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Classical and Quantized Affine Models of Structured Media
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Abstract. Having in view some applications in nanophysics, in particular in nanophysics of materi-
als, we develop new dynamical models of structured bodies with affine internal degrees of freedom.
In particular, we construct some models where not only kinematics but also dynamics of systems of
affine bodies is affinely invariant. Quantization schemes are developed. This is necessary in the range
of physical phenomena we are interested in.
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1. Introduction

The idea of microstructure is a rather old one and goes back to brothers Cosserat
who formulated the theory of continuum consisting of infinitesimal gyroscopes [1].
Eringen modified such a model by introducing homogeneous deformations as addi-
tional microstructural modes [2]. These theories were rather phenomenological and
often motivated by some kind of mathematical (more precisely, differential-geometric)
aesthetics. There was also mechanical motivation-based on theory of granular media
and continuous limit of the dynamics of molecular crystals.

Recently the interest in mechanics of structured media becomes more and more
intensive in connection with nano-structures, various supramolecular structures, and
defect theory. There are also some special problems like the dynamics of suspen-
sions, gas bubbles in fluids, and some very peculiar models like kinetic media [3–7].
In all these problems, in defect theory and in dynamics of fullerens, affine model of
structural elements is well-motivated both from the physical and geometrical point
of view. There are some interesting problems, completely new ones in comparison
with traditional phenomenological mechanics of structured continua. First of all, in
dynamics of strongly interacting systems of objects in nano-scale, on the classical
level, the traditional scheme of constrained motion based on the d’Alembert princi-
ple does not seem reliable any longer. Instead, one should base the dynamics on some
effective collective models motivated by appropriate symmetry demands. We believe,
there are physical reasons to expect that the dynamics of internal and collective
affine modes should be also affinely invariant. In traditional theories derived from the
d’Alembert principle, the dynamics of affine modes is invariant only under the
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Euclidean group. Below we suggest some dynamical models of a system of bodies
with affine degrees of freedom, with Hamiltonians invariant under the affine group.
One can smoothly include also some terms invariant only under the Euclidean group,
there is however a natural temptation to consider them as a merely perturbation to
the background affine dynamics. Some arguments from the solid state physics, like
the concept of effective mass support the idea that in complicated problems of con-
densed matter theory the “true” metric tensor is not necessarily a fundamental geo-
metric background of equations of motion, Lagrangians and Hamiltonians (having
in mind microphysical models, we assume Hamiltonian, variational dynamical mod-
els, without dissipation on the fundamental level).

There is also another important novelty in comparison with traditional macroscopic
models. Namely, in the nano-scale the quantum background of the dynamics must
be seriously taken into account. Because of this we developed some quantization
scheme. But at the same time one uses the concepts of macroscopic origin. like, e.g.,
deformation tensors, deformation invariants, etc. It seems rather amazing that one
formulates questions like: what is a complex quantum probability amplitude for the
deformation tensors and deformation invariants to be found in some fixed range?
What are the corresponding quantum transition probabilities? There are even more
serious problems. Namely, in this very peculiar range of phenomena one has to do
with a very complicated convolution of classical and quantum problems. In this,
rather unexpected way, the old problems from the realm of foundations of quanta [8],
like decoherence, wave functions reduction, possibility of non-linear quantum descrip-
tion, etc. revive as ones motivated by quite practical, structural physics. One must
honestly say, there is more secrets than well-established facts and answers here.

2. Affine Bodies and their Systems. General Concepts and Basic Quantities

There is no place here for the very detailed geometric description. A rather exhaus-
tive treatment of the differential-geometric background of our ideas was presented in
some earlier papers (cf. [9, 10] and references there) and a more detailed treatment will
soon appear. Here we base mainly on the analytic description where the physical and
material spaces are simply identified with R

n by some choice of orthonormal Cartesian
coordinates. As far as possible we work in a non-specified dimension n and only at
some final stages we specify n to its physical value 3 or to 2 and 1, which obviously
are also physically interpretable. This “false” generality is mathematically convenient
and better reveals some structural features of the model, hidden behind the particular
value n=3. Moreover, it suggests even some analytical solving procedures.

So, the body we consider consists of elements performing the translational motion
in the physical space R

n (physically n= 3,2,1) and also some internal motion. The
latter is simply a relative motion of microconstituents; the translational R

n-degrees
of freedom are attributed to the centres of mass. But of course one can also admit
situations when additional degrees of freedom are essentially internal ones, like, e.g.,
in spin media. And in any case the distinction between internal and relative motion
may be (although need not be) historical, based on some conventions or on our lab-
oratory abilities. From now on we do not discuss this problem and for brevity all
non-translational degrees of freedom will be referred to as internal ones.
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In mechanics of structureless continua the configuration space may be identified
with Diff(n,R), i.e., the group of (sufficiently smooth) diffeomorphisms of R

n onto
itself. Let us remember, according to our analytical conventions both the physical
and material space are simply identified with R

n. Any diffeomorphism ϕ∈ Diff(n,R)
establishes an interrelation between Lagrangian (material) and Eulerian (physical,
current) coordinates, respectively ak and xi ,

xi =ϕi(. . . , ak, . . . ). (1)

In this way, the configuration space of continuous medium is identified with the
infinite-dimensional group Diff(n,R). In the Arnold description of incompressible
ideal fluid [11] this group is constrained to SDiff(n,R), i.e., the subgroup of
volume-preserving diffeomorphisms. Euler equations are interpreted in terms of right-
invariant geodetic Hamiltonian systems on this group. This approach turned out to
be at least heuristically effective in hydrodynamical problems.

Of course, Diff(n,R) would be completely non-effective and just meaningless as
the configuration space of internal degrees of freedom of structured bodies. Neverthe-
less, there exist both physical and analytical reasons to concentrate on models with
degrees of freedom based on appropriately chosen groups and their homogeneous
spaces. From the physical and computational point of view it is clear that one must
use some geometrically well-motivated finite-dimensional subgroups G⊂ Diff(n,R),
just Lie groups acting in R

n. The most traditional pattern is G = SO(n,R), i.e.,
rigid body model of internal degrees of freedom. It is not excluded, especially
in quantized theory that the non-connected configuration space G= O(n,R) with
mirror-reflected configurations may be also acceptable. Other natural model with
more degrees of freedom is that of affinely-rigid, i.e., homogeneously deformable,
body; G= GL+(n,R) or perhaps, as above, the total non-connected linear group G=
GL(n,R), with reflections admitted. One can also think about L(n,R), the algebra
of all n× n matrices as an admissible configuration space. Incidentally, there is a
subtle difference between admitting mirror-reflected configurations of metrically- and
affinely-rigid bodies. Namely, GL+(n,R) and its mirror-reflected coset (not a sub-
group!) GL−(n,R) in GL(n,R) infinitesimally approach each other in L(n,R), being
separated only by the (n2 −1)-dimensional subset of singular matrices in L(n,R). On
the other hand, SO(n,R) and the set of improper rotations O(n,R)\ SO(n,R) (the
complement of SO(n,R) in O(n,R)) are so-to-speak finitely separated in L(n,R).

