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Abstract. Controlling flow in networks by means of decentralized
strategies have gained a lot of attention in recent years. Typical advan-
tages of such approach – efficiency, scalability, versatility, fault tolerance
– make it an interesting alternative to more traditional, global opti-
mization. In the paper it is shown how the continuous, macroscopic,
self-organizing control proposed by Lämmer and Helbing [10] can be
implemented in the discrete, nondeterministic cellular automaton (CA)
model of urban traffic. Using various examples, it is demonstrated that
the decentralized approach outperforms the best nonresponsive solution
based on fixed cycles. In order to analyse relatively large parameter space,
an HPC cluster has been used to run multiple versions of a serial CA
simulator. The presented model can serve as a test bed for testing other
optimization methods and vehicle routing algorithms realized with the
use of CA.
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1 Introduction

In communication networks, controlling strategies have a profound impact on
the overall performance [1,2]. Particularly, optimization in traffic networks is
especially important due to a tremendous affection it has on peoples everyday
life. In order to address this issue, one has to apply some kind of traffic model
and then propose optimization procedures.

There exists a large number of traffic models which generally fall in one of
these classes: microscopic where vehicles are represented as particles (e.g., follow-
the-leader models); cellular automata (CA) where a vehicle’s state corresponds
to a cell’s state; based on some master equation (e.g., mean field models); macro-
scopic continuous models (e.g., kinetic waves), and more [3,4]. Obviously, a good
traffic model has to reproduce all its properties which are observed in the real
world.
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Regarding optimization, one of the most common ways to do it is to choose
some pre-calculated schemes, which are aimed at synchronizing green times along
main arterials. In principle such methods force the traffic flow to comply with pre-
viously designed patterns in order to minimize travel times. However, since traffic
demand varies, there is a need for some responsiveness to the current traffic state.
In order to improve efficiency of control methods, it is necessary to implement
on-line optimization techniques based on real time traffic intensity observations.
This can be done in a centralized system, in which there exists a central unit
possessing all information concerning current state of the network. Obviously all
the measuring devices must be somehow connected to a central unit (which is
expensive). Moreover, optimizing globally may be NP-hard [5,6] making it even
more difficult to react in real-time. Consequently, there is a recent trend towards
decentralized and self-organizing optimization techniques [7–12] which instantly
and locally respond to the current traffic state (known, e.g., from vehicle detec-
tors mounted at some distance before an intersection). Naturally, it is desired
that such locally defined mechanisms will produce near-optimal global solution.
One of the most efficient and versatile decentralized self-controlled strategies has
been proposed by Lämmer and Helbing (LH, [10]). The authors have defined the
scheme with the use of a model similar to kinematic waves approach [13].

In this paper it is shown in details how this LH controlling mechanism can be
implemented in a network of cellular automata with the use of nondeterministic
Nagel-Schreckenberg (NS) model [14] (i.e., with the randomization parameter
P > 0). The efficiency of this solution is analysed by considering three scenar-
ios in regular lattice networks. It is shown that the self-controlled intersections
converge to the best possible cycles and phase-shifts for periodic networks, and
that they outperform constant cycle (CC) solutions if vehicles are able to ran-
domly change moving directions (e.g., they turn). Lastly, stochastic boundary
conditions are applied and it is shown that the LH strategy clears the network
significantly more efficient if additional perturbations are allowed.

CA traffic models can be relatively easily parallelized, making it a very useful
tool for efficient prediction, analysis and optimization. Moreover, they can be
implemented withe use of FPGA [15] or GPGPU [16] further increasing efficiency.
The results presented here are calculated with a serial program designed to
advance a network of CA’s. However, since it was desired to obtain a full study of
parameter space, these programs have been run in parallel in an HPC cluster for
various initial conditions and control variables. Therefore, meaningful statistics
could be calculated in a reasonable time (couple of hours).

2 The Model

The city traffic model is essentially similar to the work presented by Chowdhury
and Schadschneider [17], and Brockfeld et al. [18]. There are N2 nodes (inter-
sections) Ii,j , i = 1, . . . , N , j = 1, . . . , N , which form a square lattice. Each
node has two incoming links (one-lane and one-way streets): one from west-side
and one from south-side, and two leaving links: one towards east-side and one
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towards north-side, Fig. 1. Nodes make a decision which traffic stream should
be served. In addition to the previous work, [17,18], here a setup time τ = 2 is
specified (the amount of time for which the both streams have “red light” when
switching from one stream to the other).

