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a b s t r a c t

This paper models, analyzes and simulates the vibrations of a nonlinear Gao beam
that is subjected to a moving mass or a massless point-force. Such problems arise
naturally in transportation systems such as trains or trams. The dynamics of the
system as the mass or the force move on the beam are investigated numerically
in the cases when the vibrations are about a buckled state, and in the cases when
the mass is positive or vanishes. The simulations are compared to those of the
Euler–Bernoulli linear beam and the differences are highlighted. It is seen that the
linear beam may be used only when the loads are small, while the Gao beam allows
for moderate loads. The simulations are based on a time-marching finite elements
algorithm for the model that has been developed and implemented. The results of
representative and interesting computer simulations are depicted. The existence of
weak solutions of the model is established using a variational formulation of the
problem and results about variational set-inclusions.
©2019 The Authors. Published by Elsevier Ltd. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The motion of a point load on a metallic beam is of considerable importance in many applications,
especially in railway systems, but also in construction (e.g., cranes) and many others. This explains the
rich and extensive scientific literature on the subject, see, e.g., [1,2] or [3]. Their fundamental importance in
railway transportation lies in the fact that the dynamic vibrations of the rail systems, when trains or trams
travel them, may cause unwanted damage to the supports and cause unwanted noise [4] and dynamic wear.
Indeed, there is a need for accurate prediction of such vibrations and their effects on the reliability of the
system it is important to understand and possibly control the noise generated by such processes.

This work is a contribution to the field and deals with accurate predictions of the system vibrations. It is
a continuation of the study of the dynamic of systems that include the so-called ‘Gao beam,’ the equation
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of motion of which allows for vibrations about buckled states, [5–7]. We model, analyze and investigate
computationally the horizontal motion of a vertical point-load that has either mass (inertial) or is massless,
on a metallic rail and the resulting oscillations of the system. Our study is motivated, in part, by the previous
works on railway systems, see, e.g., [8,9] and the references therein. This subject has been extensively treated
in many publications, however, the assumptions and mechanical models used by various researchers were
incomplete and sometimes too simplistic. First, the track was subjected to a set of massless forces applied
with more or less complex oscillators. Moreover, the dynamic properties and responses were not affected by
the additional inertia of the wheel-sets, which are invariably present in transportation applications. Indeed,
their mass is about 750 kg per wheel and, hence, cannot be neglected, see e.g., [10,11]. Second, the axial
forces in the rails were too simplistic. Third, the temperature variations in the rails can be more than 40 ◦C
during a day and more than 70 ◦C during a year. Such variations in the temperature cause significant changes
in the stresses in the system and the mathematical models for the structures must take these processes into
account. This work addresses the first and second issues, while the inclusion of thermal effects will be studied
in the future.

Models for a Gao beam were derived and simulated in [5,12–14] (see also the references therein). They
were investigated mathematically and computationally in [6,7,15–19]. Basic mathematical analysis of the
model can be found in [6] where the solutions existence was established and problems that involve contact
studied. The dynamic contact of a Gao beam with a reactive or rigid foundation was described in [19]. The
case of vibrations of a Gao beam whose end is restricted to move between two rigid or reactive stops was
studied in [15], and the analysis of the problem of two coupled Gao beams connected via a joint with a gap
can be found in [18]. Vibration characteristic of contacting one-dimensional structures with a Gao beam were
conducted in [17], where the model, existence of weak solutions, and computer simulations can be found.
Finally, an interesting problem was studied in [7] where the growth of a crack in a Gao beam was analyzed
and simulated. Concerning models for contact, we refer to [20] and the many references therein.

The model we construct for the dynamics of a force that acts on a point-mass or massless that is moving
on a straight rail, assumed to be of the Gao type, results in an unusual coupled system of a nonlinear beam
equation and an ordinary differential equation for the motion of the mass. The system is given in (2.1) and
(2.6). For the sake of generality, we assume that the horizontal motion of the point-mass and the load acting
on it are time dependent, possibly periodic. We use our basic result in [21] to prove that the system, which
has an unusual form, has a weak solution.

Next, we develop a 2D space–time FEM numerical algorithm for the model. However, in the simulations,
for the sake of simplicity, we assume that the point-mass is moving with a constant velocity and the load on
it is constant. Even this slightly simpler setting still contains most of the interest in the problem. Allowing
for periodic oscillations of the mass and variable loads are of interest, and will be studied in the sequel. In the
simulations algorithm, the FEM method allows us to derive characteristic matrices that deal well with the
nonlinear terms in the differential equation. The numerical examples show the efficiency of the computational
method. In particular, they clearly exhibit the difference between the classical linear Euler–Bernoulli beam
and the Gao beam model. The nonlinear terms significantly change the dynamic response and affect the
interplay between the stiffness of the beam and the frequency of the vibrations. The computer simulations
study the influence of the compressive force on the dynamic response of the Gao beam to a massless or
inertial load. The system’s sensitivity to the horizontal traction force, load component and to its velocity
are presented. Moreover, we use repeating crossing of the load over the whole span of the beam to exhibit
the difference in displacements as a function of time. We also investigate the advantages of the Gao model
as compared with the commonly used Euler–Bernoulli model.

We now describe the remaining sections of this paper. The ‘classical formulation’ of the model is presented
in Section 2. We choose the material constitutive law to be viscoelastic of the Gao type. To model the moving
point-mass we use the Dirac distribution and the associated Renaudot condition. This leads to a coupled
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Fig. 1. The Gao beam without a moving load; w(x, t) denotes the displacement of the central axis. The lengths are scaled so that
L = 1.

system that consists of the dynamic Gao beam equation with the point-mass added, and the Renaudot
condition at the position of the mass. For the sake of generality, we allow the force that acts on the mass
and the velocity of the mass to be time-dependent. The existence of a weak or variational solution to the
model is presented in Section 3, based on an interesting version of a theorem in [21]. A numerical space–time
FEM scheme for the problem is constructed in Section 4. The convergence of the algorithm remains an open
question. Moreover, as was noted above, we assume in the simulations that the point-load and the velocity
of the mass are time-independent, and the beam is elastic. The implementation of the algorithm and six
numerical simulations of the problem are depicted in Section 5. The paper concludes in Section 6 with some
open questions.

2. The model

We construct a model for the motion of a point-mass on a rail that is assumed to be a Gao beam, which
is extension of the one in [22]. The setting is described in Fig. 1, without the moving mass and in Fig. 2
where a point-load P acts on the moving mass m. Moreover, a horizontal traction acts on the right end of
the beam, and when it is sufficiently large it may cause vibrations about a buckled state, which makes the
motions much more complex and interesting.