There are also natural models placed between gyroscopic and affine degrees
of freedom; one deals then with a constrained affinely-rigid body. Let us men-
tion incompressible (isochoric) body when G= SL(n,R), the special linear group.
Just as previously, one can also think about admitting mirror reflections. Then
G= UL(n,R)= {ϕ ∈GL(n,R) : |detϕ|=1}, the unimodular group. It is a union of
SL(n,R) and of its coset in GL(n,R) consisting of matrices with the minus-one-
determinant. Obviously, just as in the case of metrically-rigid body, the manifolds of
proper and improper (orientation-changing) isochoric mappings are finitely-separated
in L(n,R). In a sense an opposite model (less realistic) is that of shape-preserving
affinely-rigid body when, roughly speaking, internal configurations are built of dila-
tations and rotations, G=R

+ SO(n,R); R
+ denoting the multiplicative group of pos-

itive real numbers. Again, admitting orientation-preserving mappings we have G=
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R
+ O(n,R). And here also the two connected components approach each other infi-

nitely close. The closure of G contains the null matrix, therefore, it is not a subset of
GL(n,R).

All these subgroups of Diff(n,R) are contained in GL(n,R); they consist of linear
mappings. These mappings describe configurations in such a way that the material
point with Lagrangian coordinates ak occupies the spatial position with Euler coor-
dinates yi ,

yi =xi +ϕikak, (2)

where xi are spatial coordinates of the centre of mass. The very geometry suggests
also some groups of non-affine transformations, e.g., the projective group GPr(n,R),
conformal group Co(n,R). One can realize physical situations where the relevant col-
lective modes of internal motion are described just by these groups. It is also non-
excluded that the complex group GL(n,C) or its unitary subgroup U(n)⊂ GL(n,C)
[12] may be useful. In any case, it happens quite often in physics that the complex-
ification leads to quite amazing, unexpected new results.

Just as in our earlier papers we concentrate here on the affine model, when G=
GL(n,R). Incidentally, the projective model may be in some sense reduced to it,
because GPr(n,R) is isomorphic with SL(n+ 1,R). In any case, affine modes seem
to be dominant for small structure entities like molecules, microdefects, some supra-
molecular clusters, fullerens, etc.

The configuration space of a single structural elements is identified with

Q=R
n×G=Qtr ×Qint (3)

in particular, for elements with affine modes of deformation:

Q=R
n×GL(n,R). (4)

Usually, especially in classical (non-quantized) problems, GL(n,R) is replaced by
GL+(n,R). The labels “tr” and “int” refer obviously to translational and internal
degrees of freedom. The total body (medium) consists of N elements. Its configura-
tion space is obviously given by the Cartesian product

QN =QN
tr ×QN

int �R
nN ×GN ;

in our treatment GL(n,R) or GL+(n,R) substituted for G. Therefore, the configura-
tion is an array:

q= (x1, . . . , xN ;ϕ1, . . . , ϕN) , (5)

where xA∈R
n, ϕA∈GL(n,R), and A=1,N .

For a single structure element the summation of usual kinetic energies of its con-
stituents gives in virtue of (2), the usual d’Alembert form

T d′A =T d′A
tr +T d′A

int =M

2
Tr

(
vvT

)+ 1
2

Tr
(
ξJ ξT

)
, (6)

where v∈R
n, ξ ∈ L(n,R) denote, respectively, the translational and internal velocities:

vi = dxi

dt
, ξ ik = dϕik

dt
(7)
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and M, J are constant inertial characteristics. More precisely, M is the total mass
of the element and the symmetric positively definite matrix J is its modified inertial
tensor, i.e., second-order moment of the mass distribution with respect to co-moving
(Lagrange) coordinates,

M=
∑

p

µp, J kl =
∑

p

µpa
k
pa

l
p. (8)

Summation is performed over constituents (“atoms”) of the element (“molecule”); µp
is the mass of the pth constituent. Sometimes it is convenient to use the symbol of
integration with respect to the mass distribution measure µ:

J kl =
∫
akaldµ(a). (9)

Remark . The kinetic energy (6) is spatially isotropic, i.e., invariant under the
transformations LA below (14) with A restricted to the orthogonal group O(n,R)
(spatial rotations). So are its both terms separately. The material rotations RA in
(14) preserve Ttr trivially, but in general Tint is non-invariant under the right-acting
O(n,R). However, it is invariant under the right actions of O(n, J ), the subgroup of
GL(n,R) preserving J . This reduces to the O(n,R)-invariance, when J is isotropic,
i.e., J = I Idn; I is a positive constant of internal inertia and Idn is the n×n identity
matrix. Then

T d′A
int = I

2
Tr

(
ξξT

)
. (10)

The total kinetic energy of the body is given by

T d′A =
N∑

A=1

T d′A
A = 1

2

N∑

A=1

MATr
(
vAv

T
A

)+ 1
2

N∑

A=1

Tr
(
ξAJAξ

T
A

)
. (11)

Assuming that the body consists of identical structure elements we have that MA=M,
JA=J , A=1,N .

Let us again concentrate on a single element. Its Green and Cauchy deformation
tensors are, respectively, denoted as

G[ϕ]=ϕT ϕ=G[ϕ]T , C[ϕ]=ϕ−1T ϕ−1 =C[ϕ]T , (12)

similarly, for their contravariant inverses we write

G̃[ϕ]=ϕ−1ϕ−1T , C̃[ϕ]=ϕϕT . (13)

Spatial and material transformations are, respectively, given by left and right regular
translations:

ϕ �→LA(ϕ)=Aϕ, ϕ �→RA(ϕ)=ϕA (14)

for any fixed A∈ GL(n,R). When A∈ O(n,R), then obviously

G[Aϕ]=G[ϕ], C[ϕA]=C[ϕ] (15)
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and for the general A∈ GL(n,R)

G[ϕA]=ATG[ϕ]A, C[Aϕ]=A−1T C[ϕ]A−1. (16)

There is no concise formula for G[Aϕ], C[ϕA] if A is not orthogonal (does not
belong to O(n,R)).

Deformation invariants are scalar functions f : GL (n,R)→R invariant under (14)
for orthogonal translations

f (AϕB)=f (ϕ) (17)

for any A,B ∈ O(n,R). There are n basic invariants through which all other ones
may be expressed. Various choices are possible, e.g., the following frequently used

Ka[ϕ]=Tr
(
G[ϕ]a

)=Tr
(
C[ϕ]−a

)
, a=1, n, (18)

eigenvalues λa[ϕ] of G[ϕ],

det (G[ϕ]−λ[ϕ]In)=0, (19)

or coefficients Ip[ϕ] of the eigenequation

det (G[ϕ]−λIn)=
n∑

k=0

(−1)kIn−k[ϕ]λk; (20)

obviously, I0 = 1 is standard. Geometrically speaking, deformation invariants are
functions on the manifold of double cosets

Inv :=O(n,R)\GL(n,R)/O(n,R).

