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ABSTRACT 

 

Prolonged durability of concrete structures is closely related to the minimization of the transport of liquids in 

cement matrix. Capillary suction is a dominant mechanism of liquid transport, especially in moderate climate, 

where cyclic wetting-drying and freeze-thawing cycles occur. Air-entraining of concrete is the efficient way to 

prevent deterioration impact from environment. However, the influence of air voids distribution on the capillary 

suction is not well known. The purpose of the research was to assess the water absorption properties of the air 

entrained concrete. The concrete mixes with the air content from 1% to 16% and similar proportion of 

micropores to large air voids (A300/A) were prepared. The water absorption tests were performed using ASTM 

C1585 procedure. The following parameters were determined: Si – initial rate of water absorption, Ss – 

secondary rate of water absorption, tn – time of nick point, In - water absorption for tn, I60 – initial 60 seconds of 

water absorption. The results were compared with the air content in concrete. Additionally the compressive 

strength, porosity accessible to water and concrete resistivity were measured. 

The linear relationships between initial and secondary rate of water absorption and the air content in 

concrete were found. A significant changes of rate of water absorption in concrete when the air content change 

more than 6% were observed.  
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INTRODUCTION 

 

The application of air-entraining admixtures is the most common method to ensure frost and 

scaling resistance of concrete. Deterioration of durability during freezing and thawing cycles 

takes place when the moisture from outside penetrates into microstructure of concrete and fills 

connected capillary pores and air voids. There are three major mechanisms of fluid transport 

in concrete such as permeation, capillary suction and diffusion. The capillary suction is the 

most important one in terms of frost resistance [1-4]]. Furthermore, the measurement of the 

rate of water absorption is one of the easiest and most efficient method of assessing transport 

properties in cement-based composites and gives reliable information about potential 

durability of concrete [6, 7]. The water absorption is related to microstructure and initial 

moisture content and is therefore influenced by mix composition, degree of hydration and 

exposure conditions of concrete [4, 8]. The pore network in a cement based matrix provides a 

path for the transport of fluid into concrete. For cement-based materials, the water absorption 

mainly occurs in the connected capillary pores between 10 nm and 10 µm. The larger the 

capillary pore diameter, the faster the water absorption rate increases [9]. Currently, there are  
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many varieties of the capillary suction procedure [10-15], but the most consistent and 
widespread method is presented in ASTM C1585. Using capillary suction measurements and 
still developing the water absorption models we could calculate many factors connected to 
liquid ingress into concrete, e.g. profile of liquid penetration [16]. Water absorption strongly 
depends on the initial water content of the sample [17]. The correct determination of the water 
absorption rate is possible when the initial moisture content distribution is uniform. Hence, 
according to ASTM C1585, specimens before water absorption measurement are subjected to 
gentle conditioning procedure, ensuring an uniform distribution of moisture in tested concrete 
without deterioration of cement matrix [18]. Despite the uniform conditioning procedure, the 
final moisture content of specimen depends on the porosity of concrete and is generally 
unknown. The initial rate of water absorption, determined up after 6 h of testing, strongly 
depends on moisture content on surface of the specimen [19]. Additionally, increase of the 
initial and secondary (24-168 h) rates of water absorption is observed while increasing the air 
voids content in concrete [2]. The presence of air voids in concrete modifies the mechanism 
of water uptake, after 24h of testing, from capillary suction to diffusion [20]. Increase of air 
void content in concrete results in the increase of the rate of water absorption [2], however the 
quantitative aspect of that process is unknown. 

The aim of the research was to evaluate the water absorption properties of air entrained 
concrete mixtures with assumed target of air content within the limits 1-16%. Only single 
types of cement and of AEA were used to achieve the stable air voids system in concrete 
mixtures, ensuring similar proportion of micropores to air voids content in hardened concrete. 
Two variants of concrete mixtures with different proportions of cement paste and aggregates 
were investigated. Additionally, the effects of air content on resistivity (CR) and on volume 
fraction of porosity accessible to water (PAW) of concrete were analyzed. 
 