The extension of the model in [22] consists of careful considerations of the coupling between the motion of
the mass and the vibrations of the beam. The setting is as follows, where all the lengths are scaled with the
beams’s length L. The beam’s centerline is [0, 1]; the (scaled) thickness is 2h, and w(x, t) denotes the scaled
transverse displacement of the central axis. A derivation of the Gao beam model can be found in [5,13],
and related models can be found in the references in the introduction. The beam is clamped at both ends
(x = 0, 1) and a horizontal traction p, which may depend on time, acts at the end x = 1. When the traction
is tensile (p < 0) the beam behaves essentially as an Euler–Bernoulli beam. However, when the traction is
compressive and sufficiently large, say p > p∗ > 0, for some threshold p∗, the beam exhibits two buckled
states that are stable and the zero steady state that is unstable. This allows for vibrations about each one
of the two buckled states. For the sake of generality, we allow the traction p = p(t) to be time dependent
and possibly periodic.

The Gao beam is described by the dynamic equation

ρwtt + kwxxxx + γwtxxxx + (νp− aw2
x)wxx = ρf,

where here and below, the subscripts x and t denote partial derivatives, f is the density of applied distributed
force (per unit mass), ρ is the material density (mass per unit cross-sectional area), k = 2h3EY /3(1 − ν̃2),
ν = (1 + ν̃), and a = 3hEY ; ν̃ and EY are the Poisson ratio and the Young modulus, respectively. Also, for
mathematical reasons, we added a viscosity term γwtxxxx, with viscosity coefficient γ > 0, assumed to be
small.

Our interest lies in the lateral motion of a concentrated load P = P (t), which may vary with time, that
is applied to a moving mass m that is at position ξ(t) and has horizontal velocity ξ̇(t) = v(t), that is caused
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Fig. 2. The Gao beam with a moving load P (t) that acts on m at x = ξ(t).

by a horizontal applied force f∗(t). Here and below, a dot above a symbol represents the time derivative.
Moreover, unlike our previous work [22], here the traction at x = 1 does not vanish, p > 0, and is large
enough to cause buckling.

To obtain the modifications of the model caused by the moving mass, which leads to non-constant density,
we use Newton’s law of motion in its general form, i.e.,

d
dt (MV ) = F,

where F is the total force, M is a variable mass and V is its velocity, so that MV is the system momentum.
A careful examination of the forces and the rate of change of the momentum shows that the term ρwtt

has to be replaced by
ρwtt +mδ(x− ξ(t))wtt +mδ′(x− ξ(t))v(t)wt.

Here, δ(x) is the Dirac function (actually a distribution centered at the origin) and δ′(x) is its distributional
derivative. Next, we represent the load on the mass by δ(x − ξ(t))P (t). Finally, the equation of horizontal
motion of the mass, in absence of friction, is just

mξ̈ = f∗.

The ‘classical formulation’ of the dynamic model for a viscoelastic beam with finite deformations and a
moving point-load is as follows.

Problem 2.1. Given the external force f = f(x, t), the horizontal force f∗(t), the traction p = p(t), and
the point load P = P (t); find the displacement field w = w(x, t), for x ∈ (0, 1) and the position of the mass
ξ(t), t ∈ [0, T ], such that

ρwtt +mδ(x− ξ)wtt(ξ, t) +mδ′(x− ξ(t))v(t)wt + kwxxxx + γwtxxxx

−(aw2
x − νp)wxx = ρf + δ(x− ξ)P, (2.1)
mξ̈ = f∗, (2.2)

w(0, t) = wx(0, t) = 0, (2.3)
w(L, t) = wx(L, t) = 0, (2.4)

w(x, 0) = w0(x), wt(x, 0) = v0(x), ξ(0) = ξ0, v(0) = ξ00. (2.5)

The initial data w0(x), v0(t), ξ0 and ξ00 are given and have the appropriate smoothness. We note here
that

ξ(t) = ξ0 +
∫ t

0
ξ̇(τ) dτ.

This, in particular, implies that the model ceases to make sense beyond the time T ∗ when either ξ(T ∗) = 0
or ξ(T ∗) = 1, when the load completes a transit over the beam. Thus, below, T is assumed to satisfy T ≤ T ∗.
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The vertical acceleration of the mass particle is given by the Renaudot formula [10], which is the total
time derivative of w(ξ, t),

d2w(ξ, t)
dt2 =

[
wtt + 2ξ̇wxt + ξ̈wx + ξ̇2wxx

]
x=ξ(t) . (2.6)

The derivatives on the right-hand side are evaluated at the position of the mass ξ(t). The horizontal
acceleration is v̇(t) = ξ̈ = f∗/m.

Remark 2.2. We note here that there is an inaccuracy in formula (2.6) in [22], and the correct expression
is (2.6). However, the mistake there did not affect the results since, all that was used was formula (2.7) there
(when v = const.), which is exactly the same as (2.7) here.

When v = ξ̇ is constant, then ξ(t) = vt, ξ̈ = 0 and (2.6) reads

d2w(vt, t)
dt2 =

[
wtt + 2vwxt + v2wxx

]
x=vt

. (2.7)

Remark 2.3. In later stages of this work we plan to take into account friction into the horizontal motion of
the mass. This may be done by using a beam-rod system. This, however, introduces considerable additional
complexity which is not warranted at this stage.

The system is nonlinear and of unusual form and so it is natural to consider a weak or variational
formulation, especially since the Dirac ‘delta function’, and its derivative, which are distributions, appear in
(2.1), and so we expect the velocity wt to be discontinuous at x = ξ(t).

3. Existence

In this section we construct a variational formulation of the model, provide the assumptions on the input
data, then state the existence result and provide its proof. First, we rewrite the system,

ρwtt + d
dt (mδ(x− ξ)wt(ξ, t)) + kwxxxx + γwtxxxx

−(aw2
x − νp)wxx = ρf + δ(x− ξ)P, (3.1)

mξ̈ = f∗, (3.2)
w(0, t) = wx(0, t) = 0, (3.3)
w(1, t) = wx(1, t) = 0, (3.4)
w(x, 0) = w0(x), wt(x, 0) = v0(x). (3.5)

Next, we derive a variational formulation for the model. Let V be the Hilbert space

V =
{
u ∈ H2 (0, 1) : u (0) = ux (0) = u (1) = ux (1) = 0

}
,

and let
H = L2 (0, 1) , W = closure of V in H1 (0, 1) .