Deformation invariants are used when constructing potential energy models for a sin-
gle affine body. When dealing with the system of such bodies we need some basic
scalars assigned to pairs of internal configurations. In analogy to Green and Cauchy
deformation tensors for any pair ψ,ϕ ∈ GL(n,R) we define the quantities

G[ψ,ϕ] :=ψT ϕ, C[ψ,ϕ] :=ϕ−1T ψ−1. (21)

Obviously,

G[ψ,ψ ]=G[ψ ], C[ψ,ψ ]=C[ψ ],

i.e., the above mutual deformation tensors reduce then to the usual ones.
But one can also define another mutual quantities, namely,

�[ψ,ϕ] :=ψ−1ϕ, �[ψ,ϕ] :=ϕψ−1. (22)

For orthogonal matrices they reduce to the previous ones,

ψ,ϕ ∈O(n,R)⇒�[ψ,ϕ]=G[ψ,ϕ], �[ψ,ϕ]=C[ψ,ϕ]. (23)

Obviously, �[ψ,ϕ], �[ψ,ϕ] are exactly group-theoretical counterparts of the displace-
ment vector in translational degrees of freedom. Indeed, interpreting R

n as an Abe-
lian group under addition of vectors, we immediately notice that the prescription (22)
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in the non-Abelian multiplicative matrix group GL(n,R) has exactly the same group
meaning as u=y−w in R

n.
It is clear that for any A∈ O(n,R)

G[Aψ,Aϕ]=G[ψ,ϕ], C[ψA,ϕA]=C[ψ,ϕ], (24)

i.e., they are, respectively, invariant under spatial and material isometries. For the
general A∈ GL(n,R) we have

G[ψA,ϕA]=ATG[ψ,ϕ]A, C[Aψ,Aϕ]=A−1T C[ψ,ϕ]A−1. (25)

And just as previously there is no concise expression for G[Aψ,Aϕ], C[ψA,ϕA] if A
is non-orthogonal.

Transformation rules for �, � have another form. Namely, for any A∈ GL(n,R)
we have

�[Aψ,Aϕ]=�[ψ,ϕ], �[Aψ,Aϕ]=A�[ψ,ϕ]A−1, (26)

�[ψA,ϕA]=A−1�[ψ,ϕ]A, �[ψA,ϕA]=�[ψ,ϕ]. (27)

Therefore, � is invariant under spatial affine transformations and suffers the inverse
adjoint rule under material affine transformations. And conversely, � transforms
according to the adjoint rule under spatial affine mappings and is affinely invariant
under material transformations.

The quantities G[ψ,ϕ], C[ψ,ϕ], �[ψ,ϕ], �[ψ,ϕ], give rise to scalars which may be
used as arguments of the potential energy terms. Typical scalars of this type are, in
analogy to (18), given by

Ka[ψ,ϕ]=Tr
(
G[ψ,ϕ]a

)=Tr
(
C[ψ,ϕ]−a

)
, a=1, n. (28)

Just as in the case of deformation invariants, these scalars are invariant under spa-
tial and materia rotations (left and right regular translations of ϕ, ψ by orthogonal
matrices):

Ka[AψB,AϕB]=Ka[ψ,ϕ], A,B ∈O(n,R). (29)

In analogy to (19), (20) one can also use solutions of the eigenequation for G[ψ,ϕ]
(or C[ψ,ϕ]), or coefficients in the eigenequation as basic invariants. Another kind of
invariants is built of �,�-objects, e.g.,

Ma[ψ,ϕ]=Tr
(
�[ψ,ϕ]a

)=Tr
(
�[ψ,ϕ]a

)
(30)

like in (18), or, according to the λa-, Ia-schemes like in (19), (20). These objects are
invariant under all affine spatial and material transformations, i.e.,

Ma[AψB,AϕB]=Ma[ψ,ϕ], A,B ∈O(n,R) (31)

for any A,B ∈ GL(n,R). These scalars measures of the “distance” between internal
configurations are affinely invariant. Unlike this, the measures Ka are only orthogo-
nally invariant, so they are usual Euclidean distances.
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Let us remind that in many problems it is convenient to use deformation mea-
sures which vanish in the non-deformed state, e.g., Lagrange and Euler deformation
tensors:

E[ϕ]= 1
2
(G[ϕ]− I ) , e[ϕ]= 1

2
(I −C[ϕ]) . (32)

By analogy, it may be convenient to replace the mutual tensors G[ψ,ϕ], C[ψ,ϕ],
�[ψ,ϕ], �[ψ,ϕ] by

E[ψ,ϕ]= 1
2
(G[ϕ]− I ) , e[ψ,ϕ]= 1

2
(I −C[ϕ]) , (33)

γ [ψ,ϕ]=�[ψ,ϕ]− I, σ [ψ,ϕ]=�[ψ,ϕ]− I. (34)

Another possibility is to use the exponential representation of matrices G, C, �, �.
It may be also convenient to use invariants built of them according to the schemes
like (18), (30) or (19), (20), etc. Obviously, such invariants are functionally dependent
on the previous ones.

Affine velocity, i.e., Eringen’s “gyration” [2], respectively, in the spatial and
co-moving representations is given by

	= dϕ
dt
ϕ−1, 	̂=ϕ−1 dϕ

dt
. (35)

Spatial and material transformations (14) act on the above quantities as follows:

LA :	 �→A	A−1, 	̂ �→ 	̂, (36)

RA :	 �→	, 	̂ �→A−1	̂A. (37)

When the motion is metrically rigid, i.e., permanently ϕ ∈ O(n,R), then

	=−	T , 	̂=−	̂T (38)

and these skew-symmetric objets reduce to the usual angular velocity, respectively, in
the spatial and co-moving representations. In some formulas it is convenient to use
also the co-moving representation of translational velocity. It is given by

v̂=ϕ−1v. (39)

Gyroscopic constraints may be described in anholonomic terms simply by stating
that 	 is skew-symmetric (and so is 	̂ then),

	+	T =0. (40)

By analogy, constraints of the purely deformative rotationless motion may be defined
by the demand of permanently symmetric 	,

	−	T =0. (41)

Let us observe that the materially rotationless constraints

	̂− 	̂T =0 (42)

are non-equivalent to the above spatially rotationless ones.
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There is an interesting novelty now. Namely, rotationless constraints are essentially
non-holonomic. The point is that the subspace of symmetric matrices is not a com-
mutator Lie subalgebra.

Canonical momenta, i.e., dual objects of velocities (linear functions of them), p,
π are elements of R

n, L(n,R), respectively, and their pairing with velocities is given
by

〈p, v〉=pT v=Tr
(
pvT

)
, 〈π, ξ〉=Tr (πξ) . (43)

The co-moving representation of p is given by

p̂=ϕT p (44)

and obviously, with this convention

〈p, v〉=pT v= p̂T v̂=〈p̂, v̂〉. (45)

It is convenient to introduce non-holonomic canonical momenta conjugate to 	,
	̂, namely,

� :=ϕπ, �̂ :=πϕ. (46)

Obviously,

〈�,	〉=Tr (�	)=Tr
(
�̂	̂

)=〈�̂, 	̂〉. (47)

Transformation rules for �, �̂ are identical with (36), (37):

LA :� �→A�A−1, �̂ �→ �̂, (48)

RA :� �→�, �̂ �→A−1�̂A. (49)

The components of �, �̂ are, respectively, Hamiltonian generators of spatial and
material affine transformations (14). Their doubled skew-symmetric parts

S=�−�T =−S, V = �̂− �̂T =−V (50)

are, respectively, Hamiltonian generators of spatial and material rotations of internal
degrees of freedom.

