neuron

The weighted sum of the inputs z is calculated to compose the activation of
the neuron net, (also called the post-synaptic potential). The activation signal is
passed through an activation (or transfer) function f to generate the output of
the neuron. Eq. (2) shows two examples of activation function: the step function
(discrete unipolar) f, and sigmoid (continuous unipolar) f, ones.

1, zn: Tiw; > P 1
folw)={ it  folw) = m )
O,Zjlxiwi<p 1+6Xp{04(zxiwi>}

1= i=1

The training of a neuron or a neural network can be performed with a number
of methods. One of them is learning according to the back-propagated delta rule
with supervision. The aim of the training is minimizing the sum squared error
between the desired output and the actual output.
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Fig. 2. The neural network training process

Fig. 2 drafts a schedule of training a neural network with m—bit inputs and
m—Dbit outputs. At the figure, Z, 7 is the training set (a set of n vector inputs
and desired outputs) and 7 is the number of its element, y is the actual output,
d; (i) is a ith cycle error of the jth coordinate, wj is the weight of jth input, =
is the input vector, 7 is the learning rate and E is the sum squared error. More
details about neural networks can be found in the literature (see, e.g. [9]).
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3 S-Boxes Design

S-boxes are critical security elements of the Feistel-type ciphers (see [10]) and
other cascade algorithms. Well-designed S-box is a strongly non-linear Boolean
(vector) map with the avalanche property. In the literature one can find some
practical methods of the S-box design [11], [12], but they are rather specific than
universal. Among others, one of the most promising seems to be application of
Boolean bent-functions (see, e.g., [13], [14]).

The Boolean functions is defined as:

f : (Zg)n — 227 Z2 = GF(Q) (3)

To be the bent-function, the Boolean function must additionally be non-linear
and balanced (it should output the equal number of zeros and ones when its
argument goes over the whole range). More precisely, a Boolean function is the
bent-function (or perfectly nonlinear) if the function f(x)® f(x @ a) is balanced
for every a € (Z2)" such that 1 < hwt(a) < n.

The balance of a Boolean function is a fundamental property from the cryp-
tography point of view (see [15]). In the language of Hamming measures the
function f is balanced if hwt(f) = 2"~!. The Hamming measure of a binary
string is the number of ones in this string. For the Boolean function f, its Ham-
ming measure is the number of ones in its truth table. The Hamming distance of
two Boolean functions f and g is defined as d(f, g) = hwt(f®g) = f(z)Dg(x)

x

where the summation is over the whole argument’s range.

4 Neural Networks and the Bent-Functions

As we remarked, cryptographically secure S-boxes must satisfy certain condi-
tions. Thy critical property is the balance of outputs. This means in fact, that
the S-box can be considered as a black box which transforms any input vector
into a balanced vector in a non-predictable way (what translates in practice as
non-linear). Now we will show that such an security element can be realized by
specific neural networks.

To solve the construction problem we start from the 2 x 2 S-box (two bits
input and two bits output of a Boolean function) We expect, that the S-box
produces a balanced output for an arbitrary input. The sample truth table in
such a case can be represented as:
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The Hamming measure of this table is 2, by definition of the measure. As it is
seen from the table, the output of the vector-valued Boolean function is with
such a truth table would be balanced.

To realize the balanced Boolean function we apply certain two-layers neural
network. First we start from one block of the network. The first layer of the
block is a pair of neurons with the sigmoid activation functions fs and the other
is a single neuron with step activation function f, (see Fig. 3).
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1 for fs(xiwi) Z 0
Fig. 3. Neural network for the one-output bent-function

Combining two such blocks (Fig.4) and training each of them with different
training set we obtain the network which outputs the balanced binary vector
irrespective of the values of the input binary data.

Fig. 4. Neural network for two-outputs bent-function

Now we can take the neural blocks presented at Figs. 3, 4 and combine them
into larger structures realizing certain functions. As a simple example we built a
network of 189 neurons (Fig.3) to obtain a selector choosing elements from S-box
of DES. Compiled with a standard neural network it gave neural representation
of the S-box. Certainly, such a network should be optimized to reduce number
of "neural cells”. This will be the subject of future research.

The balance and avalanche property are fundamental for S-boxes, but they
do not suffice their security. The other important property of Boolean functions
and S-boxes is the correlation resistance. This property generalizes the balance
property. We say that the function f of n arguments has the correlation resis-
tance of order m (1 < m < n) if the output f(z) is statistically independent of
any m chosen elements of z. In the language of information (see [15]) we can
write this as

H(f(z)) — H(f(x)|z1,x2,...,2;) = 0. 4)

Testing the property (4) can be additional, except of the balance property, easy
to implement training condition of the neural network modelling an S-box. Let us
remark the training procedure could be performed without exact knowledge of the
modelled function, only on the basis of very general requirements lied on it.
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Summary

In the paper we presented an idea of application of neural networks for constructing
S-boxes, the critical security elements of block ciphers and other private key cryp-
tographic algorithms. This element is most difficult to realize by a neural network.
The others elements of block ciphers like permutations and linear substitutions are
much easier. Thus, realization of the whole algorithm is only a technical problem.
The other potentially fruitful possibility of application of neural networks in cryp-
tology is testing cryptographic algorithms. This problem along with improvement
of the approach presented in this paper would be the subject of our future research.
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