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Torsional vibrations induced in drilling systems are detrimental to the condition of the machine and to the effectiveness
of the engineering process. The cause of vibrations is a nonlinear and unknown friction between a drill string and the
environment, containing jumps in its characteristics. Nonlinear behaviour of the friction coefficient results in self-excited
vibration and causes undesirable stick-slip oscillations. The aim of this paper is to present a novel adaptive technique of
controlling vibrating systems. The scheme is based on the linear quadratic regulator and uses direct measurements of the
friction torque to synthesize its linear dynamic approximation. This approach allows generating a control law that takes
into account the impact of the friction on the system dynamics and optimally steers the system to the desired trajectory. The
controller’s performance is examined via numerical simulations of the stabilization of the drilling system. The proposed
solution outperforms the comparative LQG regulator in terms of the minimization of the assumed cost functional and the
overall stability of the control system under the nonlinear disturbance.

Keywords: vibration control, adaptive control, linear-quadratic-regulator, drilling control.

1. Introduction

The problem of vibration attenuation is present in many
branches of modern engineering. Bridges and railway
tracks vibrate under moving vehicles, which can damage
the structure as well as neighboring objects. Robotic
manipulators are required to act at high speeds, and the use
of light, flexible links results in vibrations of the robotic
joint, which worsens the precision of the motion. The
vibrations induced in machine tools, such as lathes and
grinding machines, reduce the accuracy of the shape of the
manufactured object and can also damage the machine.

Extensive literature deals with vibration control.
It can be divided into the development of specific
hardware and control methods. A survey of the actuators
developed for vibration control is provided by Symans and
Constantinou (1999). Apart from hardware development,
research into control algorithms for vibrating systems
is also very intensive. An input shaping scheme for
controlling a two-link flexible arm robot is presented
by Hillsley and Yurkovich (1991). Tzes and Yurkovich
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(1993) use input shaping with adaptive precompensation
to control systems with unknown parameters. Negative
input shapers for the control of a flexible arm robot are
presented by Mohamed et al. (2006). Singhose (2009)
presents a comprehensive review of command shaping for
flexible systems. The control of a vibrating beam obtained
by the use of an optimal control framework with an H∞
filter is presented by Li et al. (1994). An open-loop
optimal control for damping the forced vibrations of a
beam is discussed by Kucuk et al. (2013). Pisarski and
Bajer (2010) propose a semi-active control of an elastic
continuum under a travelling load.

Apart from open-loop algorithms, the domain of
vibration suppression uses feedback controllers. Robust
H∞ controllers for vibration control problems are
described by Kar et al. (2000a; 2000b). The optimal
control approach for vibration damping in rotational
systems using semi-active dampers is investigated by
Michajłow et al. (2017). In the work of Bajer et al.
(2017) the usage of a controllable viscous damping layer
with an optimal control law for vibration mitigation
of the plate subjected to a pair of masses moving in
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opposite directions is considered. Adaptive suboptimal
stabilization of the beam under moving load by the
use of controllable dampers is proposed by Pisarski and
Myśliński (2017). An interesting sliding-mode control for
vibration mitigation in mechanical systems based on the
polar coordinate approach is presented by Young (1998).

In the present paper, we demonstrate a novel adaptive
optimal control scheme for mechanical vibrating systems
induced by time-varying excitation. The proposed
algorithm consists of two fundamental elements, i.e.,
the identification part, which, based on the consecutive
measurements, generates an approximated dynamical
model of the excitation, and the actual control algorithm,
which computes the values of the control inputs as a
function of the internal state of a vibrating system and the
state concerned with the aforementioned excitation model.

The proposed scheme is employed for vibration
attenuation of a drilling system subjected to a change
in the ground friction characteristics. The friction is
considered a generalized resistance of the drilled ground
to the drilling. It can be both smooth in time and stepwise
variable and can contain a sudden jump of characteristics.
It generates a resistive force that can change suddenly
when the drill passes a layer of soil or rock or meets rigid
inclusions. The voltage supplying the electric motor is
the control function and, when applied to the system, it
influences the dynamic response in a nonlinear way. A
drill string used in drilling for gas and oil is an example
of such a system. The string has a low diameter-to-length
ratio. The sticking phase and the phase of slipping when
the friction coefficient decreases may lead to instability
of the system and to stick-slip flicker. Self-induced
vibrations lower the effectiveness of the drilling process
and may even damage the drill. The friction parameters
depend on the rock formation, which means that the
resulting friction varies with the depth of the drilling.

The solutions proposed in the literature can be
divided into passive and active approaches. The
former solutions focus on optimization of the drilling
bit parameters or drilling input parameters, such as the
weight of the drill bit, the input torque, and the rotary
speed, to make stick-slip vibrations less likely to occur.
This approach is presented by Davis et al. (2012), who
proposed an increase in the torsional stiffness of the drill
string and a redesign of the bit. In a work by Bailey
and Remmert (2010) the optimization of the bottom hole
assembly (BHA) design is reported.

One of the active methods for vibration attenuation
is to optimize the aforementioned parameters in real
time, based on measurements. In the work of Fear
and Abbassian (1994) an automated vibration detection
system with guidelines for the machine operators is
proposed. In another approach, active control systems
are used. In the work of Hernandez-Suarez et al. (2009),
a sliding mode control scheme is proposed to attenuate

stick-slip oscillations in oil drill strings. An active
damping system based on feedback control is developed
by Jansen and van den Steen (1995). Christoforou and
Yigit (2003) present an active strategy based on optimal
state feedback control. An H∞ controller for a drilling
system is given by Serrarens et al. (1998). In the
work of Monteiro and Trindade (2017) a control scheme
based on the proportional-integral regulator for reduction
of torsional vibration in a drill string is investigated.
A comprehensive review of the literature concerning
vibration suppression in drilling systems is given by Zhu
et al. (2015).

The drilling machine can be treated as a special
case of a more general drive system coupled with
an elastic joint. There exist numerous examples of
vibration control algorithms for such systems that also
deal with the disturbances explicitly. A sliding-mode
control and reconstruction of the disturbance value by
the Kalman filtering are proposed by Orlowska-Kowalska
et al. (2010). Szabat et al. (2015) formulate a nonlinear
fuzzy Luenberger observer that estimates the state of the
system along with the present value of the disturbance
load. A similar fuzzy disturbance observer is introduced
by Wang et al. (2016). It can be concluded that the
attention of the aforementioned papers is focused on the
estimation of the disturbance value.

Contrarily, the goal of the present paper is to get
the best estimation of the disturbance dynamics. Because
this estimation gives insight into the future change in
the load, the control law is adjusted accordingly and the
control displays greater performance than in the case of
knowing only the instantaneous value of the disturbance.
A similar attempt is proposed by Priesner and Jakubek
(2014), where model predictive control (MPC) is used
and the load is incorporated in the controller as a simple
dynamical model with constant parameters. In contrast
to this proposal, the parameters of our disturbance model
are allowed to change so that the model adapts to the
measured course of the load. This adaptivity is crucial
for the drilling process because the character of the
friction torque can vary dramatically as the drill bit enters
consecutive layers of the soil.