The relationship between Hamiltonian quantities like p, p̂, �, �̂ and kinemati-
cal ones like v, v̂, 	, 	̂ may be established only on the basis of some particular
model, when Lagrangian L is fixed. In potential models L=T −V with the potential
V depending only on the configuration (x, ϕ)∈R

n× GL(n,R), Legendre transforma-
tion has the following form:

pi = ∂L

∂vi
= ∂T

∂vi
, πAi = ∂L

∂ξ iA
= ∂T

∂ξ iA
. (51)

Assuming the d’Alembert model of the kinetic energy (6) we obtain that

p=Mv, π =JξT (52)

and the corresponding expression for the kinetic Hamiltonian

T =Ttr +Tint = 1
2M

Tr
(
ppT

)+ 1
2

Tr
(
πT J−1π

)
. (53)
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For Hamiltonian systems H = T + V (V denoting the potential energy) equations
of motion may be effectively analyzed in terms of Poisson brackets and canonical
Hamilton equations,

dF
dt

={F,H } , (54)

where F runs over some maximal system of functionally independent phase-space
functions.

3. Dynamical Models. Affine Invariance Problems. Realistic Questions, Academic
Questions, and Pure Fantasy

For the system of affine bodies Lagrangian has the form:

L=T −V, (55)

where the kinetic energy is obtained by summation of individual kinetic energies like
in (11),

T =
N∑

A=1

TA=Ttr +Tint =
N∑

A=1

(Ttr)A+
N∑

A=1

(Tint)A . (56)

The potential energy in typical situations consists of two main terms, the one- and
two-body potentials,

V =V (1)+V (2). (57)

It is known that in realistic problems it is usually less then 10% of energy that could
be assigned to three-body and higher multibody interactions. V (1) is the sum of terms
depending on individual elements,

V (1) (. . . ;xA,ϕA; . . . )=
N∑

B=1

V (1)B (xB, ϕB) . (58)

The over-simplified models where V (1)B splits into the sum of translational and inter-
nal parts,

V (1)B (xB, ϕB)=V (1)tr B (xB)+V (1)int B (ϕB) , (59)

are not very realistic, nevertheless, they provide some so-to-speak zeroth-order
approximation. When the elements are identical, all V (1)B have the same functional
form.

The binary term has the usual form,

V (2) (. . . ;xA,ϕA; . . . )= 1
2

N∑

K,L=1

V (2)KL (xK,ϕK;xL,ϕL) . (60)
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And again the simplest, although rather academic models are those with the sepa-
rated dependence of V (2) on translational and internal variables,

V (2)KL (xK,ϕK;xL,ϕL)=V (2)tr KL (xK, xL)+V (2)int KL (ϕK,ϕL) . (61)

Mutual interactions should be translationally invariant, i.e., V (2)KL depend on xK , xL
through −−→xKxL=xL−xK . Isotropy of the physical space implies that the radius-vectors
xL− xK enter V (2)KL only through their lengths ‖xL− xK‖. There is some more dis-
cussion concerning the dependence of V (2)KL on internal degrees of freedom. Isotropy
of the physical space implies that V (2)int KL should depend on ϕK , ϕL only through the
mutual tensors G[ϕK,ϕL], �[ϕK,ϕL], thus,

V (2)KL (xk, ϕk;xL,ϕL)=fKL (‖xL−xK‖ ,G [ϕK,ϕL] ,� [ϕK,ϕL]) (62)

and obviously for the body consisting of identical elements there is no dependence on
K, L; fKL=f for some fixed f . And if the dynamics is to be invariant also under
simultaneous material rotations, then at the same time, V (2)KL must depend on inter-
nal configurations only through C[ϕK,ϕL], �[ϕK,ϕL]. But this means that V (2)KL is
algebraically built of the mutual invariants, e.g., chosen as Ka[ϕK,ϕL], Ma[ϕK,ϕL],

V (2)KL (xK,ϕK;xL,ϕL)=fKL (‖xL−xK‖ ,K [ϕK,ϕL] ,M [ϕK,ϕL]) . (63)

In the last formula, K, M are abbreviations for the systems Ka, Ma, a=1, n.
In our model, geometry of degrees of freedom and kinematics is ruled by the

affine group. On the other hand, the dynamics is not invariant either under spa-
tial or material affine transformations (14). The spatial metric tensor and the iner-
tial moment J break the affine symmetry and restrict it to the Euclidean one in the
physical space and to O(n, J ) in the material space. What concerns potential energy
of mutual interactions (63) it is clear that the vector norm ‖xL − xK‖ and transpo-
sition-dependent invariants K [ϕK,ϕL] also restrict the spatial symmetry to O(n,R).
But it is well-known that particularly interesting models and successful analytical pro-
cedures appear when the group of dynamical symmetries (symmetries of Lagrangian)
coincides with the kinematical group, or at least, when it is as large a subgroup as
possible. The questions arise as to the formal possibility and physical usefulness of
affinely-invariant models. For a single affinely-rigid body such models are in a sense
possible [9, 10]. Their physical usefulness is not yet decided, although there are some
arguments supporting it. Namely, it is quite possible that in complex media with a
complicated net of internal interactions a single element is more sensitive to its mate-
rial surrounding than to the “true” metric tensor (produced, according to General
Relativity by the gravitational field as its “vacuum” non-excited state). The more so
such a mechanism works in defect theory. Let us also mention the concept of effec-
tive mass [13, 14] in crystals, where the kinetic energy of electrons is not based on
the “true” metric, but on the effective tensor produced by the material surroundings.
There are nice mathematical models of the kinetic energy of a single affine body with
the kinetic energy based on the Cauchy tensor used as a metric. There are also some
physical arguments supporting such a hypothesis [9, 10].

The material affine invariance may seem perhaps more natural because there exist
models of continua based on very rich material symmetry. As mentioned, this is
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Arnold description of the ideal incompressible fluid. It is based on infinite-dimen-
sional group of volume-preserving diffeomorphism. They act on the right, i.e., as
material transformations. In any case, finite-dimensional geodetic models of small
grains or suspensions with kinetic energies materially invariant under SL(n,R) may
be considered as on over-simplified, drastically discretized version of the Arnold
model.