Fig. 1. A sample view of part of a grid-like network with link length D = 100.

The links in a network represent a single-lane street which is a one-
dimensional cellular automaton with D cells (D = 100 is used throughout this
paper). An occupied cell n symbolizes a single vehicle, and a discrete, integer
variable vn corresponds to its velocity. Let the maximum allowed velocity be
vmax (here vmax = 5) and the distance to the next vehicle is dn, the distance to
the next intersection is sn. In the classical model by [14] with urban-like modifi-
cations [18], which take into account traffic light, the four consecutive steps for
parallel updating at discrete time steps can be written as:

1. Acceleration: vn ← min(vn + 1, vmax),
2. Breaking:

– Traffic light at the intersection to which the link is connected is “red” or
the intersection is in setup time: vn ← min(vn, dn − 1, sn − 1)

– Traffic light is “green”. If two cells behind the intersection are occupied:
vn ← min(vn, dn − 1, sn − 1), otherwise vn ← min(vn, dn − 1),

3. Randomization with the probability P : vn ← max(vn − 1, 0),
4. Vehicle movement: xn ← xn + vn.

The initial density ρ = m/D is the number of vehicles m divided by the total
number of cells in the link, D. For given vmax there exists a maximum density
for which all the vehicles can move freely with vmax. In the deterministic limit
P = 0, ρmax = (vmax + 1)−1 since for ρ > ρmax there exists at least one vehicle
which has less than vmax occupied cells in front of it, and therefore it is forced
to slow down (vmax = 5 give ρmax = 0.16(6) for P = 0, and ρmax ≈ 0.15 for
P = 0.1). With each link there is associated the mean flux J ′ (number of vehicles
leaving the link per unit time), for the entire network J̄ = N−2

∑N2

1 J ′
i is just

the average of mean flux J ′
i for each link i. Note that the assumed vmax = 5

should be equivalent to about 50 km/h in a real city traffic flow, assuming that
a single cell corresponds to a real size of 7.5 m (a vehicle length with safety
distance in front and behind it), each step is about 2 s in real time.
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Fig. 2. Flux as a function of steps after opening an intersection for a CA fully filled with
vehicles (P = 0 is exact, P = 0.1 is the average for 106 simulations). The horizontal
line represents the exact limiting flux for P = 0, Jmax = vmax/(vmax + 1) = 5/6.

Boundary conditions can be either periodic or stochastic. If periodic bound-
ary conditions are assumed, each vehicle leaving the network at east/north side
will be placed at the beginning of corresponding links at west/south side. As the
stochastic BCs, the so called expanded stochastic boundaries are applied [19].
These are formed by placing an additional CA with length equal to vmax as a
source of vehicles. Vehicles appear at the beginning of such small CA with given
probability Pins and accelerate according to the CA rules. Such treatment is a
proper insertion strategy which makes sure that all possible system states can
be obtained. Here, in networks with stochastic sources, the right-most and the
top-most nodes act as simple sinks, i.e. nothing prevents a vehicle from leaving
the system.

2.1 Periodic Switching

The simplest possible strategy for control is to use cycle-based switching. For
each node the cycle is: (a) “red light” for (T − 2τ)/2 steps; (b) setup time for
τ steps; (c) “green light” for (T − 2τ)/2 steps; and (d) setup time for τ , giving
T steps in total. Additionally, there can be phase shifts Tφ

(i,j) for different nodes
in network. This means that the first step of the cycle for N(i,j) is realized at
the time step t + Tφ

(i,j). It is easy to show that for unidirectional networks one
can form “green waves” along a single direction by selecting the phase shifts as
Tφ
(i,j) = (i + j − 2)Tdelay mod (2T + 2τ), Tdelay = D/vmax.

2.2 Self-controlling Strategy

As the responsive self-organizing controller a CA version of the LH strategy [10]
is implemented. Below only brief summary of the most important principles is
presented, see the original paper for detailed formulation and related proofs (the
symbols used here are the same as in the cited work).
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Let σ denote the stream which get “green light”,

σ =

{
head Ω if Ω �= ∅
arg maxi πi otherwise,

(1)

where Ω is an ordered set containing stream indices πi is a priority index for the
corresponding stream i (the regular lattice networks have i = 0 or i = 1). The
stabilization strategy assures that each stream i will be placed into the queue
Ω at least once in Tmax and, on average, once in Tavg. The priority index for
stream i, provided that currently served stream is σ, is defined as