Although the experimental verification of the derived
control method is the ultimate goal of the authors, in this
paper, we rather opt for the numerical simulation. This
allows us to precisely analyse the effectiveness of the
scheme in dependence on its various parameters. For the
simulation purposes, a simplified model of a drill string
powered by a DC motor is introduced. The disturbance
applied in the control consists of a nonlinear model of
the friction and the Gaussian noise. The parameters of
this disturbance vary for different simulation scenarios
considered.

This paper is organized as follows. Section 2
provides the formulation of the problem with assumed
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simplifications of the drilling system. Section 3
is devoted to the derivation of the proposed control
scheme. In Section 4 the numerical simulation results
are provided, consisting of the performance comparison
to the linear-quadratic-Gaussian (LQG) controller and the
analysis of the controller parameters.

2. Model description

Let us consider the system depicted in Fig. 1. It consists
of a DC motor with resistance RDC , inductance L, and
electromotive force constant Ke. The motor generates
the torque TD. Although the drill string part of the
machine can be modelled as a dynamical distributed
parameter system that is then transformed into its lumped
approximation (see Jansen and van den Steen, 1995;
Kreuzer and Steidl, 2012), it is also common to model
it directly by a lumped parameter system (see van de
Vrande et al., 1999; Serrarens et al., 1998; Mihajlović
et al., 2004; Hernandez-Suarez et al., 2009). In this paper,
we employ the latter strategy and define the mechanical
part of the system only by means of a set of rigid bodies.
The shaft of the motor is firmly connected to the first
body. The moment of inertia of this coupling is I0.
The next three bodies are numbered from left to right and
are characterized by the moments of inertia denoted by
I1, I2, I3, respectively. These bodies are interconnected
by the use of torsion springs of stiffnesses k1, k2 and
k3, and torsion dampers with damping coefficients c1, c2,
and c3. The angular displacement and angular velocity
of the i-th body are denoted by φi and φ̇i, respectively.
The disturbance torque, consisting of the torsional friction
TF (φ̇3) and other disturbances, modelled as white noise,
is assumed to excite the body I3.

The friction torque is defined as (Kreuzer and Steidl,
2012)

TF

(
φ̇3

)
=

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
TC + [TB − TC ] e

−cv|φ̇3|) sign(φ̇3)

+fT φ̇3 if
∣∣∣φ̇3

∣∣∣ ≥ φ̇c,(
φ̇3

φ̇c

) (
TC + [TB − TC ] e

−cvφ̇c

+fT φ̇c

)
if
∣∣∣φ̇3

∣∣∣ < φ̇c,

(1)
where TC is the Coulomb friction torque, TB is
the static friction torque, cv defines the steepness
of the friction characteristics, and fT is the viscous
friction coefficient. The parameter φ̇c defines the length
of the interval of the angular velocity on the friction
characteristics on which the sticking phase (static friction)
is approximated by a straight line.

The dynamics of the mechanical coupling are
represented by the second-order nonlinear differential
equation

Mÿ+Cẏ+Ky = −Ffrict.TF (φ̇3)+FDCTD(ẏ, u), (2)

where y =
[
φ0 · · · φ3

]T
is the vector of the angular

positions of the bodies while ẏ and ÿ are the vectors
of angular velocities and accelerations of the bodies,
respectively. The matrix M = diag (I0, I1, I2, I3) is the
mass matrix of the system, K is the stiffness matrix, C

is the damping matrix, and Ffrict. =
[
0 0 0 1

]T
and

FDC =
[
1 0 0 0

]T
are the vectors allocating the

nonlinear friction and motor torque on the mechanical part
of the system, respectively. The dynamic behavior of the
DC motor is described by the equation

ṪD = −K2
e

L
Eẏ − R

L
TD +

Ke

L
u, (3)

where E =
[
1 0 0 0

]
represents the impact of the

angular velocity of the first body on the motor’s torque
(Eẏ = φ̇0).

Both Eqns. (3) and (2) can be rewritten as
the first-order differential equation that links both the
mechanical and electric part of the system considered:

ẋ = Ax+Bu+DTF (φ̇3), (4)

x =
[
yT ẏT TD

]T
, x ∈ R

9, (5)

where x is the state of the system that is made up of the set
of angular displacements and velocities of all rigid bodies,
φ0−3 and φ̇0−3, along with the torque generated by the DC
motor TD. The control input u is assumed as the voltage
applied to the DC motor and its value has to fulfill the
constraints selected to guarantee

|u| ≤ umax. (6)

The matrix

A =

⎡
⎣

0 I 0

−M−1K −M−1C M−1FDC

0 −K2
e

L E −R
L

⎤
⎦ ∈ R

9×9 (7)

is the state-transition matrix of values defined by Eqns. (3)
and (2),

B =
[
0 · · · 0 Ke

L

]T
, (8)

is the matrix allocating the control input in the system,
defined by Eqn. (3), and

D =

⎡
⎣

0
−M−1Ffrict.

0

⎤
⎦ =

[
0 · · · 0 − 1

I3
0
]T

(9)

represents the impact of the friction force.
The initial point of the system considered in the

simulations is assumed to be at the origin of the state space

x(0) =
[
0 · · · 0

]T
. (10)

The goal of the control is to control all bodies to yield
constant angular velocity ωd. The desired state of the
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Fig. 1. Scheme of the controlled object.

system is achieved when all the bodies of the system
rotate with an identical constant angular velocity ωd. This
condition is feasible only if the torque TD generated by
the motor is constant and equal to the friction torque
corresponding to the velocityωd, i.e., TD = TF (ωd). This
means that the operating point to be tracked by the control

xd(t)

=
[
φd
0(t) · · · φd

3(t) φ̇d
0(t) · · · φ̇d

3(t) T d
D(t)

]T
(11)

fulfills the condition

ẋd(t) =
[
ωd ωd ωd ωd 0 0 0 0 0

]T
. (12)

The trajectory xd(t) and the value of the control
at the operating point ud are obtained from the equation

ẋd(t) = Axd(t) +Bud +DTF (ωd). (13)

The solution of (13) is

xd(t) =
[
ωdt ωdt+ ξ1 ωdt+ ξ2 ωdt+ ξ3

ωd ωd ωd ωd TF (ωd)
]T

,

ud =
RTF (ωd) +K2

eωd

Ke
. (14)

The identity T d
D = TF (ωd) means that the value

of the torque generated by the motor at the operating
point has to be equal to that of the friction torque at the
angular velocity setpoint. Since the system of the bodies
at the operating point acts under two opposite torques, a
static stretch between the bodies appears. The presence of
this phenomenon is reflected in the reference trajectory
by the occurrence of the ξi terms. These are equal to
the static difference between the angular position of the
first body and the i-th body at the operating point and are
represented as

ξ1 = −TF (ωd)
1

k1
,

ξ2 = −TF (ωd)
k1 + k2
k1k2

,

ξ3 = −TF (ωd)
k1k2 + k2k3 + k3k2

k1k2k3
. (15)