Obviously, apparently the Euclidean invariance of the kinetic energy of single
elements and of mutual potential elements seems to be firmly established. But nev-
ertheless it may be a superficial illusion and affine invariance should be at least
admitted to consideration. When one deals with a highly condensed matter and with
very small structure elements, e.g., in the nanoscale, then the complicated structure
of interactions may result in quite unexpected results. Namely that some hypothet-
ic phenomenological models based only on some symmetry guiding hints may be so
realistic as (or even more realistic) than ones based on apparently careful structural
“derivation”. It is so because “derivation” in strongly interacting structured media
always neglects a lot of factors and the collective effective phenomena are better
described by phenomenological models derived on the basis of well-established invari-
ance assumptions. It is so, e.g., in such complicated structures like atomic nuclei. In
any case, symmetry principles are then rather reliable guiding hints.

For a single affine body non-trivial potentials of internal degrees of freedom are
never affinely invariant. Only constant functions on GL(n,R) may be so. The same
is true for one-particle external potentials of the system. As we have just seen, for
the purely mutual interactions, the binary potentials of internal degrees of freedom
admit affine invariants as arguments. As we shall see, at least formally, the same is
true for translational degrees of freedom. We shall go back to this problem later on
and concentrate now on the kinetic energy terms.

There exist at least academically interesting kinetic energies for single affine bod-
ies, and obviously, for their systems as well (because, unlike potentials, the kinetic
energy is additive).

Of course, the usual d’Alembert model (6) of Tint is isotropic in the physical space
and affinely invariant under material affine transformations. This is also explicitly
visualized by its another equivalent representations,

T is−af
tr =M

2
Tr

(
vvT

)=M

2
vT v=M

2
v̂T G [ϕ] v̂=M

2
Tr

(
v̂v̂T G [ϕ]

)
. (64)

And the same holds for any of the structural element, i.e., for any TA. Obviously, v,
v̂, G must be then replaced by the corresponding vA, v̂A, GA=G[ϕA].

The labels “tr”, “is”, “af” in (64) refer, respectively, to “translational part”,
“isometry invariant in the physical space” (thus, written on the left-hand-side: left-
invariant), and “affinely invariant in the material space of a single element” (thus,
written on the right-hand-side: right-invariant).

From the purely academic point of view one can also think about T af−is
tr , the

model affinely invariant in the physical space and isometry invariant in the material
space (respectively, left and right invariance in GL(n,R)). It will have the form:

T af−is
tr =M

2
v̂T v̂=M

2
Tr

(
v̂v̂T

)=M

2
vT C [ϕ]v=M

2
Tr

(
vvT C [ϕ]

)
. (65)

The Cauchy deformation tensor is now used as the “metric” of the physical space.
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Let us observe, there is no possibility to obtain translational kinetic energy which
would be affinely invariant in both the spatial and material sense, at least if we do
not try some extremely exotic things. The reason is that the affine group is non-sim-
ple in a very special way and does not admit doubly-invariant and non-degenerate
twice covariant tensor fields. Let us observe that the trick with the Cauchy tensor
substituted instead of the “usual” metric tensor may be as well repeated for the inter-
nal part of (6). This would lead to the following expressions:

T af−J
tr = 1

2
Tr

(
C [ϕ] ξJ ξT

)= 1
2

Tr
(
	̂J 	̂T

)
. (66)

Here the upper-case labels at Tint mean that it is invariant under all spatial affine
transformations and under the material group O(n, J )⊂ GL(n,R) of J -preserving
material transformations (“material isometries” when interpreting J as kind of the
“material metric tensor”). The expression (66) becomes T af−is

int , i.e., materially isotro-
pic in the usual sense when J is spherical, i.e., J =I Idn, where I is the scalar inertial
parameter and Idn is the unit n×n matrix. Then we have

T af−is
tr = I

2
Tr

(
	̂	̂T

)= I

2
Tr

(
C [ϕ] ξξT

)
. (67)

Let us observe that the spatially affine models (65), (66) are constant-coefficient
quadratic forms only when expressed in terms of non-holonomic velocities 	̂, there-
fore, the metric tensors underlying them are curved, essentially Riemannian.

One can wonder what would be a possibility symmetric to (66), i.e., affinely invari-
ant in the material sense. In this sense the natural modification of Tint in (6) would
be

T H−af
tr = 1

2
Tr

(
	H	T

)= 1
2

Tr
(
ξH [ϕ] ξT

)
, (68)

where H is a fixed positively definite matrix, and H [ϕ] is its following ϕ−1-transform:

H [ϕ]=ϕ−1Hϕ−1T . (69)

So, from the point of view of the usual d’Alembert theory H [ϕ] is a strange
ϕ-dependent although co-moving inertial tensor, whereas its spatial representation
is constant. In the usual d’Alembert affine dynamics the co-moving J is constant,
whereas its spatial representation J [ϕ] is configuration-dependent, thus, also time-
dependent:

J [ϕ]=ϕJϕT . (70)

The above affine models of Tint are very peculiar in the sense that the inertial
terms in (66), (68) are factorized into tensor products. (The factors additional to H ,
J are the physical and material metric tensors. They are apparently absent because
we use Cartesian coordinates which analytically reduce the metric tensors to identity
matrices.) The most general Tint invariant under spatial and material affine transfor-
mations are, respectively, given by

T l−af
int = 1

2
LBADC	̂AB	̂CD, (71)

T r−af
int = 1

2
Rj

i
l
k	

i
j	

k
l, (72)
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where L, R are constant and symmetric in their bi-indices (under exchanging mutu-
ally the first and second pairs of indices).

The only model of Tint invariant simultaneously under spatial and material affine
transformations (left and right regular translations in GL(n,R)) has the form:

T af−af
int = A

2
Tr

(
	2)+ B

2
(Tr	)2 = A

2
Tr

(
	̂2)+ B

2

(
Tr	̂

)2
, (73)

where A, B are inertial constants.
This affine–affine model of Tint is never positively-definite. One can show that this

“failure” is non-embarrassing, moreover, it may be just profitable [9, 10].
It was told above that the translational part Ttr is never simultaneously left (spa-

tial) and right (material) affinely invariant. The highest available symmetries of Ttr are
T is−af

tr and T af−is
tr (64), (65). This raises the question as to the internal counterparts

T is−af
int and T af−is

int . One can easily show they are given by

T is−af
int = I

2
Tr

(
	T	

)+T af−af
int , (74)

T af−is
int = I

2
Tr

(
	̂T 	̂

)+T af−af
int , (75)

where I is an additional inertial constant. In the special case of the metrically-rigid
(gyroscopic) motion, the first terms in (74), (75) coincide. In general this is not
the case. Therefore, if gyroscopic constraints are imposed (no deformations), (74)
and (75) coincide, and one obtains the spherical rigid body with the scalar inertial
momentum (I −A).

Unlike (73), expressions (74), (75) may be positively definite and they are so in
some open range of triples (I,A,B). And at the same time they continue to have the
main advantages and the general structure of (73), both on the level of theoretical
analysis and practical calculations.

Obviously, everything said above concerns directly a single affinely-deformable ele-
ment, nevertheless, just as in the d’Alembert model, applies also immediately to the
total system, because the modified kinetic energies are additive. One should only use
explicitly the label K referring to structural elements.