These spaces contain the boundary conditions, since the beam is clamped at both ends. The problem is
formulated in terms of mappings from V to its dual space V ′, where

V ≡ L2 (0, T ;V ) , W ≡ L2 (0, T ;W ) .
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We begin with the inertial term and let ψ (x) ∈ V and ϕ (t) ∈ C∞
c (0, T ) and use ψ(x)ϕ(t) as a test

function. We multiply the equation and integrate over space and time, thus,∫ 1

0

∫ T

0

d
dt (mδ(x− ξ)wt(ξ, t))ϕ (t)ψ (x) dtdx

=
∫ 1

0

([
(mδ(x− ξ)wt(ξ, t))ϕ (t)ψ (x) |T0

−
∫ T

0
(mδ(x− ξ)wt(ξ, t))ϕ′ (t)ψ (x)] dt) dx

= −
∫ T

0

∫ 1

0
(mδ(x− ξ)wt(ξ, t))ϕ′ (t)ψ (x) dxdt

= −
∫ T

0
mwt (ξ, t)ϕ′ (t)ψ (ξ) dt. (3.6)

Here, we used the boundary conditions and the fact that ϕ vanishes at t = 0, T . Next, we define the operator
B (t) : V → V ′ as

⟨B (t)u, y⟩ = mu (ξ (t)) y (ξ (t)) .

It follows that B (t) is symmetric and bounded because pointwise evaluation is continuous on V . Next, the
usual arguments from calculus yield

⟨B′ (t)u, y⟩ = (mux (ξ (t)) y (ξ (t)) +mu (ξ (t)) yx (ξ (t))) ξ̇ (t) . (3.7)

We assume that f∗ is continuous and bounded, hence it follows from (3.2) that ξ̇ is bounded and continuous.
Therefore, continuity of pointwise evaluation on H1 (0, L) guarantees that there exists a constant C,
dependent on m and the bound for ξ̇, such that

⟨B′ (t)u, y⟩ ≥ −C (∥u∥V ∥y∥W + ∥u∥W ∥y∥V ) . (3.8)

Furthermore, we let ε > 0 be given, then we have the inequality

∥z∥H1 ≤ ε ∥z∥V + Cε |z|H

Applying it to (3.8) and adjusting the constants, we obtain,

⟨B′ (t)u, u⟩ ≥ −C (||u||V (ε ∥u∥V + Cε |u|H))
≥ −ε ||u||2V − Cε |u|2H . (3.9)

While Cε may be quite large ε can be made as small as desired. Also, (3.7) shows that B′ is continuous as
a map from V to V ′.

For the sake of simplicity, we assume that the density ρ = 1, although the method below may be applied
to a density that is inhomogeneous and possibly time dependent, ρ = ρ(x, t). Using the boundary conditions,
we find ∫ T

0

∫ 1

0
(kwxxxx + γwtxxxx)ψ (t)ϕ (x) dxdt

=
∫ T

0

∫ 1

0
(kwxx + γwtxx)ψ (t)ϕxx (x) dxdt.

Let L : V → V ′ be the operator

⟨Lu,w⟩ = ⟨Lu,w⟩V ′,V ≡
∫ 1

0
uxxwxxdx.
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Now, we consider the nonlinear term, and define N : V → V ′ by

⟨Nw, u⟩ ≡ −
∫ 1

0
(aw2

x − νp)wxxudx.

We also need an approximate operator which comes from truncating. To that end, let

Qr (x) ≡
{
x2 if |x| < r,
r2 if |x| ≥ r.

Next, we consider the truncated operator

⟨Nrw, u⟩ ≡ −
∫ 1

0
(aQr (wx) − νp)wxxudx.

Let Φ′
r (x) = Qr (x) ,Φr (0) = 0. Then, using the boundary conditions we obtain

⟨Nrw,w⟩ = −
∫ 1

0
(aQr (wx) − νp)wxxwdx

= −
∫ 1

0
(aΦ′

r (wx)wxxw − νpwxxw) dx

= −
∫ 1

0
a
d

dx (Φr (wx))w dx+
∫ 1

0
νpwxxwdx

=
∫ 1

0
aΦr (wx)wx dx+

∫ 1

0
νpwxxw dx.

Note that the first term is nonnegative. Below we derive an estimate for w in V that is independent of r and
then by choosing r large enough we obtain a solution to the non-truncated problem. But first, we consider
∥Nrw −Nrw̄∥V ′ .

|⟨Nrw −Nrw̄, v⟩| ≤
⏐⏐⏐⏐∫ 1

0
νp (wxx − w̄xx) vdx

⏐⏐⏐⏐ + |a|
∫ 1

0
|Φr (wx) − Φr (w̄x)| |vx| dx

=
⏐⏐⏐⏐∫ 1

0
νp (wx − w̄x) vxdx

⏐⏐⏐⏐ + |a|
∫ 1

0
|Φr (wx) − Φr (w̄x)| |vx| dx

≤
⏐⏐⏐⏐∫ 1

0
νp (wx − w̄x) vxdx

⏐⏐⏐⏐ + |a|Kr

∫ 1

0
|wx − w̄x| |vx| dx

≤ Cr ∥w − w̄∥W ∥v∥W .

Here, Kr = 2r is the Lipschitz constant of Φr, and Cr is a positive constant that depends on r. Thus, since
V is dense in W ,

∥Nrw −Nrw̄∥V ′ ≤ Cr ∥w − w̄∥W . (3.10)

To simplify slightly the presentation, we let w (t) = w0 +
∫ t

0 u (s) ds and write the problem in terms of the
beams velocity u.

We first consider the problem in which N is replaced with Nr. Our abstract formulation of the truncated
problem becomes

((I +B (t))u)′ + kLw + γLu+Nrw = f + δ (· − ξ)P, (3.11)

w (t) = w0 +
∫ t

0
u (s) ds, (3.12)

u (0) = v0, (3.13)

where
⟨δ (· − ξ)P, u⟩ ≡

∫ T

0
P (t)u (t, ξ (t)) dt. (3.14)
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We now assume that w ∈ C ([0, T ] ;V ) is given. Then, it follows from the usual considerations (see,
e.g., [21,23–25] and the many references therein) that there exists a solution u to (3.11)–(3.13) such that
u ∈ V, u′ ∈ V ′. However, we do not know if (3.12) holds. It follows from (3.9) that

γ ⟨Lu, u⟩ + 1
2

∫ T

0
⟨(I +B′)u, u⟩ dt ≥ δ (ω)

∫ T

0
∥u∥2

V ds− C |u|2H ,

which is sufficient to allow us to use the main result of [21] along with an exponential shift argument. Then,
the monotonicity of L and the estimates for B′ show that the solution u is unique. Next, assume that w and
ŵ are given and let (w, u) and (ŵ, û) be the corresponding solutions, hence,

((I +B (t))u)′ + kLw + γL (u) +Nrw = f + δ (· − ξ)P,
((I +B (t)) û)′ + kLŵ + γL (û) +Nrŵ = f + δ (· − ξ)P.