πi =
n̂i

τpen
i,σ + τ + ĝi

, (2)

where n̂i is the number of vehicles expected to be served in time τ + ĝi for the
stream i, τ is the remaining setup time, ĝi is time required to clear existing
queue at the intersection and all vehicles arriving just after clearing, provided
that they arrive with the maximum flow rate (i.e., as a platoon traveling with
vmax), τpen

i,σ is the additional penalty term for switching from stream σ to i.
Originally, the authors have formulated the strategy using continuous equa-

tions based on kinematic waves approach [13]. Implementing it in a CA is not
a straightforward task, especially if a nondeterministic NS model is considered,
P > 0. It has been done in previous work [12], however, here calculating pre-
dictive variables is improved and the more realistic P > 0 is implemented. Note
that non-zero randomization, P > 0, is of fundamental importance for the NS
model. It makes it possible to reproduce such phenomena as spontaneous jam
formation and destroys any artificial metastable states.

The difficulty for implementing P > 0 comes from the fact, that in order to
calculate the priority index (2), one has to find variables characterizing the state
of a crossing node at the current time step and also in the future. For each node,
it is necessary to calculate the anticipated amount of the green time ĝi which is
the largest possible solution of

Ndep
i (t) + ĝi(t)Qmax

i = N exp
i (t + τi(t) + ĝi(t)), (3)

where Ndep
i (t) denotes the number of vehicles which have departed from the

crossing, N exp
i (t) is the number of vehicles which are expected to arrive at the

node by the time t, τi(t) i the remaining setup time, Qmax
i is the saturation

flow rate. The number of vehicles expected to leave the intersection is n̂i(t) =
ĝi(t)Qmax

i .
In the discussed CA model, it is trivial to keep track of Ndep

i : for each inter-
section one has to count the number of vehicles which have left the node. In
order to find the number of vehicles which will approach the node in the follow-
ing steps t + Δt (t being the current step), N exp

i (t + Δt), a temporary CA is
created, which consists of a link connecting to the node and a link which leaves
this node. Then this temporary automata is advanced for Δt steps according to
the NS rules. Joining the two links is necessary in order to take into account
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any spill-back effects arising when there is some congestion immediately after
the intersection. This procedure may be a bit time consuming but it can be
efficiently implemented using appropriate caching mechanisms.

Note that this method of calculating N exp
i will inevitably lead to inefficiency

of the controlling method if P > 0. The reason for this is that advancing the
temporary CA may give different value of N exp

i then the “real” value obtained
when advancing the entire CA system. This is desirable since in any realistic
traffic model, there will be some velocity fluctuations making it impossible to
exactly predict the value of N exp

i (t + Δt).
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Fig. 3. A map of the mean flow J̄ in the regular periodic network as a function of
periods T and phase-shifts φ for four different densities for the fixed cycle controlling.
N = 6, D = 100, P = 0.1.

Additionally, there is an important difference in defining the maximum flow
rate Qmax

i in the continuous approach and the one using a cellular automata.
In the former it can be assumed as a constant value, whereas in the latter it
depends on time. Consider an infinitely long CA fully filled with vehicles and
connected to an intersection with “red light”. Assuming that at the moment
t = 0, the light will turn green, vehicles will leave the intersection at the flow
rate J which is presented in Fig. 2. It can be shown that in the deterministic
limit P = 0, the limiting maximum flux is Jmax = vmax/(vmax+1) (p. 240 in [3]).
For non-deterministic models, 0 < P < 1, there is no analytic solution for the
limiting Jmax. However, in order to properly implement the LH mechanism,
one has to use Qmax

i (tg) which depends on the time tg which denotes for how
many steps the considering link has been granted “green light”. In any case
considered here, Qmax

i (tg) has been precalculated: averaged over 106 stop-and-
go CA simulations and tabularized in order to be useful for finding ĝi.
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Finally, if there is more than one CA which belong to the same stream i
(multiple lanes, bidirectional networks), the corresponding values of N exp

i , Qmax
i ,

etc., are simply summed up for all the CA and a single value of πi is calculated.

3 The Results

The correctness of implementation end efficiency of the LH strategy has been
validated using three various scenarios: periodic network; periodic network with
the possibility of vehicle turning; a bidirectional network with stochastic BCs
and random intersection blocking.