The error state-space representation of the system
can be introduced as

ε(t) = x(t)− xd(t). (16)

It can be noticed that the error dynamical equation is
analogous to the system equation (4):

ε̇ = Aε+Buε +DT ε
F (ε̇3), (17)

uε(t) = u(t)− ud, (18)

ε(0) =− xd(0)

=
[
0 −ξ1 −ξ2 −ξ3 −ωd

−ωd −ωd −ωd −TF (ωd)
]T

, (19)

T ε
F (ε̇3) = TF (ε̇3 + ωd)− TF (ωd). (20)

The discrete equivalent of the continuous model (17)
with the sampling time Ts is defined as follows:

εi+1 = ADεi +BDuε
i +DDT ε

F, i, (21)

where the matrices AD, BD, DD of the discrete model
are determined from the matrices A, B, D of the
continuous model (17) by employing the zero-order hold
method:

AD= eATs , BD =

∫ Ts

0

eAt dtB,

DD=

∫ Ts

0

eAt dtD. (22)

The performance index for the control is defined as
the quadratic function in the error space on some time
horizon S > 0,

J =

S∑
i=0

(
εTi Qεi + uε

iRuε
i

)
. (23)

It can be observed that the aim of the control is to
minimize the errors ε, uε between the system state and
control and their reference trajectories xd, ud. The
convergence of the quadratic terms of the objective to 0
means that the control successfully steers the system to
the desired angular velocity ωd.
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The proposed control scheme that will be presented
in Section 3 computes the control value accordingly
to the direct state feedback. This form of control
sets the requirement on the angular displacements and
velocities along with the motor’s torque to be measurable.
Although this paper is concerned with the theoretical
control problem and these parameters are assumed to be
directly measurable, it is important to discuss possible
solutions to measure state signals in practical realisation.
The direct measurements of the angular displacements
and velocities could be performed by the incorporation of
incremental encoders into the experimental design. The
torque of the assumed DC motor model is proportional
to the current i induced in the circuit, and thus its value
can be measured directly. If some of the aforementioned
parameters cannot be directly measured, it is proposed to
use a state observer, e.g., the Kalman filter, to estimate the
unknown values.

Fig. 2. Scheme of the torque measurement setting.

The estimation of the disturbance torque Tdist acting
on the controlled object is crucial for proper work of the
developed control scheme. In the presence of stick-slip
oscillations, such estimation is not straightforward.
Because of that, the measurement setup depicted in Fig. 2
is proposed. At some predefined distance l from the axis
of rotation of the drill bit, an accelerometer is placed. The
measurement of the acceleration tangent to the rotation, a,
allows computing angular acceleration φ̈3 of the body:

φ̈3 =
a

l
. (24)

In addition to the accelerometer, the strain gauge is placed
at the joint of the drill string and the bit. Knowing the
material properties of the machine, the torque TB between
the bit and the drill string can be easily established. For
the proposed simplified model, the analogous setting is
to measure the angular acceleration of the body I3 and
the torque generated by the spring k3. The summary
disturbance torque Tdist acting on a drill bit is then

estimated according to the second law of dynamics,

Tdist = I3φ̈3 − TB. (25)

3. Formulation of the control scheme

3.1. Optimal control problem. Using the dynamical
model (21) of the system presented in Fig. 1 along with the
definition of the reference trajectory (14) and the control
constraints (6), the stabilization objective in the form of
the optimal control problem stated in the error space ε can
be finally presented as follows:

Find

uε
i=0,1,... = argmin J =

S∑
i=0

(
εTi Qεi + (uε

i)
TRuε

i

)

subject to

εi+1 = ADεi +BDuε
i +DDT ε

F, i(ε̇i, 3),

ε0 = xd(0),

uε
i ∈ [−umax − ud;umax − ud], i = 0, 1, . . . .

(26)

Because the nonlinear function T ε
F, i(ε̇i, 3) that represents

the friction torque is assumed to be changing over time
and unknown before the beginning of the operation, it
is not possible to obtain the solution to the optimal
control problem (26). In order to overcome this issue,
we suggest a controller that adapts the control decision
to the measured values of the friction torque and gives
suboptimal results with reference to the problem (26).

3.2. Suboptimal adaptive control. In this section,
the adaptive suboptimal control scheme for a particular
problem (26) is defined. It is worth mentioning
that the proposed control scheme can be applied to
any stabilization control problem for linear dynamical
systems subjected to a measurable disturbance with the
performance index given in the form of a quadratic
function (23).

Let us now consider the problem defined in (26),
neglecting the impact of the disturbance:

εi+1 = ADεi +BDuε
i , ε0 = −xd(0). (27)

The control strategy minimizing the quadratic
performance index for the dynamical model neglecting
the disturbance (27) is known as the linear quadratic
regulator and has the form of a proportional feedback
control:

uε
i
∗ = −Ki · εi, (28)

Ki =
(
R+BT

DPi+1BD

)−1

BT
DPi+1AD, (29)
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wherePi is a symmetric positive definite matrix satisfying
the nonlinear dynamic equation (a discrete-time Riccati
dynamic equation)

Pi =Q+AT
DPi+1AD

−AT
DPi+1BD

(
R+BT

DPi+1BD

)−1

·BT
DPi+1AD,

PS = 0. (30)

The control law defined by (28), (29) and (30),
synthesized for the incomplete system dynamics (27),
will not generate the optimal control for the true system
subjected to a friction torque (21). In extreme cases, such
control may result in system instability.

Let us now assume that the disturbance signal
fi = T ε

F, i(ε̇i, 3) can be approximated by the linear
time-invariant discrete dynamic system of the order n:

Fi+1 =
[
fi+1 fi · · · fi+2−n

]T
= G · Fi. (31)

The state space equation of the autonomous
approximation of the original, disturbed system (21)
that makes use of the disturbance model (31) can be now
formulated as follows:

[
εi+1

Fi+1

]
= Aaut.

[
εi
Fi

]
+Baut.u

ε
i , (32)

Aaut. =

[
AD

[
DD 0 · · · 0

]
0 G

]
,

Baut. =

[
BD

0

]
.

Let us also redefine the matrix Q such that it
accommodates the augmented state vector

Qaut. =

[
Q 0
0 0

]
. (33)

For the system (32) defined by the matrices Aaut., Baut.,
and the control objective defined byQaut. andR, the linear
quadratic regulator on a finite horizon can be synthesized
as in (28)–(30).

The control generated by the adaptive control method
is discrete and within the i-th loop of the algorithm takes
the form

uε
i = −K0

[
εi
Fi

]
, (34)

where εi is the measured state of the structure consisting
of angular deflections and velocities of all four bodies
and the torque induced by the motor, while the vector Fi

denotes the last n measured values of the disturbance.
It is important to point out that the control value

adapts to the measured disturbance not only by means

of the direct feedback but also by the adjustment of the
value of the feedback matrix K0 in accordance with the
currently established disturbance model (31). The quality
of this control strategy clearly depends on the quality of
the approximation of the disturbance.