Then, we let
((I +B (t)) (u− û))′ + kL (w − ŵ) + γL (u− û) +Nrw −Nrŵ = 0

act on u− û and use the integration by parts theorems developed in [21] to obtain, for B̃ (t) ≡ I+B (t), the
inequality

1
2

⟨
B̃ (u− û) , u− û

⟩
(t) + 1

2

∫ t

0
⟨B′ (u− û) , u− û⟩ ds

+ k ||w (t) − ŵ (t)||2V + γ

∫ t

0
||u− û||2V ds ≤ Cr ||w (t) − ŵ (t)||2.

W

It follows from the compactness of the embedding of V into W that

1
2 |u− û|2H (t) +

∫ t

0
⟨B′ (u− û) , u− û⟩ ds+ k ||w (t) − ŵ (t)||2V + γ

∫ t

0
||u− û||2V ds

≤ ε ∥w (t) − ŵ (t)∥2
V + Cε.r |w (t) − ŵ (t)|2H .

Now, we use the estimates in (3.9) for B′ and obtain

1
2 |u− û|2H (t) −

∫ t

0
ε ∥u− û∥2

V ds− Cε

∫ t

0
|u− û|2H ds+ k ||w (t) − ŵ (t)||2V

+γ
∫ t

0
||u− û||2V ds ≤ ε ∥w (t) − ŵ (t)∥2

V + Cε.r |w (t) − ŵ (t)|2H , (3.15)

where ε can be chosen as small as desired.
We wish to use a fixed point argument. To that end for a given w let u be the solution of (3.11)–(3.13)

that corresponds to w and we let

Fw (t) ≡ w0 +
∫ t

0
u (s) ds.

It follows from the estimates above that,

|Fw (t) − Fŵ (t)|H ≤
∫ t

0
|u (s) − û (s)| ds.

Choosing ε sufficiently small in (3.15), we find that there is a constant Ck,γ,r > 0, depending on k, r, γ such
that

|u− û|H (t) ≤ Ck,γ,r |w − ŵ|H (t) ,

and so, there is another constant C that depends on k, γ, r such that

|Fw (t) − Fŵ (t)|H ≤ C

∫ t

0
|w − ŵ|H (s) ds.
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It follows from iteration of the inequality that a high enough power of F is a contraction map on C ([0, T ] ;H)
and so there exists a unique fixed point w of F , hence

w (t) = Fw (t) = w0 +
∫ t

0
u (s) ds,

which is the unique solution of (3.11)–(3.13). This has proved the following theorem.

Theorem 3.1. For each r > 0 there exists a unique solution w to the approximate problem (3.11)–(3.13)
and it satisfies w ∈ V and ((I +B (·))w)′ ∈ V ′.

Actually, when r is sufficiently large, this estimate shows the existence of a unique solution for the original
problem without the truncation. To see this, it suffices to obtain an estimate on wx that is independent of
r. To that end, we let (3.11) act on u. Then, using the estimate for B′ in (3.9), we obtain

1
2 |u (t)|2H − ε

∫ t

0
||u (s)||2V ds− Cε

∫ t

0
|u (s)|2H ds+ k ||w (t)||2V − k ||w0||2 + γ

∫ t

0
||u||2V ds

−
∫ t

0

∫ 1

0
(aQr (wx) − νp)wxxudxds ≤ Cε + ε

∫ t

0
||u (s)||2V ds, (3.16)

where Cε depends on f and P . We now consider the nonlinear term and using the boundary conditions, we
find

−
∫ t

0

∫ 1

0
(aQr (wx) − νp)wxxudxds = −

∫ t

0

∫ 1

0
aΦr (wx)x udxds+

∫ t

0

∫ 1

0
νpwxxudxds

≥
∫ t

0

∫ 1

0
aΦr (wx)uxdxds− C

(∫ t

0
||w||2V ds+

∫ t

0
|u|2H ds

)
.

Letting Ψr (x) =
∫ x

0 Φr (y) dy, it follows that Ψr (x) ≥ 0 and then,

=
∫ 1

0
aΨr (wx) dx−

∫ 1

0
aΨr (w0x) dx−

(∫ t

0
ε ||w||2V ds+ Cε

∫ t

0
|u|2H ds

)
≥ −

∫ 1

0
aΨr (w0x) dx−

(∫ t

0
ε ||w||2V ds+ Cε

∫ t

0
|u|2H ds

)
≥ −C − C

(∫ t

0
||w||2V ds+

∫ t

0
|u|2H ds

)
,

for a constant C that is independent of r, for all r sufficiently large. Here, we used the fact that w0x is
bounded since w0 ∈ V . Thus, (3.16) implies

1
2 |u (t)|2H − ε

∫ t

0
||u (s)||2V ds− Cε

∫ t

0
|u (s)|2H ds+ k ||w (t)||2V − k ||w0||2V + γ

∫ t

0
||u||2V ds

−
(
C + C

(∫ t

0
||w||2V ds+

∫ t

0
|u|2H ds

))
≤ Cε + ε

∫ t

0
||u (s)||2V ds.

Choosing ε small enough, depending on γ, we obtain

|u (t)|2H + γ

2

∫ t

0
||u||2V ds+ k ||w (t)||2V ≤ Cε + k ||w0||2V + C

∫ t

0
||w||2 ds+

∫ t

0
|u|2H ds.

Then, Gronwall’s inequality establishes a bound for ||w (t)||V that is independent of r. This yields the
following corollary, which is the main theoretical result in this work.
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Theorem 3.2. There exists a unique solution u to the problem

((I +B (t))u)′ + kLw + γLu+Nw = f + δ (· − ξ)P, (3.17)

w (t) = w0 +
∫ t

0
u (s) ds, (3.18)

u (0) = v0, (3.19)

u ∈ V and ((I +B (·))u)′ ∈ V ′. Moreover, when r is chosen large enough this is the unique weak solution of
the original problem, (3.1)–(3.5), without the truncation.

We conclude that there exists a unique weak solution of the model. We note that although γ > 0, it may
be as small as we wish, however, the limit γ → 0 cannot be obtained from these considerations.

4. Numerical algorithm

We develop a numerical scheme for the model, and the results of its implementation are presented in the
following section.

There are numerous methods to obtain numerical approximations for initial–boundary problems. In some
problems, and ours is of such a type, the standard methods either fail or cannot be directly applied to the
differential equations. In this problem the governing equation is nonlinear and has varying coefficients. In the
classical finite element method, FEM, such problems are simplified and the nonlinear terms are linearized,
which may cause the results to diverge from the exact ones. In our model, this occurs when the inertial
point crosses the element’s boundary or passes to a successive time layer in the process of time integration
of the equation of motion. Such a traveling point carries the momentum perpendicular to the beam’s axis,
along the beam. In such a case, the numerical algorithms based on routine approach of FEM do not provide
correct results.