And now let us go back to the problem of potential energy. As mentioned, the
external one-particle potential V (1) cannot be affinely invariant (only constant func-
tions may be so). The formula (63) for the doubly isotropic binary potential V (2)KL
seems to suggest something similar for the dynamics of mutual interactions. How-
ever, things are not so simple and one can try to find some modifications towards
the affine invariance, just as it was done in the case of kinetic energy models. Some
at least formally admissible suggestion may be easily formulated.

Let us fix some pair of structural elements labeled by (K,L). Internal configura-
tions ϕK,ϕL∈ GL(n,R) give rise to the Cauchy tensors C[ϕK ], C[ϕL]. In our consid-
erations above we were faced with the idea of using C[ϕ] as a kind of spatial “metric
tensor” underlying affinely-invariant kinetic energies of single elements. Let us now
introduce the objects

C [ϕK,ϕL]= 1
2
(C [ϕK ]+C [ϕL]) .



Models of Structured Media 379

It is symmetric in the labels K, L and positively definite. This motivates the temp-
tation to use it as a “metric tensor” underlying some modified “distance” between xK
and xL, namely,

D [xK,ϕK;xL,ϕL]=
√
(xK −xL)T C [ϕK,ϕL] (xK −xL)

=
√

Tr
(
C [ϕK,ϕL] (xK −xL) (xK −xL)T

)
. (76)

Obviously, the transformation rule (16) implies that the above prescription is invari-
ant under the spatial action of GL(n,R):

D [AxK,AϕK;AxL,AϕL]=D [xK,ϕK;xL,ϕL] (77)

for any A∈ GL(n,R). This is a rather curious affinely-invariant “distance”. And now
we can modify (63) by introducing to it this new distance-like argument in addition
to the usual one:

‖xK −xL‖=
√
(xK −xL)T (xK −xL)=

√
Tr

(
(xK −xL) (xK −xL)T

)
.

So, finally, instead of (63) we have

V (2)KL (xK,ϕK;xL,ϕL)
=fKL (‖xK −xL‖ ,D [xK,ϕK;xL,ϕL] ,K [ϕK,ϕL] ,M [ϕK,ϕL]) , (78)

where in realistic situations all fKL coincide with some fixed f . It is seen that V (2)KL
depends on its configuration arguments through the system of four scalar quantities.
Two of them, namely, ‖xK −xL‖ and K [ϕK,ϕL] are invariants of the rotation group
O(n,R). The remaining two, D [xK,ϕK;xL,ϕL] and M [ϕK,ϕL], are invariant under
the total linear group GL(n,R). One can expect that the dependence of V (2) on the
latter two scalars is a highly symmetric, affine background of mutual interactions
between constituents of the body. Further on, this high-affine symmetry is broken
and reduced to the orthogonal one O(n,R) by the arguments ‖xK −xL‖, K [ϕK,ϕL].
This may happen in such a way that V (2) is a sum of some purely affine term depen-
dent only on D, M and on an appropriate symmetry-restricting metrical term built
of ‖ · ‖ and K.

It is a very interesting question whether the binary purely affine models

V (2)af
KL =fKL (D,M) (79)

may be realistic. The question was not yet touched seriously. Nevertheless, some limi-
tations of applicability of the binary affine paradigm seem to be obvious. In our ear-
lier papers [9, 10], we discussed dynamical models of a single affinely-rigid body, in
particular, the purely geodetic models, i.e., ones without potentials. Lagrangian coin-
cides then with the kinetic energies (metric tensors on GL(n,R)) given by (71) or
(72), and first of all, by their special cases like (73)–(75). It turns out that for incom-
pressible affine bodies, when the configuration space of internal motion is restricted
to SL(n,R), the purely geodetic affine models predict the existence of an open fam-
ily of bounded (oscillatory) trajectories within the general solution. However, on the
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non-restricted GL(n,R), when the volume changes are admitted, geodetic affine mod-
els predict the non-restricted dilatational motion, i.e., unlimited expansion or con-
traction. This is an evidently non-physical feature of these models. Therefore, at least
some dilatations-stabilizing potential Vdil(detϕ) must be assumed. When we deal with
systems of affine bodies, then it is clear that for an appropriate choice of f in (79)
the relative volumes

detϕL/detϕK =det
(
ϕK

−1ϕL
)=det� [ϕK,ϕL] (80)

are stabilized in the sense of performing bounded motions. However, no binary
potential may stabilize the single volumes detϕK themselves. Their time evolution
will be non-bounded although the ratios (80) are bounded functions of time. To pre-
vent this one should introduce some one-body potential term stabilizing (making
bounded) the over-all dilatational behavior,

V (1)dil (. . . , ϕA, . . . )=
N∑

K=1

V (1)dil K (detϕK) . (81)

It is reasonable to assume that all V (1)dil K are identical (when the body consists of iden-
tical elements),

V (1)dil (. . . , ϕA, . . . )=
N∑

K=1

f (detϕK) . (82)

When V (2)KL depend on their arguments in a proper way, so that det�[ϕK,ϕL] are
bounded functions of time, then in principle it would be sufficient to use V (1)dil depend-
ing on detϕA for some fixed label A only. If such V (1)(detϕA) stabilizes detϕA, then
automatically all volumes detϕK will be stabilized by V (2). But of course such a
choice of the shape of V would not be either aesthetic or reasonable.

4. General Quantization Ideas

There is a direct logical chain from the atomic and molecular structure to macroscopic
properties, constitutive laws and material engineering. The point is particularly del-
icate on the nano-level, where one is dealing with a very peculiar convolution
of quantum and classical concepts. In any case, quantization is necessary then.
Also some quasi-classical and correspondence problems are very relevant for these
phenomena.

The first step towards quantization is the classical canonical formalism [8, 11, 15].
One should start from Legendre transformations which for potential systems with
Lagrangians L=T −V(. . . ;xK,ϕK; . . . ) are given by

pKi = ∂L

∂viK
= ∂T

∂viK
, πKai = ∂L

∂ξKia
= ∂T

∂ξKia
(83)
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or, alternatively,

p̂Ka = ∂L

∂v̂aK
= ∂T

∂v̂aK
, �̂Ka

b= ∂L

∂	̂Kba
= ∂T

∂	̂Kba
,

�Ki
j = ∂L

∂	Kj i
= ∂T

∂	Kj i
. (84)

Inverting these formulas and substituting them to the energy expression

E=viK ∂L

∂viK
+ ξKia ∂L

∂ξKia
−L (85)

one obtains the classical Hamiltonian

H =T +V. (86)

Let us quote the resulting formulas for the geodetic (kinetic) Hamiltonians T . For
the “usual” d’Alembert model (6) we obtain

T d′A =T d′A
tr +T d′A

int = 1
2M

Tr
(
ppT

)+ 1
2

Tr
(
πT J−1π

)
. (87)

This is, as mentioned, the “usual” expression compatible with the d’Alembert
principle. Although from some point of view it seems the best-motivated one, in com-
plicated systems with collective modes and strong internal interactions some doubts
and just objections may be raised against it. Our idea here was to concentrate on
models motivated by symmetry principles, first of all, by affine symmetry. Let us now
review Legendre transforms of affine models quoted above.