In the present paper, the discrete dynamics of the
disturbance are modeled as an autoregressive (AR) model.
An example of using autoregressive modeling in traffic
control is presented by Pisarski and Canudas-de-Wit
(2016). Let

[
fi fi+1 · · · fi+N−1

]
(35)

be the time series of the disturbance fi sampled with
the same period as the discretization period Ts in (21).
The length of the series is N . To obtain this vector,
one can use measurements of the past N values of the
disturbance or employ an external signal extrapolator
which provides forecasts of the future values of the
disturbance. The design of such an extrapolator does not
fall within the scope of this paper, and it is assumed that
the disturbance approximation is based on the past values
of the perturbation.

The deterministic autoregressive model of order n
has the following form:

fi =

n∑
j=1

θjfi−j =
[
fi−1 fi−2 · · · fi−n

] ·

⎡
⎢⎢⎢⎣

θ1
θ2
...
θn

⎤
⎥⎥⎥⎦ .

(36)
To fit the autoregressive model to the provided signal
values in the least-squares sense, the vector of weights

Θ =
[
θ1 θ2 · · · θn

]T
should then be computed by

Θ = H+

⎡
⎢⎢⎢⎣

fi+n

fi+n+1

...
fi+N−1

⎤
⎥⎥⎥⎦ , (37)

where H+ denotes the Penrose inverse matrix of the
matrix H:

H =

⎡
⎢⎢⎢⎣

fi+n−1 · · · fi
fi+n · · · fi+1

...
. . .

...
fi+N−2 · · · fi+N−n−1

⎤
⎥⎥⎥⎦ . (38)

It is easy to conclude that the number of the values (the
size of the signal window) N considered and the order of
the model n have to satisfy the inequality

N ≥ n+ 1. (39)
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The model (36) can be reformulated in the discrete
state-space representation

⎡
⎢⎢⎢⎣

fi+1

fi
...

fi−n+2

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

θ1 θ2 · · · θn−1 θn
1 0 · · · 0 0

0 1
. . . 0 0

...
. . .

. . .
. . .

...
0 0 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦
·

⎡
⎢⎢⎢⎣

fi
fi−1

...
fi−n+1

⎤
⎥⎥⎥⎦ .

(40)
The model (40) can be directly applied to (32) and the
control strategy (34) can be calculated.

To attain a high accuracy of the control strategy, this
model approximation is calculated periodically with the
same period Ts as the time discretization of the system
and the period of the disturbance time series. Since the
new calculation of the model (40) changes the system
dynamics (32), the calculation of the control law also has
to be conducted.

If the approximation of the disturbance is based on
the preceding values of the signal, it is obvious that the
control scheme cannot be initiated until the number of the
available past values of the disturbance is not less than
some set parameter Nmin (Nmin ≤ N ). It is clear that
Nmin should be greater than the order of approximation
n. If the dynamic equation governing the evolution of the
disturbance f(t) in time is nonlinear and/or varies in time,
it is highly recommended to choose relatively small values
of N and Nmin. Otherwise, the past measurements that
correspond to the previous character of the disturbance
will dominate the measurement vector (35) over the
new measurements. Because the approximation of the
disturbance calculated by Eqn. (37) depends on the whole
measurement vector, it would be biased towards the
outdated character of the load. It is important to observe
that the measurements that reflect the former behaviour of
the load will still appear in the measurement vector until
the next N values of the disturbance are measured.

It must be emphasized that in some cases the
dynamics of the disturbance have a lower order than
the set order of the approximation n. In such a case,
the coefficients of the autoregressive approximation can
erratically alter the response to small changes in the data.
Such a phenomenon is known as multicollinearity (for the
review of the detection methods of the multicollinearity
phenomenon, see the works of Farrar and Glauber (1967)
or Alin (2010)). The excessive sensitivity of the model
to the provided data can result in instability of the
synthesized control law, e.g., spikes of high magnitude
of the control value. This situation can be avoided if
the order n of the autoregressive model is adapted to
the unusual disturbance. The reduction of the order n
can be made dependent on the value of the condition
number of the rectangular matrix H (see Farrar and
Glauber, 1967): if this number is large, e.g., greater than

Algorithm 1. Initialization.
1: Set the discretization period Ts.
2: Set the order of the model approximation n.
3: Set the size of the signal window N and minimal size

Nmin.
Require: N ≥ n+ 1.

4: Set the horizon of the LQR control Thorizon = S · Ts

(S as in (26)).
5: Set the matrices Q and R.
6: Compute the discrete equivalent (21) of the system

(17) for the time period Ts.

Algorithm 2. Main loop.
1: if the number of available measurements of the

disturbance l ≥ Nmin then
2: Measure the state of the system εi and value of the

disturbance fi.
3: Compute the vector of AR weights Θ using

Eqn. (37).
4: Use Θ to generate G as in (40).
5: Synthesize the model (32) using the matrices AD,

BD, DD, calculated at the initialization, and G.
6: Calculate P1 back in time according to (30).
7: Calculate K0 according to (29).

8: Set the control value ui = uε
i = −K0

[
εi
Fi

]
(see

(34)).
9: end if

some set number λ, the order n should be reduced. The
numberλ is defined arbitrarily according to the experience
of the controller designer. In real life applications of
the proposed control method, the measurement noise acts
against multicollinearity, so the implementation of the
procedure described above should be considered for each
individual control problem case.

The initialization of the controller is presented in
Algorithm 1. This procedure is executed once at the
beginning of the control. The main loop of the adaptive
scheme is presented in Algorithm 2. This loop is executed
within time period Ts.

4. Numerical results

In this section, the numerical results are presented.
The performance of the proposed control scheme
is compared with the results established by the
linear-quadratic-Gaussian (LQG) regulator.

The framework of the linear-quadratic-Gaussian
controller employs a specific form of the dynamical
equations of the system dynamics. It is assumed that,
in general, not all states of the system can be measured
by the sensors and that two types Gaussian noise act on
the system: measurement noise w, replicating the errors
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Algorithm 3. LQG control loop.
1: Measure the output of the system yk = εk according

to Eqn. (41).
2: Update state estimation: x̂k = Ax̂k−1 + Buk−1 +

SLQG (yk − L [Ax̂k−1 +Buk−1]).
3: Update control: uk = −KLQGx̂k.

of the sensors, and system noise v corresponding to the
disturbances affecting the system. The dynamical model
(21) adopted for the LQG framework is of the form

εi+1 = ADεi +BDuε
i +DDv,

yi = Lεi +w, (41)

where y is the measured output vector, L is the output
matrix, v is the Gaussian system noise with variance V ,
and w is the Gaussian measurement noise with covariance
matrix W.

The LQG regulator feedback matrix KLQG and the
Kalman filter matrix SLQG are calculated as follows:

KLQG =
(
R+BTPLQGB

)−1

BPLQGA,

SLQG =ΣLQGL
T
(
V + LΣLQGL

T
)−1

, (42)

where PLQG, ΣLQG are the solutions of the respective
algebraic Riccati equations,

PLQG =ATPLQGA−
(
ATPLQGB

)

·
(
R+BTPLQGB

)−1 (
BTPLQGA

)
+Q.