To address this problem, we used the space–time finite element approach. Continuous approximations
were applied to both the spatial and temporal variables at the same time [26–28]. This allows for a weak
formulation of the problem that cannot be simply formulated while separating time from space. There exist
broad literature devoted to space–time finite element method, STFEM, for various problems, see, e.g., [29–31]
and the references therein.

The main difference between the classical FEM and the STFEM lies in the interpolation functions:

q(x, t) = N(x) · T(t) qe (FEM), q(x, t) = N(x, t) qe (STFEM).

In FEM the interpolation in space N(x) and time T(t) are done separately while in STFEM the interpolation
is carried on jointly N(x, t). Thus, FEM can be considered as a particular case of STFEM.

We discretize the equation of motion (2.1) using space–time rectangular finite elements, depicted in Fig. 3,
where the element subdomain is

Ωbh = {(x, t) : 0 ≤ x ≤ b, 0 ≤ t ≤ h}.

Here, h = △t is the time step, so that if T is the final time, we have nT = T/h time steps and nS = 1/b
spacial elements (recall that L = 1).

We take into account the pure bending process described by the 4th order x-derivative (see, (2.1)). In
this beam model, the influence of the shear forces on the potential energy, and therefore on the deflection,
are neglected. Then, the angle of rotation of the cross section is directly joined with the deflected neutral
axis of the beam. We use both deflections and rotations at nodal points of each element. Thus, there are
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Fig. 3. A space–time finite element domain Ωbh.

four degrees of freedom at each time layer of the element that allow to determine a third order polynomial
in space. We use a velocity variant of the space–time discretization, therefore, the velocity in the beam finite
element is represented by the nodal velocity parameters in two successive time steps. We denote the current
state, which just has been obtained, by vt and the unknown state at the next time step by vt+h. Thus, we
have

v(x, t) =
(

1 − t

h

)
Nvt + t

h
Nvt+h , (4.1)

where [
vt

vt+h

]
=

[
v1 ψ̇1 v2 ψ̇2 v3 ψ̇3 v4 ψ̇4

]T
, (4.2)

is the nodal velocity vector and the shape functions N are given by

N = [N1, N2, N3, N4] , (4.3)

are chosen as
N1 = 1 − 3x

2

b2 + 2x
3

b3 , N2 = x− 2x
2

b
+ x3

b2 ,

N3 = 3x
2

b2 − 2x
3

b3 , N4 = −x2

b
+ x3

b2 .

We see that the velocity vector v in (4.1) is interpolated from eight nodal values: four that are known from
a previous time t and four unknown at time t + h. Now, we use (4.1) to calculate the displacements in the
element,

w(x, t) = w0(x) +
∫ t

0
v(x, t)dt

= Nwt +
(
t− t2

2h

)
Nvt + t2

2hNvt+h, (4.4)

where the nodal displacement vector wt is known and composed of the deflections w and rotations ψ given at
two nodes of the space–time element at time t. The differential equation (2.1) allows us to write the virtual
work in the finite element as follows

Π =
∫
Ω

v∗ {
ρwtt + kwxxxx − aw2

xwxx + νpwxx

+ δ(x− vt)mwtt(vt, t) − δ(x− vt)P} dxdt, (4.5)

where the virtual velocity v∗ with the parameter α is given by

v∗(x, t) = δ(t− αh) (Nv∗)T
.
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We use this form, chosen from the various possible functions of virtual velocity distributions, because of
the simplicity of the time integration of the energy functional Π and simple stability control. Here, α ∈ [0, 1]
is a parameter that defines the equilibrium point in the time layer (similarly to β in the Newmark time
integration scheme). It affects the accuracy and stability of the resulting time integrating scheme (for details
see [32]). Integrating, formally, by parts the virtual work expression (4.5) leads to the following expression

Π =k
∫
Ω

v∗
xxwxx dxdt+

∫
Ω

v∗ {
ρvt − aw2

xwxx + νpwxx

+ δ(x− vt)m(vt + 2vvx + v2wxx)
⏐⏐
x=vt

− δ(x− vt)P
}

dxdt. (4.6)

To proceed with the numerical scheme, we need the following matrices: the element mass and stiffness
characteristic matrices are given by

M = ρ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

13b
35

11b2

210
9b
70

−13b
420

11b2

210
b3

105
13b2

420
−b3

140
9b
70

13b2

420
13b
35

−11b2

210
−13b2

420
−b3

140
−11b2

210
b3

105

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and

K = k

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12
b3

6
b2

−12
b3

6
b2

6
b2

4
b

−6
b2

2
b

−12
b3

−6
b2

12
b3

−6
b2

6
b2

2
b

−6
b2

4
b

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ νp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6
5b

11
10

−6
5b

1
10

1
10

2b
15

−1
10

−b
30

−6
5b

−1
10

6
5b

−11
10

1
10

−b
30

−1
10

2b
15

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

To deal with the nonlinearity, we use a term in which the nonlinearity is frozen at the time t so that wt and
vt are known,

Kn = a

∫ b

0
NT [

Nxwt + (α− 0.5α2)hNxvt + 0.5α2hNxvt+h
]2 Nxx dx. (4.7)

The explicit matrix form of Kn is provided in the Appendix.
The general matrices representing the moving mass were derived by using linear shape functions as

described in [33],

Mm = m

⎡⎢⎢⎣
(1 − κ)2 0 κ(1 − κ) 0

0 0 0 0
κ(1 − κ) 0 κ2 0

0 0 0 0

⎤⎥⎥⎦ ,

Cm = 2mv
b

⎡⎢⎢⎣
κ− 1 0 1 − κ 0

0 0 0 0
−κ 0 κ 0
0 0 0 0

⎤⎥⎥⎦ ,

et
m = mv

bh

⎡⎢⎢⎣
(1 − κ)(wi+1

2 − wi
2 − wi+1

1 + wi
1)

0
κ(wi+1

2 − wi
2 − wi+1

1 + wi
1)

0

⎤⎥⎥⎦ .
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Fig. 4. The transition of the mass between two elements.

The upper indices i and i + 1 are the numbers of neighboring spatial elements traversed by the inertial
particle (Fig. 4). The lower indices 1 and 2 correspond to left and right nodes in each neighboring element.

The moving force vector is given as

Ft = P

⎡⎢⎢⎣
1 − κ

0
κ
0

⎤⎥⎥⎦ ,
where κ ∈ [0, 1] is parameter that describes current position of the moving load in finite element. Finally,
the minimization of the functional in (4.6) and the above matrices lead to our numerical scheme, which is
of the marching in time type.