Of course, the model (64) of translational kinetic energy T is−af
tr coincides exactly

with T d′A
tr , so we have

Ttr
is−af = 1

2M
pT p= 1

2M
Tr

(
ppT

)

= 1
2M

p̂TG[ϕ]−1p̂= 1
2M

Tr
(
p̂p̂T G[ϕ]−1) , (88)

just the first term of (87) written in a few equivalent forms.
The corresponding expression for (65) has the following form:

Ttr
af−is = 1

2M
p̂T p̂= 1

2M
Tr

(
p̂p̂T

)

= 1
2M

pTC[ϕ]−1p= 1
2M

Tr
(
ppT C[ϕ]−1) . (89)

Let us now quote the Legendre transforms of affinely-invariant internal kinetic
energies. For (66) we obtain

T af−J
int = 1

2
Tr

(
C[ϕ]−1πT J−1π

)= 1
2

Tr
(
�̂T J−1�̂

)
. (90)

In particular, for the isotropic inertial tensor (67) leads to the expression:

T af−is
int = 1

2I
Tr

(
�̂T �̂

)= 1
2I

Tr
(
C[ϕ]−1πT π

)
. (91)
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For the model (68) we obtain

T H−af
int = 1

2
Tr

(
�TH−1�

)= 1
2

Tr(πTH [ϕ]−1 π). (92)

Obviously, the Legendre transforms of the most general affine models (71), (72) have
the form:

T l−af
int = 1

2
L̃BADC�̂A

B�̂
C
D, (93)

T r−af
int = 1

2
R̃j

i
l
k�

i
j�

k
l, (94)

where the constant bimatrices L̃, R̃ are reciprocal to L, R, respectively.
For the most interesting models (74), (75), including their special doubly-affine

case (73) we obtain, respectively,

T is−af
int = 1

2Ĩ
Tr

(
�T�

)+ 1

2Ã
Tr

(
�2)+ 1

2B̃
(Tr�)2 , (95)

T af−is
int = 1

2Ĩ
Tr

(
�̂T �̂

)+ 1

2Ã
Tr

(
�̂2)+ 1

2B̃

(
Tr�̂

)2
, (96)

where the constants Ĩ , Ã, B̃ are built of I , A, B in the following way:

Ĩ = 1
I

(
I 2 −A2) , Ã= 1

A

(
A2 − I 2) , B̃=− 1

B
(I +A) (I +A+nB) . (97)

The special affine–affine case (73) corresponds to I = 0, and then obviously 1/Ĩ = 0
and the first terms of (95), (96) do vanish. Of course, the second and third terms of
(95), (96) are pairwise identical.

These were expressions for various models of the kinetic Hamiltonians for sin-
gle elements. Obviously, they should be labelled by the index K=1,N , and the total
expression is obtained by a summation over K.

Canonical formalism is very convenient and effective in analysis of classical equa-
tions of motion. They are represented then in terms of Poisson brackets,

dF
dt

={F,H } , (98)

where F runs over some maximal functionally independent system of functions.
To make use of (98) one must establish the system of basic Poisson brackets for
some geometrically distinguished quantities. As a rule, one uses quantities like �,
�̂, because they are Hamiltonian generators of left and right regular translations
in GL(n,R). Therefore, their Poisson brackets are determined by the structure con-
stants of this group (and the mutual Poisson brackets between � and �̂-quantities
do vanish of course, because the left translations commute with the right ones).
Other important Poisson brackets are those between �, �̂-quantities and functions
depending only on generalized coordinates. Calculating such a bracket is identical
with affecting configuration functions by first-order differential operators generating
left and right regular translations in GL(n,R).

However, the main advantage of Hamiltonian methods is that they provide a
direct way towards quantization.
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Let us remind that the configuration space of our N -body system is given by

QN �QN
tr ×QN

int �R
nN ×GL (n,R)N ,

i.e., configurations are arrays (5). The manifold QN is obviously an open subset of
the linear space

R
nN ×L (n,R)N �R

nN ×R
n2N �R

n(n+1)N .

In any one-element configuration space R
n× GL(n,R) we are given two distinguished

measures. One of them is the Haar measure α invariant under left and right group
translations (cf. [9]). The other one is the usual Lebesgue measure a on R

n× L(n,R).
It is invariant under additive translations. In terms of coordinates

da (x, ϕ)=dx1 . . .dxndϕ1
1 . . .dϕnn, (99)

dα (x,ϕ)= (detϕ)−n−1 da (x, ϕ)

= (detϕ)−n−1 dx1 . . .dxndϕ1
1 . . .dϕnn. (100)

When we neglect translational motion then the Haar measure λ on GL(n,R) and the
Lebesgue measure l on L(n,R) are used

dl (ϕ)=dϕ1
1 . . .dϕnn, (101)

dλ (ϕ)= (detϕ)−n−1 dl (ϕ)= (detϕ)−n dϕ1
1 . . .dϕnn. (102)

Configuration spaces of the total N -element system are endowed with the N -told ten-
sor products of these measures, a(N), α(N), l(N), λ(N).

The quantized theory is formulated in the following Hilbert spaces:

L2 (
QN,α(N)

)
,L2 (

QN,a(N)
)
,L2 (

GL(n,R)N, λ(N)
)
,L2 (

GL(n,R)N, l(N)
)
.

Their elements, i.e., wave functions, are complex probability amplitudes of finding the
system at a given classical configuration. Classical quantities depending only on con-
figuration variables are represented in these L2-spaces as operators of multiplication
by real-valued functions, in particular, by coordinates like xi , ϕia, etc. According
to the general rules of quantum mechanics all other quantities are also represented
by Hermitian or formally Hermitian (symmetric in dense domains) operators in
these Hilbert spaces. Usually some ordering problems of non-commuting operators
appear then. However, in dynamical applications, when Hamiltonian operators are
constructed, one deals usually with some special physical quantities of well-defined
geometric interpretation. As a rule, they are generators of symmetry groups underly-
ing the problem. In our model they are just the affine spin in both the spatial and
co-moving representation, the usual metrical spin and vorticity, etc.

Linear momentum operators in spatial and co-moving representations are given,
respectively, by

pKa =
–h
i

∂

∂xaK
, p̂Ka =

–h
i
ϕK

b
a

∂

∂xbK
, (103)
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where, obviously, K = 1,N is the “particle” label. These operators are formally
Hermitian both in L2

(
QN,α(N)

)
and L2

(
QN,a(N)

)
. The operators

�K
a
b=

–h
i
ϕK

a
c

∂

∂ϕKbc
, �̂K

a
b=

–h
i
ϕK

c
b

∂

∂ϕKca
(104)

are formally Hermitian (not literally, they are unbounded as all differential operators)
in L2

(
QN,α(N)

)
and in L2

(
GL(n,R)N, λ(N)

)
. Therefore, when using these Hilbert

spaces we may interpret (104) as operators of affine spin, respectively, in the spatial
and co-moving representations.

