Solid solution strengthening of hexagonal Ti alloys:
structures, energies and Peierls barriers of \(<a>\) type screw dislocations
calculated from first principles

P. Kwasniak\(^1\), J. Mizera\(^1\), R.B. Pęcherski\(^2\)

\(^1\) Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology,
Woloska 141, 02-507, Warsaw, Poland

\(^2\) Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, 02-106
Warsaw, Poland
e-mail:piotr.kwasniak@inmat.pw.edu.pl

1. Introduction
Due to their finely balanced strength and density, hexagonal close-packed (hcp) metals such as Ti and
Mg are perceived as potential prime elements for the production of new light, and strong alloys essential
for the sustainable development of green technologies oriented towards a reduction in mass in all
transport sectors. Nevertheless, the conscious design of materials requires information on the
relationship between alloy elements and individual deformation mode activity. Such complex
knowledge in the context of hcp systems remains a challenge, seriously hampering our ability to
anticipate the strength and ductility of new materials developed. In general, hcp metals and alloys suffer
from limited cold workability arising from reduced crystal symmetry (compared to cubic crystals) and
from the geometrical relations between their dislocation glide planes [1]. On the other hand, the unique
properties of single phase hcp materials, such as great strength and reasonable ductility of α-Ti+O
solutions [2,3] and a pronounced solution softening of α-Mg+Y alloys [4,5], demonstrate the great
potential of this groups of materials. All these aspects provide incentive for exploring the physics of
plastic deformation and solution strengthening theories.

2. General
The mechanical properties of hexagonal Ti alloys depend substantially on the glide of \(<a>\) type screw
dislocations. The configurations and stabilities of these line defects are, however, known only in pure
Ti [6] and Ti + O solutions [7], where the locking-unlocking mechanism and a strong pinning effect
control their activity. In this study, we investigated the unclear, screw dislocation mediated solution
strengthening of substitutional α-Ti alloys. To this end, a first principle computational scheme was used
to determine the structures and energies of the considered line defects during planar and cross-slip
processes in the vicinity of the solute element. Two phenomena were determined that are crucial in terms
of plastic deformation: (i) enhanced polymorphism of the dislocation cores leading to multiple new core
configurations, and (ii) relatively large positive and negative interaction energies between the solutes
and the line defects. Both these effects are strongly affected by the valence configuration of the alloying
elements. Due to their pronounced structure and energy variations, dislocation planar and cross slip
processes can occur under different scenarios, through diverse non-planar core geometries. The
calculations performed also indicate In as a potential alloy element for improving both the strength and
ductility of Ti by stabilizing a special, compact core geometry able to spread on an arbitrary glide plane
with a low energy barrier. All of the above effects are discussed in terms of the physical factors (solute
size misfit, stacking fault energy and electronic structure) that affect the energy and geometry of
dislocation cores.
3. Graphical presentation of computational results

![Fig. 1. Detailed structures of selected <a> type screw dislocation cores (a) and local density of states plots determined for X, C, B and A atomic position (b) [8]](image)

4. Conclusions

This article describes the impact of substitutional solutes on α-Ti screw dislocation geometry, energy and motion. The alloying elements used in this study belong to two groups: simple (Sn, Ga, In) and transition (V, Zr) metals; this makes it possible to study the effect of solute valence structure on line defect behaviour. All calculations were performed within an ab initio framework, utilizing the full periodic boundary condition approach of dislocation modelling. The determined interaction energies between the substitutional solutes and <a> type screw dislocations are relatively large, even a few times greater than the Peierls barrier of high energy pyramidal glide in pure α-Ti – which shows the significant impact of substitutional solutes on screw dislocation mobility. Moreover, transition metals reduce the energy of the considered line defects, stabilizing its position and impeding further glide. Simple metals also introduce high energy dislocation states (dislocation repulsion), which improves the overall solution strengthening effect.

5. References