Algorithm 4.1. Given wt and vt, as well as et
m and Ft, find wt+h and vt+h by solving the system[

M/h+ Mm/h+ αCm + 0.5α2h(K − Kn)
]

vt+h

− [M/h+ Mm/h− (1 − α)Cm

−(α− 0.5α2)h(K − Kn)
]

vt

+ (K − Kn)wt + et
m − Ft = 0 ,

(4.8)

and
wt+h = wt + h[(1 − α)vt + αvt+h] . (4.9)

The system is a linearized version of the nonlinear original system.

5. Numerical simulations

The algorithm of Section 4 was implemented and run on a PC and we present here six numerical
simulations of the model done by realizing this algorithm. These depict: (i) comparison of the dynamics
of the Gao and the linear Euler–Bernoulli beams; (ii) comparison between the massless applied force and
the load applied to a mass; (iii) a study of the dependence of the dynamics on the traction p; (iv) the system
behavior for different compressive tractions; (v) different velocities; and (vi) multiple passes of the mass over
the span of the rail.

For the sake of simplicity, we assumed that there were no additional external distributed forces, f = 0; the
beam was elastic, γ = 0; the term with δ′ was neglected; and the ends were simply supported. We studied
moderately large displacements of a moderately thick Gao beam (Figs. 1, 2) of length L (scaled to be 1) that
was affected by a moving point load P that was applied to a mass m our directly to the be a, the massless
case, that were traveling at constant speed v. It may be of interest to relax some of these assumptions,
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especially that v = const. The assumption that v = const. makes Eq. (2.2) unnecessary. We note that while
in [22] the traction at x = 1 was assumed to vanish and so there was no possibility for the beam to buckle,
here we let p > 0 (compressive) and so the system may buckle when p > p∗, where p∗ is the critical value
(see, e.g., [5–7]). We return to this point below and study this in more details.

The time integration of the algorithm for the data listed below was 10 µs. The beam was divided into 100
finite elements with 202 degrees of freedom. The nonlinear terms were computed iteratively, hence each time
step took relatively longer time. The time it took for each simulation was about 48 s during 20,000 time steps
for αv = 0.3 and p = 0.01, which was the time it took the load to travel the entire span. Most of computing
time was spent on recalculating the matrices related to the nonlinear effects. It was noticed, however, that
by increasing the time step and allowing for a larger error, the task could be performed in 10–20 s on a single
processor core. As was noted in [22, Section 4], to avoid the appearance numerical oscillations because of
the nonlinear terms in the equations, we used an analytical evaluation of the coefficients, eliminating this
problem.

The data set for a steel beam used in the simulations was:
L = 100 [cm],
β = 0.015,
ν̃ = 0.3, ρ = 7.7 β2L2

π = 5.5175 [g/cm]
k = 0.57 β4L4

4π3 = 0.0233 [g cm3/µs2],
a = 3.105 β2L2

π = 2.2249 [g cm/µs2],
v = π

√
k/ρ

L αv = 0.002 αv [cm/µs],
m = 100ρL = 55175 [g]
P = mg = 5.4071 ∗ 10−5 [g cm/µs2],
p∗ = 0.71 [g cm/µs2],
g = 9.8·10−10 [cm/µs2].

We used a nonstandard unit system [cm, g, µs] that allowed us to have all the values in the same range,
which improved the conditioning of the system of algebraic equations and reduced the truncation errors.

We turn to describe the simulation results, which provide considerable insight into the system’s dynamics.
The first set of computer experiments compares the vibrations of the Gao beam with those of the linear
Euler–Bernoulli beam, when p = 0, so that the comparison is valid. The simulations exhibit the basic
difference in the dynamics of the two beam models and, as expected, the Gao beam behaves well for larger
oscillations while the linear beam’s oscillations become unphysical, implying that the Euler–Bernoulli beam
may be used only with small loads and small amplitudes. The comparison between the two beams, when the
load is massless is depicted in Fig. 5, and when the load acts on a mass, in Fig. 6.

In the massless case, although the trajectories’ shapes have similar forms, the scales and the amplitudes
of the vibrations are very different. Indeed, the amplitudes of the Euler–Bernoulli beam are very large and
exceed any reasonable use of a linearized system. Thus, as was noted above, the linear model can be useful
only when the loads are small. The Gao beam, on the other hand, behaves much better and the amplitudes
are very reasonable. It exhibited stiffening with the amplitude and in the example the amplitudes were ten-
fold smaller. We note that multiple passages of the point force without inertia have similar trajectories, both
at successive periods and in both beam models, but not equal in value. However, the lack of a mass leads to
spurious oscillations created by the numerics that can clearly be seen. This comparison is very instructive
concerning the applicability of the two models.

Different responses were exhibited in the case of the inertial load (m > 0), Fig. 6, were the differences
between the two models were even more pronounced. Whereas the Gao beam exhibited smooth regular os-
cillations, the Euler–Bernoulli beam oscillated wildly with unreasonable form and amplitude. The advantage
of using the Gao beam to obtain meaningful simulations was evident. Moreover, we notice that the inertia of
the mass leads to the smoothing of the oscillations with good accuracy and no visible spurious oscillations. As
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Fig. 5. Comparison of the load trajectory and the vibrations of a linear Euler–Bernoulli and the Gao beam models, for m = 0 and
p = 0. Notice the different vertical scales.

Fig. 6. Comparison of the load trajectory and the vibrations between a linear Euler–Bernoulli beam model and the Gao one, for
m > 0 and p = 0. Notice the different scales.

we discuss below, multiple passages of the point force without inertia produced similar shapes of trajectories
at successive periods and in both beam models.

To gain deeper insight into the system dynamics, we compared the behavior of the Gao model when the
load acted on a mass m (the inertial case), or acted directly on the beam, (the massless or non-inertial case),
for six different values of the horizontal compressive traction p. In all the cases, we chose the values of the
compressive horizontal traction p to be above the critical value p∗ so that the beam exhibited buckling.

Numerical estimate of p∗, depicted in Fig. 7, showed it to be about p∗ = 0.71. Below this value the
beam vibrated about the zero equilibrium point, while above it about a buckled state. A study of the
vibrations of the mid-point of the Gao beam, without the moving load, near the critical value p∗ in the
cases p = 0.600, 0.708, 0.710 and 0.750 is depicted in Fig. 8. We note that there is no effective analytic way
to determine p∗.

The six numerical experiments are depicted in Fig. 9. It is clearly seen that the frequency of the oscillations
increases with p. The difference between the inertial and massless cases was substantial and the heavy
mass changed the frequency considerably, although the amplitudes remained comparable. The importance
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Fig. 7. The relative amplitude of the midpoint of the beam related to the amplitude of the initial deflection u0 for various values of
p. The value p∗ = 0.71 divides the buckled from the non-buckled states.