ΣLQG =AΣLQGA
T −

(
AΣLQGL

T
)

(43)

·
(
V + LΣLQGL

T
)−1 (

LΣLQGA
T
)
+W.

The matrices KLQG and PLQG are calculated by
employing the same matrices Q and R as the feedback
law of the adaptive scheme in (46). The LQG regulator
operates in the infinite loop defined in Algorithm 3.

Both the proposed control scheme defined in
Algorithm 2 and the LQG regulator were tested for
the angular velocity stabilization problem with friction
models of the form (1) and different parameters depicted
in Tables 2–4. The torque–angular velocity characteristics
of each used friction model are depicted in respective
sections concerning particular disturbance scenario. In
addition, in Section 4.5 a spectral analysis of the control
system considered is conducted, and in Sections 4.6 and
4.7 the dependence of the performance of the proposed
scheme on various model and algorithm parameters is
studied.

The performance of the adaptive and LQG
controllers is compared through the computation of

the quadratic cost function

Jx(t) =

∫ t

0

εT (s)Qε(s) ds. (44)

Because the ultimate goal of the control is to steer the
system to the reference trajectory xd despite the control
expenditure, the function (44) does depend only on the
error of the state of the system. The time horizon t varies
for every simulation case and is equal to the simulation
duration.

The analogous performance criterion for the error of
the control uε is not considered a proper measurement of
the performance in the simulations, because it does not
reflect the goal of the control. As a motivational example,
let us observe that the for the constant control uε = 0 such
a criterion

∫ t

0 uε(s)Ruε(s) ds will be equal to 0; however,
the trajectory of the system considered will diverge as a
result of the self-induced oscillations.

The assessment of the control input performance is
rather conducted by measurement of the energy used by
the motor on the entire simulation interval,

Eu =

∫ t

0

u2(s)

RDC
ds. (45)

The mechanical parameters of the system considered,
as well as both the proposed adaptive and LQG controller
settings are listed below. The values of the parameters of
the studied drilling machine model (4) employed in the
computations are summarized in Table 1.

Table 1. Values of the system parameters.

Parameter Value

RDC 0.472Ω

L 7.85mH

Ke 4.9NmA−1

I0 5.56 · 10−2 kgm2

I1−2 1 · 10−1 kgm2

I3 1.2114 kgm2

k1−3 200Nmrad−1

c1−3 1Nms rad−1

For every simulation case it is assumed that the
constraint of the input defined in (6) is umax = 200 V.

For the objective function (23), we assume

R = 10−4, Q =

[
I8 0
0 0

]
. (46)

The above form of the matrix Q results from the fact
that the goal of the control is to minimize only the error
of the states representing the angle and angular velocity
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Table 2. Values of the friction parameters for the first scenario.

Parameter Value

TC1 60Nm

TB1 190Nm

cv1 0.05 s rad−1

fT1 0.001Nms rad−1

φ̇c1 0.0001 rad s−1

deflection of the system. Such a value of R was used to
meet value constrains on the input defined in (6).

The order of the approximating autoregressive model
of the adaptive control method was set to n = 3. The
size of the window was set to N = 220. The minimal
size of the window was Nmin = 40, and the sample time
chosen for the simulation was Ts = 0.005 s. It can be
emphasized that the time of execution of one call of the
proposed control scheme for this system on a PC-class
computer is approximately equal to Te ≈ 0.000259 s, so
the devised control method fulfills the requirements for
real-time computing.

For the control system described in this paper, it is
assumed that the output matrix of the LQG regulator in
Eqn. (41) is equal to L = I9, i.e., the measurements
of all states x are available. The LQG regulator was
synthesized for various values of V and W and tested for
the simulation scenario described in Section 4.1. The final
values of these parameters were then chosen such that the
performance index obtained in the control simulation was
minimal, and they are as follows:

V = 1, W = 5.5 · I9. (47)

Such a strategy was used to assure that the potential
improvement of the adaptive scheme in comparison to the
LQG control is not caused by a poor choice of the LQG
parameters.

4.1. Case with single friction. In the first simulation,
the goal of the controller is to steer the object from the
initial state (10) to the reference trajectory (14) with the
setpoint angular velocity ωs = 10 rad s−1. The time
of the simulation was set to T = 8 s. The values
of the friction parameters are given in Table 2. The
characteristics of the friction torque are depicted in Fig. 3.
For the first simulation scenario, it is assumed that the
disturbance torque consists of a friction torque only. The
impact of random noise on the quality of control is
analyzed in Section 4.2. The results of the simulation
are compared with those of the LQG control in Figs. 4
and 5.

As one can see, the control generated by the
developed control method brings the system to the
reference trajectory in about two seconds (Fig. 5). Then

the objective function (44) depicted in Fig. 4 stabilizes.
This means that all the displacements of the angles
and angular velocities of the bodies from the reference
trajectory xd approach zero. On the other hand, the LQG
control results in a greater final value of the objective
function. The performance objective (44) equals 91.73
for the proposed control scheme and 105.5 for the LQG
control; the improvement is 13%.

The total energy consumed by the system for the
LQG control is Eu ≈ 83000 J, whereas the adaptive
control scheme resulted in Eu ≈ 88000 J. This 6%
increase of energy utilisation is a result of the sharp peaks
of the control at the beginning of the simulation (see
Fig. 4 (b)).

The LQG control provides greater absolute values of
the system errors, which can be seen in Fig. 5. These
simulation results prove the ability of the developed
adaptive method to control the system under external
disturbances with higher quality than in the case of the
LQG control.

4.2. Case with single friction characteristics with
noise. In this section, the ability of the control of
the system in the presence of Gaussian noise is tested.
The parameters of the system and the proposed control
algorithm are the same as in the previous section. Uniform
signal noise with variance g and mean 0 is added to the
friction model from the previous section. The simulation
time was set to T = 8 s. The resulting variation in
the friction force over time for the two studied variances
g = 1N2 m2 and g = 200N2m2 is depicted in Fig. 7.

A comparison of the objective function for different
values of g is presented in Fig. 6. The objective function
obtained at the time 8 s of the simulation increases with
an increase in the variance g. Figure 8(a) shows that
the value of the objective function increases in time.
In fact, when g �= 0, the objective function obviously
diverges. However, even for a noise variance as high
as g = 200N2m2, Fig. 9 shows that the values of the
errors are bounded and have lower values than for the

Fig. 3. Torque–angular velocity characteristics of the friction
torque model assumed for the first simulation scenario.
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(a) (b)

Fig. 4. Comparison of the numerical simulation of the adaptive controller of Algorithm 2 and the LQG regulator of Algorithm 3 in the
first scenario: objective function values obtained by the proposed scheme and the LQG regulator (a), control values generated
by the adaptive controller and the LQG regulator (b).

