13th International Conference on Surfaces, Coatings and Nanostructured Materials

11-14 September 2018

ABSTRACTS BOOK

Venue: Gdansk University of Technology, Poland

Editors: Professor Jeff De Hosson (University of Groningen, Netherlands); Professor Robert Bogdanowicz (Gdansk University of Technology, Poland)
graphene-like films. The C-C bond energy in HOPG is 3.7 eV and it was recommended to start deposition below this energy- [1]. Here we reported on the deposition of amorphous carbon/ graphene-like films by application of PLD technology. The experiments were performed in a standard on-axis PLD configuration. The third harmonic of a Nd:YAG laser (λ = 355 nm, τ = 18 ns FWHM, and a repetition rate of 10 Hz) was used for ablation of a microcrystalline graphite target. The substrate’s temperature was 700 °C and vacuum at a pressure of 1×10⁻³ Pa was used in the deposition chamber. The substrates were (001) silicon (Si) covered by a 320 – 420 nm SiO₂. The deposition time was varied between experiments. The films have a thickness between 0.5 and 135 nm and are characterized by XRD, XPS, TEM, and Raman spectroscopic measurements. We established the formation of nanoscale defected graphene on top of a predominantly amorphous carbon films with 1 -3 nm thickness. Some initial results from conductivity measurements will be presented.

NANO-106

CORRELATION BETWEEN SERS IMAGE VERSUS AFM IMAGE OF SILVER SURFACES OBTAINED BY THE ELECTROLESS TECHNIQUE

A. Quiroz1,2, R. Sato, E. Massoni1, R. Sánchez1, G. Bañuelos2, E. Matta2, N. Sánchez2

1Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Apartado Postal 1761, Lima 32, Perú.
2Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Cto. Exterior, Cd. Universitaria, Ciudad de México, CDMX, México.

This research has studied both the roughness of the glass used as a support for the film, as well as the roughness of the silver film deposited on palladium seeds sown by the Electroless technique [1]. The glasses used as film supports were treated with 100% nitric acid (HNO₃) and 2M potassium hydroxide (KOH). These treatments were used to reduce the concentrations of sodium and superficial carbon [2], as well as to increase the concomitant surface area of the glass [3]. The roughness measurements of the glass treated with HNO₃ did not show significant variation resulting in a mean square roughness (RMS) between 0.7 nm and 0.9 nm. Unlike glasses treated with KOH, which increased the RMS between 1.2 nm and 2 nm. The metal surfaces were obtained for 56mM silver deposits at exposure times 10, 15 and 20 minutes, evaluating the SERS response of each of the substrates with rhodamine B samples: 10-6 M. The results of correlating the Raman image with the AFM image gave the maximum SERS intensification of 12668 counts (v: 1646.58 cm⁻¹) in a region with a roughness of 30 nm and a film thickness of 117 nm. Detection limits of 10-9 M for rhodamine B and 1 ppm for samples of arsenic pentoxide (v: 820 cm⁻¹) were reached.

NANO-107

Magnetic-field-induced synthesis of bimetallic wire-like nanostructures

M. Krajewski1, M. Tokarczyk2, G. Kowalski2, A. Witecka1

1Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Pawinskiego 5B, 02-106, Poland.
2University of Warsaw, Faculty of Physics, Warsaw, Pasteura 5, 02-093, Poland.
For ages, the magnetic field has been recognized as either an intrinsic material property or a parameter which describes the magnetic interactions between materials. Recently, it has been noticed that the magnetic field can be also treated as a reaction parameter, similar to conventional reaction conditions i.e. temperature, pressure, time, and chemical additives [1]. In general, this kind of processes are called as a magnetic-field-induced synthesis and are commonly applied in order to produce various magnetic wire-like nanostructures. So far, most of the magnetic-field-induced process have been focused on the preparation of single metal nanowires like: iron nanowires [2], cobalt nanowires [3] or nickel nanowires [4]. Little attention has been paid on the manufacturing of bimetallic wire-like structures. In fact, this is caused by the synthesis of such materials is more complicated than the simple metallic structures. Nevertheless, this work presents a new concept of the magnetic-field-induced formation of bimetallic Fe-M nanowires (where M = Ni or Co). It describes their manufacturing procedures as well as their primary characterization results, including: morphological, structural properties and chemical composition.

NANO-108(2)

Tuning the structure of ultrathin iron oxide islands on Ru(0001) by UHV annealing

N. Michalak1, Z. Miłosz1, M. Prieto2, F. Genuzio2,3, Th. Schmidt2, M. Lewandowski1,*

1NanoBioMedical Centre, Adam Mickiewicz University, Poznań, Poland.
2Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany.
3Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Trieste, Italy.

Ultrathin iron oxide (FeO) films grown on Pt(111) were shown to exhibit unique electronic [1], magnetic [1,2] and catalytic [3] properties not observed for bulk iron oxides. Special attention has also been paid to FeO islands which exhibit superior catalytic activity in CO oxidation reaction [4]. We studied ultrathin FeO islands epitaxially grown on another noble metal substrate – Ru(0001) – by room temperature iron deposition and post-oxidation in molecular oxygen. Scanning tunneling microscopy (STM), low energy electron microscopy (LEEM), local low energy electron diffraction (micro-LEED) and x-ray photoelectron spectroscopy (XPS) results revealed that such preparation procedure leads to the formation of well-dispersed and well-ordered FeO crystallites the size of which could be tuned by UHV annealing. Scanning tunneling spectroscopy (STS) dI/dV mapping experiments indicated the presence of potentially catalytically-active coordinatively unsaturated ferrous sites (CUS) [4] at the perimeter of the FeO islands and within the UHV annealed islands, which makes FeO(111)/Ru(0001) an interesting model for material catalytic studies.

This work was financially supported by the National Science Centre of Poland (Preludium 2016/21/N/ST4/00302 project) and the Foundation for Polish Science (First TEAM/2016-2/14 project co-financed by the European Union under the European Regional Development Fund). The authors thank the Helmholtz-Zentrum-Berlin for the allocation of a synchrotron radiation beamtime.