Fig. 8. The system oscillations at four values of p near the critical value p∗ = 0.71. The vibrations with p = 0.750 are about a
buckled state.

of adding the mass in railway applications was mentioned in the introduction, and these results show its
importance. We also note that the contact point of P or the mass, was above the neutral axis (i.e., w = 0),
in the cases of p = 4.5 and p = 6.0, while for p was below p = 4.5 or p = 7.5 the contact point was below
w = 0. The behavior is well visible in Fig. 10, which depicts the deformed axes of the beam in time.

The fifth set of simulations investigated the system’s response to three different load velocities. It was
found, Fig. 11, that a slow motion of the load, α = 0.005, generated a high number of oscillations during the
load’s transit. When the speed was increased ten-fold, to α = 0.05, the transit time was reduced accordingly
and so was the number of oscillations. The load trajectory in the quasi-static case was computed with α = 0,
and the vertical oscillations were related to the static deflection of the Gao span when the load P had been
placed at mid-point. It was found that the trajectory of the point differed significantly from the classical
sinusoidal trace. The system, because of the nonlinear term, exhibited higher stiffness in the deflected state
while it was softer near the zero deflection, and the quasistatic line that corresponds to the equilibrium state
was shifted towards deflection maxima.

In the sixth set, we investigated the system response to multiple loading of the span with a single inertial
point load traveling in sequence over the beam. As can be seen in Fig. 12, a completely different response
was exhibited for the inertial load, and resulted in unexpected scenarios of displacements. The point mass
that entered the beam for the second time moved on a deformed beam that was vibrating because of the
previous passage. Depending on the transit state, the load entering the beam either added energy or removed
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Fig. 9. Comparison between the system vibrations with inertial (m > 0) and non-inertial (m = 0) loads for six values of the horizontal
compressive traction p, where p > p∗, and the beam is buckled. The inertia reduces the frequency of the oscillations, which seem to
be much more regular.

Fig. 10. Displacements in time for αv = 0.05, β = 0.15 for: (a) massless load with p = 1.5 and (b) inertial load with p = 4.5.
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Fig. 11. Comparison of load trajectory at various speeds with m = 0 and p = 1.5, β = 0.15.

Fig. 12. The displacement w(t) during two consecutive passages of the mass, p = 85.

it. Indeed, the system with the inertial moving load was non-conservative and the mass started its motion
with zero vertical velocity and exited with non-zero vertical velocity. That is also why the moving inertia
stabilized the motion. In the case of a faster motion of the mass on the support, high gradients of trajectories,
i.e., the contact points of the beam with the load, were observed both in the analysis [34,35] and numerical
simulations. High gradients of the beam axis appeared and the non-linear terms in the model led to large
values. That is why at high speeds the system’s response was more sensitive to the various parameters.
Furthermore, one can observe positive displacements of some segments of the beam even though the vertical
force vector pointed downward. The first passage raised the beam axis and during the second passage the
smoothing influence of the moving mass was visible. This was depicted in Fig. 13, too.

For the sake of completeness, we also investigated the system behavior in the inertial case as p was
increased within the three ranges [0, 1], [0, 10] and [0, 100]. We found that there was a progressive shift
from the importance of the nonlinear Gao term to the linear term with p, and this shifted the type of the
vibrations from those of a bending beam to those of a string. The progressive changes in the vibrations as
the beam became softer can be clearly seen in the three parts of Fig. 13. Note the different vertical scales in
the figure. First, when the values of p were small, in the range [0, 1], the structure vibrated in the bending
range with a relatively low contribution of the string vibrations. Indeed, at the low range of p, the bending
was the main phenomenon. We expected gradual change of the vibrations during the first passage and more
significant changes in successive passages of the mass. Fig. 13a depicts the curves for p up to 1.0, while
Fig. 13b and c exhibit values of p in the ranges [0, 10] and [0, 100], respectively. In the higher range the wave
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Fig. 13. Load trajectories for three ranges of p. The range [0, 1] is top-left, [0, 10] is top-right, [0, 100] is bottom.

phenomenon that was dominant was of the string or axially loaded bar. At moderate p (Fig. 13 top-right)
the process starts to elevate the follower point. This fact is visualized better in Fig. 12. The second passage
led to flatter surface in the figure.

To see this transition from a bending beam mode to a string mode, we performed a numerical experiment
with p = 100, and ∆t = 0.1. Fig. 14 depicts the displacements in time of the moving mass. The high value
of the traction p makes the bending stiffness practically negligible and the displacements caused by the load
become large and non-physical. Moreover, we observed two waves: one that had a longer wave-length and
was caused by reflections of the waves from the supports, while the second one had high frequency. In the
initial stage (up to vt/L = 0.1) the solution was unstable and switched between two trajectories: downwards
and upwards. Then, the motion of the loaded follower point took place along the straight segments that
depended on the load velocity, however, not in the way known from the theory of waves in a string. Generally,
the numerical solution in this case was sensitive to all of the problem parameters, together with the time
step of numerical integration.

The increased axial force p resulted in another feature of the solution. The early stage of the motion of the
traveling load influenced the character of the subsequent vibrations. The subjected part of the beam bent
down in the direction of the load, but then the remote part of the beam was lifted up due to the rotation
around the center of the inertia of the neighboring part of the beam. The axial compression intensified and
consolidated this process.

Finally, we note that:

• The vibrations during the first passage that started with zero initial vertical velocity was similar for the
various velocities and compressive tractions p.
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Fig. 14. String-like vibration in the case of a high axial compression p = 100 for four different speeds.

• Computationally, increasing p required a decrease in the time step. The same was found when the spatial
mesh was refined.

• In order to not to dominate the bending effect, p should be small to moderate. When p was relatively
large, the Gao beam started to vibrate as a highly tensioned string and hyperbolic wave effects were
observed.

6. Conclusions and comments

This work studies the motion of a load that may be massless or with mass, on a rail modeled by the Gao
nonlinear beam. It extends the research in [22] to the case of dynamic vibrations when the traction p at
x = L(= 1) is positive and sufficiently large to cause buckling. The differences between the results here and
those in [22] are substantial, indicating that this line of research is worth pursuing further.

The model, (2.1)–(2.6), is in the form of a nonlinear dynamic equation for the vibrations of the beam
coupled with an ordinary differential equation for the motion of the point-mass. The interest in such problems
arises in transportation, especially in trains and trams traveling on rails, where the point-mass represents the
motion of a wheel on the rail. Moreover, it may also represent a wheel traveling on a bridge or a crane with a
moving load. The problem is of considerable interest, both theoretically and in applications. Theoretically, we
established the existence of a weak solution to the problem using various tools from the theory of differential
set-inclusions. Then, we studied the model computationally.