(a) (b)

Fig. 5. Comparison of the numerical simulation of the adaptive controller of Algorithm 2 and the LQG regulator of Algorithm 3 in the
first scenario: error of the angular displacement of the first mass controlled with the proposed algorithm and LQG control (a),
error of the angular displacement of the fourth mass controlled with the proposed algorithm and LQG control (b).

Fig. 6. Objective function Jx achieved at the simulation time
t = 8 s for different variances of the noise g.
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Fig. 7. Friction torque values in the simulation for the noise
variance g = 1N2 m2 and g = 200N2 m2. T200 stands
for the friction torque generated in the simulation with
noise variance g = 200N2 m2 and T1 stands for the
simulation with g = 1N2 m2.

LQG control without noise, as depicted in Fig. 4. For
g = 1N2m2, the value of the objective function is 91.3
and for g = 200N2m2 Jx it is equal to 101.3.

4.3. Case with varying friction characteristics. In
this section, the scenario with a step change in the friction
characteristic is studied. As in the previous case, the
results are compared with the LQG control. The initial
point and the angular velocity set point are the same as
in the previous cases. In the first phase of the simulation,
for t ∈ [0 s, 1 s), the friction torque has the parameters
assumed as in the first column of Table 3 and at the time
t = 1 s, the parameters of the friction change to the
second set of parameters, presented in the second column
of Table 3. The simulation runs then until the final time
T = 9 s. Both the torque characteristics defined by
the parameters in Table 3 are presented in Fig. 10. The
sets of parameters were chosen to provide an unchanged
friction torque value for ωd. This property of the friction
was chosen to avoid a sudden jump of the constant in
the formula (18). It can be observed that the friction
characteristics significantly change at the time 1 s.

The results are depicted in Figs. 11 and 12. The
curves depict the results for the LQG control method
(dashed lines) and are compared with our adaptive control
method (solid lines). In the first interval of the simulation
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Fig. 8. Comparison of the numerical simulation of the adaptive scheme of Algorithm 2 for the friction noise gain g = 1N2 m2 and
g = 200N2 m2: objective functions achieved with the control scheme (J200 stands for the result of simulation governed with
noise variance g = 200N2 m2 and J1 stands for the trajectory of simulation with the noise variance g = 1N2 m2) (a), control
values generated by Algorithm 2 (b).

(a) (b)

Fig. 9. Comparison of the numerical simulation of the control scheme of Algorithm 2 for the friction noise gain g = 1N2 m2 and
g = 200N2 m2: error of the angular displacement of the first body (a), error of the angular displacement of the fourth body (b).

Table 3. Values of the friction parameters for the second sce-
nario.

Parameter First stage Second stage

TC2 200Nm 45Nm

TB2 210Nm 310.5518Nm

cv2 0.05 s rad−1 0.05 s rad−1

fT2 0.001Nms rad−1 0.001Nms rad−1

φ̇c2 0.0001 rad s−1 0.0001 rad s−1

t ∈ [0 s; 1 s) both the adaptive scheme and the LQG
regulator are stabilizing the system. In fact, the results
obtained for the LQG control in the first interval are
better than those for the proposed control method. The
initial peak of the error of the angular displacement for
the first and the fourth masses is nearly 40% greater for
the system controlled by the adaptive scheme than for
the LQG. This is due to the fact that the number of the
measurements of the friction is small at the beginning of
the simulation and the friction at this time is in the sticking
phase. The generated AR model in such a case cannot
be precise enough. Nevertheless, the objective functions
(Fig. 11(a)) achieved in the first interval by both control
algorithms have similar values. In the second stage of the

Fig. 10. Friction torque vs. angular velocity characteristics for
the second simulation scenario. T1: characteristics of
the friction torque at the first stage of the simulation,
t ∈ [0 s, 1 s), T2: characteristics of the friction torque
in the second stage of the simulation, t ∈ [1 s, 9 s).

simulation t ∈ [1; 9] s, when the friction characteristics are
changed, the LQG control destabilizes the system. The
error trajectories (Fig. 12) for the LQG control exhibit
undamped oscillations and the objective function does not
converge.

The peak-to-peak amplitude of the angular
displacement error of the first and the fourth body
stabilizes at 0.4 rad and 0.7 rad, respectively. For
comparison, the proposed control method quickly
achieves the goal of the control: in 1.5 seconds after the
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Fig. 11. Comparison of the numerical results of the simulation of the adaptive controller of Algorithm 2 and the LQG regulator of

Algorithm 3 in the second scenario: objective functions achieved by the control scheme and the LQG regulator (a), control
values generated by the adaptive controller and the LQG regulator (b).

(a) (b)

Fig. 12. Comparison of the numerical results of the simulation of the adaptive controller of Algorithm 2 and the LQG regulator of
Algorithm 3 in the second scenario: error of the angular displacement of the first mass controlled with the proposed control
scheme and LQG control (a), error of the angular displacement of the fourth mass controlled with the proposed control scheme
and LQG control (b).

friction change the adaptive scheme generates a smaller
oscillation of the angular displacement than the LQG
regulator, and after approximately 3 s the error trajectories
of the system converge to zero. The final value of the
objective function Jx obtained in simulation is 82.25,
while that for the LQG control is J = 90.28. The results
of this simulation prove the efficiency of adaptation
by the proposed algorithm to a sudden change of the
disturbance.

The ultimate energy consumed by the adaptive and
the LQG scheme is approximately equal to 95300 J
and 93400 J, respectively. The small power increase
(approximately 2%) for the adaptive scheme is caused
mainly by the sharp peaks of the control. What is
important, the system after t = 2 s has approximately the
same energy consumption for both control algorithms but
the LQG control fails to stabilize the system.

As can be noticed from Fig. 11(b), the adaptive
scheme yields two sharp peaks of the control at t = 1 s and
t = 2.1 s. The first peak is observed at 1.05 s, right after
the step change in the friction characteristics. Because of
the step change in the disturbance parameters, the time
instant t = 1 s marks not only the discontinuity of the
friction signal, but also the change in the signal parameters
such as amplitude and frequency. Because of that, the
feedback vector of the measured disturbance Fi is sharply

changed. In addition, the change in the AR model caused
by the introduction of new friction parameters results in
a significantly different value of the feedback matrix K0.
The observed peak in the control signal is a result of both
aforementioned events.

In order to explain the second aberration, it is crucial
to observe that the assumed disturbance measurement
window N = 220 corresponds to the measurements
interval N · Ts = 1.1 s. For the time interval t ∈
[1, 2.1), the AR model adjusts its parameters based on the
measurements corresponding to both friction models with
a gradual increase in the measurements of the second one.
The instant 2.1 s marks the complete removal in the initial
friction values from the measurement window. This event
again triggers the change in the AR model parameters and,
as a consequence, the change in the matrix K0, which
explains the second peak.

It is important to emphasize that the presented
simulation assumes a rather extreme scenario of the
friction change, which is sudden and discontinuous. In
practice, the friction character changes more smoothly. It
has been validated that for such cases the control peak
does not occur.