Just as in classical theory, pKa are infinitesimal generators of translations of the
Kth constituent. Similarly, �Kab generate spatial affine transformations (rotations
and homogeneous deformations) of internal degrees of freedom of the Kth “mole-
cule”. �̂Kab generate material affine transformations of the Kth element. Namely, let
us consider the operators

VK (y) := exp
(
i

–h
yapKa

)
, y ∈R

n, (105)

LK (z) := exp
(
i

–h
zba�K

a
b

)
, z∈L (n,R) , (106)

where the operator exponent is meant in the usual power-series sense. If this series
convergent in the action on some function : QN → C, then

(VK (y)) (. . . , xA, . . . ; . . . , ϕB, . . . )
= (. . . , xA+yδAK, . . . ; . . . , ϕB, . . . ) , (107)

(LK (z)) (. . . , xA, . . . ; . . . , ϕB, . . . )
= (. . . , xA . . . ; . . . , exp (zδKB)ϕB, . . . ) . (108)

Similar statements may be formulated about the co-moving objects, e.g., defining

RK (z) := exp
(
i

–h
zba�̂K

a
b

)
, z∈L (n,R) , (109)

we obtain that

(RK (z))
(
. . . , xA, . . . ; . . . , ϕB, . . .

)

= (. . . , xA, . . . ; . . . , ϕB exp (zδBK) , . . . ) . (110)

One can act separately on all arguments, nevertheless, the special geometric role is
played by transformations acting in the same way on all arguments, e.g.,

V (y)=V1 (y) . . .VN (y) , (111)

L (z)=L1 (z) . . .LN (z) , (112)

R (z)=R1 (z) . . .RN (z) . (113)

Their generators are, respectively, identical with the total linear momentum and the
total affine spin in the spatial and co-moving representations,

pa =
N∑

K=1

pKa, �a
b=

N∑

K=1

�K
a
b, �̂a

b=
N∑

K=1

�̂K
a
b. (114)
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Obviously,

V (y)= exp
(
i

–h
yapa

)
, (115)

L (z)= exp
(
i

–h
zba�

a
b

)
, (116)

R (z)= exp
(
i

–h
zba�̂

a
b

)
. (117)

Obviously, all exponential operators quoted here are unitary in L2
(
QN,α(N)

)
or

L2
(
GL(n,R)N, λ(N)

)
. However, LK , RK are not unitary in L2

(
QN,a(N)

)
and

L2
(
GL(n,R)N, l(N)

)
. The reason is that the measures a, l are not invariant under

group translations. Also, when working in L2
(
QN,a(N)

)
and L2

(
GL(n,R)N, l(N)

)
,

that is admissible, one must modify the definition of the above unitary operators
(introducing some multipliers). The generators (104) are not formally Hermitian and
to become such they must be modified by some additive corrections:

′�Kab :=�Kab+
–hn
2i
δab,

′�̂Kab := �̂Kab+
–hn
2i
δab. (118)

Let us also quote the formally Hermitian operators

JKab=xKapKb+�Kab=�K
a
b+�Kab, (119)

which generate affine transformations acting both on translational and internal
degrees of freedom of the Kth constituents. �K and �K are, respectively, the trans-
lational (orbital) and internal parts. One can also introduce the total quantities

Jab=�a
b+�a

b (120)

obtained by the K-summation.
In analogy to (118), we have that

′�K
a
b :=�K

a
b+

–h
2i
δab. (121)

Let us observe that for the total quantities built of (118) we have

′�a
b=�a

b+
–hnN

2i
δab,

′�̂a
b= �̂a

b+
–hnN

2i
δab. (122)

and similarly

′�a
b=�a

b+
–hN
2i
δab. (123)

After quantization the canonical momenta πKai conjugate to ϕKia become operators:

pKaj :=
–h
i

∂

∂ϕKj a
. (124)

They are formally Hermitian in L2
(
QN,a(N)

)
, L2

(
GL(n,R)N, l(N)

)
, but not in

L2
(
QN,α(N)

)
, L2

(
GL(n,R)N, λ(N)

)
, so now the situation is quite opposite to the pre-

vious one.
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Hamilton operator has the following form:

H =T+V, (125)

where T is the kinetic energy operator and V is the potential term; usually one does
not distinguish graphically between the function V and the operator V which multi-
plies the wave function  by V ,

(V) (x,ϕ) :=V (x, ϕ) (x,ϕ) . (126)

In usual structural problems quantum dynamics reduces to the stationary Schrö-
dinger equation, i.e., to the energy following eigenproblem:

H=E. (127)

And finally, we see that constructing the kinetic energy operator T is a crucial step of
the quantization procedure. And this may be done just on the basis of the above clas-
sical expressions for kinetic energies in terms of canonical phase-space variables (77)–
(86). Simply one should algebraically substitute the above operators pKi , p̂Ka, pKaj ,
�Ka

b, �̂Ka
b instead of the corresponding classical expressions. Because of the geo-

metric meaning of these quantities as generators of natural transformation groups,
there is no problem of ordering of operators. The only point one should be careful
with is just the one concerning the measures used in configuration spaces when defin-
ing the L2-Hilbert spaces. In affine models the measures α, λ are more natural and
then one uses the purely differential operators (103), (104). In Hilbert spaces based
on a, l we would have to use the modified expressions (118). And conversely, in non-
affine d’Alembert models the Lebesgue measures a, l are more natural, because they
enable one to use the purely differential operators (124) without any algebraic cor-
rection.

The above geometric approach is very convenient. If we tried to calculate the
kinetic energy operators as

T=−
–h2

2
�,

where � is the d’Alembert operator based on the metric tensor underlying the clas-
sical expression T , the calculations would be hopeless and the result completely
obscure, non-useful.

When solving any particular problem one must use coordinates. For our purposes
the most convenient choice is that based on the polar and two-polar decompositions:

ϕ=UA=BU =LDR−1 =LDRT ,
where ϕ∈ GL+(n,R), U,L,R∈ SO(n,R) (orthogonal), A, B=UAU−1 are symmetric
and positively definite, and D is diagonal and positive.

Green and Cauchy deformation tensors are then expressed as follows:

G=A2 =RD2RT , C=B−2 =LD−2L−1.

It is convenient to denote

Daa =Qa = exp
(
qa

)
.
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The quantities Qa, qa offer another convenient choices of basic deformation invari-
ants. The Haar and Lebesgue measure λ, l are then expressed as

dλ (L,D,R)=
∏

i =j

∣∣sh
(
qi −qj )∣∣dq1 . . .dqndµ(L)dµ(R) ,

dl (L,D,R)=
∏

i =j

(
Qi −Qj

) (
Qi +Qj

)
dQ1 . . .dQndµ(L)dµ(R) ,

where µ is the Haar measure on SO(n,R). Performing some partial integrations one
can obtain from  probability distributions for some quantities like deformation
invariants, orientations of the main axes of Green and Cauchy deformation tensors
and also probability distributions for particular values of Green and Cauchy defor-
mation tensors.
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