An improved algorithm for the problem was constructed in Section 4, and the results of its implementation
presented in Section 5. Six different aspects of the problem were investigated numerically: (i) comparison of
the dynamics of the Gao and the linear Euler–Bernoulli beams; (ii) the massless applied force and the load
applied to a mass; (iii) a study of the dependence on p; (iv) the system behavior for different compressive
tractions; (v) different velocities; and (vi) multiple passes of the mass over the span of the rail.

The comparison of the vibrations of the Gao beam and the linear Euler–Bernoulli beam shows the
advantages of using the nonlinear Gao beam when the forces and the oscillations are not small. The
comparison can be found in Fig. 5, in the massless case and in Fig. 6, in the inertial case (m > 0). In
particular, the Euler–Bernoulli beam exhibited unreasonable and non-physical behavior, while the Gao beam
produced reasonable vibrations. A study of the value of the critical compressive traction p∗ above which the
Gao beam buckles was conducted next, and the results depicted in Figs. 7 and 8.

The next set of simulations constituted one of the main results in this work. It studied the behavior of
the system in six different scenarios with different values of the compressive horizontal traction, which was
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the main novelty in the Gao beam model. The comparison among the results and also between the massless
and the inertial cases can be found in Fig. 9. The results show clearly the increase in the frequency of the
oscillations with increasing p, especially in the massless case. Moreover, the addition of a heavy mass was
found to stabilize the system and to produce very well behaved vibrations. The vibrations of the system
were found to be both interesting and important, in that in real wheel–rail systems the wheels may have
considerable mass. Therefore, publication in the literature that do not include the case with mass may have
led to incorrect conclusions.

A study of the reaction of the system to changes in the load velocity can be found in Figs. 10 and 11.
It was seen that by increasing the load speed the oscillations decreased. We next investigated the system
dynamics in successive transits of a single load, Fig. 12. The system’s vibrations in the second pass where
different since then the load started the pass on a vibrating beam, thus interacted with the vibrations created
by its first pass. These results are of considered importance in applications when the second set of wheels of
a tram or train passes on a rail that had been excited by the first set.

The final set of computer experiments dealt with the relationship between the system vibrations and
the relative importance of the nonlinear Gao term in the equations of motion and the linear term with the
compressive traction. It was found, Figs. 13 and 14, that when the traction at x = 1 was high, this term
dominated and the system vibrations resembled more those of a string than those of the bending of a beam.

The numerical simulations indicated that describing the rail as a Gao beam seemed to be a better
description if one is interested in the rail oscillations. One may notice that the influence of the Gao terms
in the mathematical model is significant both mathematically and computationally. First, for beams with
a low bending stiffness the Gao beam is much more rigid than the Euler–Bernoulli beam. Second, a soft
Euler–Bernoulli beam is characteristic of lower eigenfrequency than a rigid one. In the case of the Gao
beam this relation is reversed. Third, the higher external load increases the Gao beam features and strongly
influences the frequency of the dynamic response. Still the range of parameters in real applications, for
example in robotics, should be determined to evaluate the real difference between the Euler–Bernoulli and
Gao models. The issue will have to be decided experimentally. We also note here that the vibrations of the
system about a buckled states are novel, and cannot be studied by using any linear beam models.

Additional comments about the performance of the algorithm and the computations can be found at the
end of Section 5.

Since the setting here is ‘simple’, we plan to continue this line of research and extend it in a number of
directions. In this work we took into account the mass and its motion when the beam is buckled, while the
issue of inclusion of thermal effects, which may be considerable if we allow for sliding and frictional heat
generation, will be studied in the future. In such cases one must expand the system to allow for a horizontal
friction traction and to add an equation for the thermal effects.
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Appendix

Kn =

⎡⎢⎢⎢⎢⎣
−2(b2(8q2 − 3qs+ s2) + 3b(p− r)(3s− 4q) + 12(p2 − 2pr + r2))/(35b3)
−(b2(3q2 − 2qs+ s2) + 12b(p− r)(s− q) + 12(p2 − 2pr + r2))/(140b2)
2(b2(q2 − 3qs+ 8s2) + 3b(p− r)(3q − 4s) + 12(p2 − 2pr + r2))/(35b3)
−(b2(q2 − 2qs+ 3s2) + 12b(p− r)(q − s) + 12(p2 − 2pr + r2))/(140b2)

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
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− (b2(139q2 − 50qs+ 25s2) + 12b(p− r)(17s− 13q) + 396(p2 − 2pr + r2))/(420b2)
(b2(2q2 − qs+ s2) + 3b(p− r)(3s− q) + 18(p2 − 2pr + r2))/(105b)
− (b2(q2 + 22qs− 53s2) + 12b(p− r)(11s− q) + 108(p2 − 2pr + r2))/(420b2)
(b2(q2 + 2qs− s2) + 24bs(p− r) + 36(p2 − 2pr + r2))/(420b)

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
2(b2(8q2 − 3qs+ s2) + 3b(p− r)(3s− 4q) + 12(p2 − 2pr + r2))/(35b3)
(b2(3q2 − 2qs+ s2) + 12b(p− r)(s− q) + 12(p2 − 2pr + r2))/(140b2)
− 2(b2(q2 − 3qs+ 8s2) + 3b(p− r)(3q − 4s) + 12(p2 − 2pr + r2))/(35b3)
(b2(q2 − 2qs+ 3s2) + 12b(p− r)(q − s) + 12(p2 − 2pr + r2))/(140b2)

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
(b2(53q2 − 22qs− s2) + 12b(p− r)(s− 11q) − 108(p2 − 2pr + r2))/(420b2)
− (b2(q2 − 2qs− s2) + 24bq(r − p) − 36(p2 − 2pr + r2))/(420b)
(b2(25q2 − 50qs+ 139s2) + 12b(p− r)(17q − 13s) + 396(p2 − 2pr + r2))/(420b2)
− (b2(q2 − qs+ 2s2) + 3b(p− r)(3q − s) + 18(p2 − 2pr + r2))/(105b)

⎤⎥⎥⎥⎥⎦ ,

where

p = w1 + (α− 0.5α2)hv1 + 0.5α2hv3 ,

q = ψ1 + (α− 0.5α2)hψ̇1 + 0.5α2hψ̇3 ,

r = w2 + (α− 0.5α2)hv2 + 0.5α2hv4 ,

s = ψ2 + (α− 0.5α2)hψ̇2 + 0.5α2hψ̇4 .
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