4.4. Case with two friction characteristics. In this
scenario, an additional friction torque T2(ω) applied to the
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Fig. 13. Friction torque–angular velocity characteristics for the
third simulation scenario.

Table 4. Values of the friction parameters for the third scenario.

Parameter T1 T2

TC3 60Nm 100Nm

TB3 200Nm 160Nm

cv3 0.05 s rad−1 0.05 s rad−1

fT3 0.001Nms rad−1 0.001Nms rad−1

φ̇c3 0.0001 rad s−1 0.0001 rad s−1

third body of the system is considered. The torque T1(ω)
is applied to the fourth body, as in the previous scenarios.
The equation of motion (4) is now modified and it includes
the additional friction

ẋ = Ax+Bu+D2

[
T2(φ̇2)

T1(φ̇3)

]
, (48)

D2 =

[
0 · · · 0 − 1

I2
0 0 0

0 · · · 0 0 0 − 1
I3

0

]T
. (49)

The steady state angular displacements between the
bodies that appear in the equation of the reference
trajectory (15) are as follows:

ξ1 = − (T1(ωd) + T2(ωd))
1

k1
,

ξ2 = − (T1(ωd) + T2(ωd))
k1 + k2
k1k2

,

ξ3 = −T1(ωd)
k1k2 + k2k3 + k3k1

k1k2k3

− T2(ωd)
k1 + k2
k1k2

. (50)

The setpoint angular velocity has the value ωd =
10 rad s−1.

The algorithm is now modified to take into account
the simultaneously measured friction torques, both T1 and
T2. Two dynamic models are generated by the algorithm,
one for each friction function, T1 and T2, given in Fig. 13.
The respective parameters that are used in both formulas
are listed in Table 4. Figures 14 and 15 depict the results
of the simulation.

Figure 14(a) shows the objective function in time.
In the first second, it increases and reaches a constant
value of 96.04. This means that the dynamical system
is successfully steered to the reference trajectory. In
the remaining period it is practically constant. The
control function u(t) is depicted in Fig. 14(b). It varies
significantly at the beginning of the process, then slightly
improves the solution, and starting from t = 2.5 s
remains constant. The errors ε1 and ε4 of the angular
displacements of the first and fourth masses are presented
in Fig. 15. One can notice that the errors reduce to zero
rapidly. The error ε1 increases from zero to the value
2.4 rad at the beginning and then decreases. The reason
for this is that the reference angular displacement to be
tracked by the system is a linear function of time, i.e.,
φd
1 = ωdt, as in (11). At the beginning of the simulation

all bodies are still, while the angular error ε1 = φd
1 − φ̇1

is increasing. This error reaches its peak at approximately
t = 0.8 s, when the velocity of the first body φ̇1 reaches
the velocity setpoint ωd. After that the error decreases and
converges to zero.

The results of this simulation are similar to those
achieved for the first simulation scenario. The derived
control scheme effectively steers the system to the desired
trajectory. A comparison with the results of the first
scenario suggests that the proposed control method can
be applied to complex disturbance configurations, such as
two disturbances of different characteristics applied to the
system.

4.5. Spectral analysis. To adequately verify the
adaptive controller’s ability to counteract a load of
wide-range frequency, a spectral analysis of the control
system was conducted. The dynamical model (4)
governed by the proposed control scheme defined in
Section 3 has been subjected to a sinusoidal disturbance
with the frequency from the range f ∈ [0.1, 20] Hz. The
steady-state amplitudes of the dynamical system’s state x
were then measured.

In this simulation scenario, the goal of the control
is to steer the system to the origin and, as a result, the
algorithm can be formulated directly for the state-space
formulation (4) rather than the error–space (17). The
parameters of the algorithm remain the same as for the
previous scenarios, i.e., n = 3, N = 220, Nmin = 40 and
Ts = 0.005 s, with Q, R defined as in (46).

The amplitude spectra obtained with the adaptive
control scheme were compared with the results of the
same analysis conducted for the LQG regulator. The
values of the correlation matrices W and V remain the
same as in the previous simulations.

The results of the analysis are presented in Figs. 16
and 17, which depict amplitude spectra of the angular
deflections and velocities of the bodies I1 and I3. It
can be observed that the proposed scheme results in a
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Fig. 14. Results of the numerical simulation of the proposed control scheme of Algorithm 2: objective functions achieved by the
scheme (a), control values generated by the scheme (b).
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Fig. 15. Results of the numerical simulation of the proposed control scheme of Algorithm 2: error of the angular displacement of the
first mass under algorithm control (a), error of the angular displacement of the fourth mass under algorithm control (b).
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Fig. 16. Amplitude spectra of the angular deflection φ1 (a) and the angular velocity φ̇1 (b) of the body I1. Results obtained with the
adaptive scheme of Algorithm 2 and the LQG regulator of Algorithm 3.
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Fig. 17. Amplitude spectra of the angular deflection φ3 (a) and the angular velocity φ̇3 (b) of the body I3. Results obtained with the
use of the adaptive scheme of Algorithm 2 and the LQG regulator of Algorithm 3.

greater damping of the oscillations for almost the whole
frequency spectrum considered. According to the results,
the diagrams can be divided into three regions. For the

frequencies lower than 1 Hz, the adaptive control method
gives significantly better results than the LQG regulator.
The improvement for this interval varies from 10-fold (see
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the values depicted in Fig. 16(b) for f = 0.1 Hz) to
twofold. For the second interval, f ∈ [1, 10] Hz, the
difference between the amplitudes decreases, and for the
subinterval f ∈ [1, 2.5] Hz the LQG regulator results in
smaller amplitudes of movement of the body I1 than in
the case of the adaptive scheme. Nevertheless, the body
I3, to which the load is directly applied, still exhibits
lower amplitudes for the adaptive control. For the last
interval denoted by f ∈ [10, 20] Hz, responses of both
controllers coincide and the adaptive controller exhibits
no improvement. The results for the remaining bodies I0,2
are similar, but with a noticeable trend: the closer the body
to the disturbance, the better the improvement. It may be
then concluded that the transitional lack of improvement
for the interval f ∈ [1, 2.5] Hz for the bodies closer to
the drive but farther from the disturbance is a result of
the adaptive scheme controlling the motor aggressively to
damp out oscillations of the bodies I2−3, more prone to
the load.

The favourable results of the analysis for the
proposed control scheme come from the fact that
the adaptive scheme controls the system using the
identification of the linear dynamic model of the load.
In this case, the load is a sinusoidal function, which can
be precisely approximated by the linear autoregressive
model. The fact that the time variation in the disturbance
is exactly reconstructed by the model makes the control
generated by the adaptive scheme very close to the optimal
one.

4.6. Impact of the algorithm parameters. In this
section, the effectiveness of the proposed control method
is tested for different values of the algorithm parameters:
the sample time Ts, the size of the signal window N , the
length of the LQR horizon Thorizon, and the order of the
model approximation n. The analysis was performed for
the above system set as for the first simulation scenario.