3.1 Periodic Network N = 6

The dynamics of fixed cycle based switching for periodic networks with P = 0,
has been discussed in detail in [18]. Here it is shown how the mean flow J(ρ, T )
depends on ρ, T and Tφ for wide range of relevant parameters for N = 6 and
the non-deterministic P = 0.1. All the results are averaged by performing 105

steps for 10 different initial conditions.
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Fig. 4. Left: mean flow JCC
best in the N = 6 network for CC and JSC for SC. Right:

the same J̄ but normalized with the maximum flux Jmax taken from the fundamental
diagram for P = 0 and P = 0.1 (precalculated and interpolated).

Figure 3 displays how the mean flow J̄(T, φ) depends on the fixed cycle length
T and phase-shifts φ for four different densities. Naturally, this CC strategy
imposes a certain dynamical situation rather than being responsive to the cur-
rent traffic state. If T and φ are properly adjusted, vehicle platoons which are
formed get “green wave” giving maximum possible flow rate J̄ . If density is small
enough, i.e., platoon length ρvmaxD per link is shorter than D/2−τvmax, that is
ρ < (2vmax)−1 − τ/D, then there exists cycles and for which vehicles can move
without stopping and the resulting mean flow J̄ = Jmax. On the other hand, for
some values of T platoons are always stopped when arriving to the intersection.
Consequently one can observe significant variations (by ≈ 100%) in J̄ especially
for smaller densities, ρ < ρmax, where clearly there is the largest potential for
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optimization. If density is too large, nothing can be done in terms of adjusting
T and φ and there is no optimization which can significantly improve situation.

Comparison between CC and SC strategies for various densities is shown in
Fig. 4. In these plots JCC

best for CC represent the maximum possible value, i.e., is
calculated for given ρ by simulating flows for all 1 ≤ T ≤ 300 and 0 ≤ φ ≤ 300
and choosing the largest J̄ (the same procedure is done in the next section). The
decentralized SC converges to the optimum in the region where optimization is
possible (the stabilization parameters are Tavg = 150 and Tmax = 300).

3.2 Periodic Network with Non-deterministic Turning

Introducing the possibility of vehicle turning (with the probability Pturn) makes
an important difference when comparing to the previous case. Regular vehicle
platoons can not be formed anymore, since they are separated with empty spaces
resulting from changing a vehicle’s direction (which in turn can form other pla-
toons). A constant cycle controller can not adjust to such situation.
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Fig. 5. The ratio JSC/JCC
best as a function of mean density ρ̄ and vehicle turning prob-

ability Pturn.

Figure 5 depicts the ratio of mean flows for the self-controlled and the best CC
outcome. It is clear that in the region where optimization is possible (sufficiently
small density), the SC outperforms the best possible CC by a factor of 2.

3.3 Network with Stochastic Input

As a final example we use a network with more realistic, stochastic boundaries
(as described earlier) at the east and the south side, and open BCs at the west
and the north side. For a single lane, Pins = 1.0 will produce a flow with the
maximum Jmax. Obviously for concurring streams, Jmax can not be reached
for ρ > ρmax, hence there must be a maximal Pins above which one the mean
flow will not increase. Figure 6(a) shows how J̄ depends on the vehicle insertion
probability. Also in this case, the decentralized strategy is able to form vehicle
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Fig. 6. Mean network flow as a function of vehicle insertion probability. (a) no turning,
(b) turning into south-north direction with the probability Pturn = 1/4 completely
breaks down the CC control.

platoons and green waves so the optimal J is reached. Moreover, if heterogeneous
turning is introduced – vehicle can turn from east-west towards south-north lanes
with Pturn = 0.25 – all the coordination in CC controlled network is lost. On the
other hand, SC is able to recover quite well.

4 Conclusions

It has been shown how the self-controlled strategy proposed in [10] can be imple-
mented in the classical cellular automata model of traffic [14] in the context of
urban road networks [18]. Since the original formulation of the SC control is with
continuous model based on kinematic waves, it is not straightforward to apply it
in a CA model. In particular, the problems arise if the nondeterministic breaking
in the CA is applied, P > 0. This is solved by using appropriate precalculated
time-depended maximum fluxes Qmax

i .
The presented simulations demonstrate that SC, by means of self organiza-

tion, converges to the best possible fixed cycles in the case of regular networks
with periodic and stochastic BCs. Additionally, if randomized scenarios are con-
sidered (e.g., vehicle turning), CC can not control flow in an optimal way since
some responsiveness is required. In these cases SC significantly outperforms the
best fixed cycle networks. In the future work, the presented model will serve as
a test bed for other optimization methods for more complex network topologies
and vehicle routing algorithms.
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