In Fig. 18(a), a comparison of the objective functions
computed for different sampling times Ts and different
sizes of the window N is presented. One can see that the
objective function increases with N . This monotonicity
is preserved for different sampling periods Ts. It is
important that for TN < 1 s, the stabilization of the
dynamic system fails. A signal horizon shorter than
1 s is not sufficient to calculate a good autoregressive
approximation of the torque dynamics. This critical value
of TN is related to the system configuration described
above. For a system governed by different dynamic
equations or with frictions of different characteristics, this
value will naturally be different. However, it appears
that the value of Jx as a function of Ts does not change
monotonically. The lowest characteristics presented in
Fig. 18(a) are computed for Ts = 0.007 s. The next
one is computed for the shorter sampling period Ts =
0.006 s. This trend breaks as the characteristics for Ts =

0.004 s and Ts = 0.003 s show lower values of Jx than
the characteristics computed for Ts = 0.005 s. This
phenomenon is presented in Fig. 18(b), where the values
of the objective function Jx are computed for a fixed
length of the window TN and different sampling periods
Ts. One can notice that, although the characteristics are
not smooth (which explains the seeming randomness of
the results in Fig. 18(a)), the global trend is that the value
of the objective function increases with an increase in the
sampling period. However, a reduction in the sampling
period Ts involves an increase in the window size N .
This ensures acceptable control results in the unchanged
horizon of the measurements TN = N · Ts. The increase
in N results in a longer execution time of the proposed
algorithm. This means that there is a critical value of Ts

below which the execution time of the algorithm exceeds
the sampling time and the algorithm fails to be useful in
real time.

Figure 19(a) presents the influence of the value of
the LQR horizon on the objective function. For short
Thorizon, e.g., Thorizon < 0.5 s, the algorithm fails.
For longer simulation times, the value of the objective
function calculated for Thorizon < 0.5 s will be higher,
but for Thorizon ≥ 0.5 s it will remain still, as the adaptive
algorithm stabilizes the system in the simulation time. For
Thorizon > 0.5 s one can observe that the value of the
function stabilizes, and for Thorizon > 1 s there is no profit
in a further increase in the horizon.

In Fig. 19(b) the prediction ability of the AR model
used in the derived algorithm is presented. The reference
signal of the friction torque (in Fig. 19(b) referred to as
“measurement”) that was used to analyze the AR models
was computed from the results of the first simulation case
presented in Section 4.1. The signal “measurement” is
a friction torque generated by the model (1) represented
in the error space defined in (20) with the use of the
parameters from Table 2 and the angular velocity of the
last body φ̇3 measured at the first simulation case, i.e.,
measurement(t) = T ε

F (φ̇3(t)).

Then the AR models were generated with various
values of the parameter n. The predicted future signals
of these models are compared with the values of the
torque calculated in the simulation. The other parameters
of the proposed algorithm are as in the previous cases.
One can see that the order of the autoregressive model
n = 1 is too low to give a good prediction of the signal
because dynamical models of order 1 cannot reproduce
oscillations. With the order equal to n = 2 or larger,
the oscillations are properly approximated by the model.
However, the increase in the order to n = 3 provides
a better approximation of the original signal; the overall
change compared with n = 2 is small. In addition, a
further increase in the order to n > 3 does not provide
a significant change in the quality of the approximation.
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(a) (b)

Fig. 18. Dependence of the objective function achieved by the adaptive controller of Algorithm 2 on the parameters: comparison of the
objective functions achieved by the adaptive controller for different sampling periods Ts and different lengths of the window
TN (TN = N · Ts) (size of the LQR horizon is constant, Thorizon = 1.5 s) (a), objective function as the function of the
sampling period Ts (order of the disturbance model n = 3, size of the window TN = 1.5 s, sampling period) (b).
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Fig. 19. Influence of selected parameters on the control quality: impact of the length of the horizon Thorizon (a), ability of the distur-
bance prediction for different orders n of the model (N = 220) (b).

4.7. Impact of the number of elements. In Section 4
the developed control algorithm was tested on a system
consisting of four rigid bodies. However, a real drilling
machine is comprised of a long drill string, which is an
example of a distributed parameter system. To check if the
control scheme can be successfully used in a real scenario,
the efficiency of the control of the model with an increased
number of elements is investigated. Such a modification
provides a more accurate model of a real system.

The control algorithm is computed as previously by
using the simplified model described in Section 2. The
control is then applied to the altered model, consisting of
a greater number of interior elements. The scheme of the
model is presented in Fig. 20.

The parameters: linear density ρ, shear modulus G,
torsion inertia moment I , torsional damping coefficient
c and length l of the interior body were selected so
that they correspond to the parameters I1, I2, k1, k2,
c1, c2 of the simplified model described in Section 2.
Measurements of the angular displacements and angular
velocities corresponding to the interior bodies of the
simplified model were made at the 1/3 and 2/3 of the
length of the interior body.

The simulation scenario described in Section 4.1

was then performed for the interior body I discretized
using 1–11 elements (the case with discretization using
one element is identical to the model from Section 2).
To measure the performance of the scheme, a quadratic
performance index defined by (44) for the altered model
was introduced. The indices of the diagonal matrix
Q corresponding to the elements of the interior body
are inversely proportional to the number of elements, to
ensure normalization of the cost function. For all cases,
the control scheme successfully steers the system to the
angular velocity set point.

The final value of the cost function as the function of
the number of elements is presented in Fig. 21. As can
be observed, the initial increase up to the three elements
makes the performance index deteriorate. The peak
corresponds to 150% of the performance index for only
one element. However, a further increase in the elements
makes the performance index decrease. The final value for
the choice of 11 elements is approximately 25% higher
than for the one-element model. It has been validated
that a further increase in the number of elements does not
significantly affect the value of the performance index.
This result confirms that the developed control scheme
can be successfully used in a real-world application with
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Fig. 20. Scheme of the altered model with the points on which the measurements are conducted.

Fig. 21. Value of the performance index Jx for different num-
bers of elements in the model.

only two additional measurements of the displacement
and velocity on the drill string.

5. Conclusions

In this paper, an optimal adaptive controller for dynamical
systems with external disturbances was studied. The
proposed scheme was applied to the control problem
of a drill string. Simulations proved the efficiency
of the approach. It successfully steers the system to
the desired trajectory. The proposed control method is
efficient in the presence of suddenly varying and nonlinear
disturbances. The numerical simulations demonstrated
that the described controller is superior to the linear
quadratic Gaussian control in the given control case. The
scheme is robust to changing characteristics of the friction
and the presence of noise. The performed simulations
confirmed that the adaptive scheme can control a system
subjected to multiple independent disturbances. The
scope of the application of the scheme can be easily
enlarged to the cases where the disturbance is independent
of the state of the system.

The method is versatile and can be applied
to numerous engineering problems, for example, the
stabilization of off-road vehicles subjected to sudden
unevenesses of the surface, the stabilization of airplane
wings under turbulence, masts under wind blows, slender
buildings under seismic excitation or satellite antennas

impacted by meteorites.
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