 

MATERIALS AND METHODS 
 
Materials 
The effect of air voids characteristic on sorptivity of concrete with different air content with 
two cement paste to aggregate proportions was investigated. The Portland Cement CEM I 
42.5 R (according with PN-EN 197-1 [21]) was used. The chemical composition of cement is 
given in Table 1. The specific surfaces of cement determined by Blain method was 4300 
cm2/kg, density of cement measured by the pycnometer method was 3.10 kg/m3.  
 

Table 1. Chemical composition of cement  
(XRF analysis; LOI – up to 1000°C; SO3 – elemental analysis method) 

Component [%] 

CaO SiO2 Al2O3 Fe2O3 MgO SO3 K2O Na2O LOI 

63.64 19.03 4.84 3.22 1.15 2.97 0.53 0.21 3.34 
 
The mix proportions of the concrete mixtures are given in Table 2. The natural quartz sand as  
fine aggregate, gravel and amphibolite as coarse aggregate were used for concrete mix design. 
The content of sand is given as oven-dry mass and extra water was added to compensate for 
the absorption of sand (0.8% by mass). The gravel grains had a natural oval shape and smooth 
texture and the amphibolite was crushed before use. The first set of concrete mixes (series G) 
was characterized by the same volume of cement paste in cubic meter of concrete. Increased 
amount of air voids was compensated by reduction of aggregate volume, ensuring the same 
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proportion of fine and coarse aggregate. Series A of concrete mixes was characterized by the 
same cement paste to aggregate volume ratio. The air content was intentionally modified by 
an adequate dose of AEA. The densities of dry ingredients were: quartz sand and gravel 2.65 
kg/dm3, crushed amphibolite aggregate 2.90 kg/dm3.  
 

Table 2. Concrete mix design – the series with variable air content  
(AEA – air entrainment agent, WR – water reducer) 

 
The selection of proper dosage of admixtures was an important part of the technological 
process. At first the water reducer agent (WR) was added to achieve slump 100-200 mm. The 
next step was addition of air-entrained agent (AEA) to achieve the target air entrainment in 
fresh mix verified by gravimetric measurement. The fresh mix properties are given in Table 3. 
These include air content measured by pressure method, density by the gravimetric method, 
and consistency by slump. 
 

Table 3. Basic fresh and hardened concrete properties 

Mixture 
Fresh concrete properties Cube compressive 

strength after 28 days 
of hardening [MPa] 

Slump 
[mm] 

Apparent density 
[kg/m3] 

Air content 
[%] 

G-1% 190 2340 1.1 - 
G-8% 190 2240 8.5 - 
G-16% 160 2030 16.4 - 
A-2% 110 2480 1.9 56.3 
A-4% 80 2420 4.1 54.1 
A-6% 100 2390 5.2 53.2 
A-8% 110 2340 7.1 51.1 
A-10% 120 2320 8.3 48.6 
A-12% 100 2260 10.6 42.8 

 
  

Mixture Cement 
[kg/m3] 

Water 
[kg/m3] 

Sand 
[kg/m3] 

Gravel [kg/m3] Amphibolite 
[kg/m3] 

Admixture 
[% cement 

mass] 
2/16mm 16/32mm 2/8 mm WR AEA 

G-1% 330 155 668 946 303 - 3.2 - 
G-8% 330 155 604 854 273 - 3.2 0.16 
G-16% 330 155 530 750 239 - 3.2 0.45 
A-2% 448 179 522 - - 1332 1.9 0.02 
A-4% 438 175 510 - - 1302 1.9 0.05 
A-6% 434 173 504 - - 1288 1.9 0.10 
A-8% 425 170 495 - - 1263 1.9 0.12 
A-10% 420 168 489 - - 1249 1.9 0.15 
A-12% 411 164 478 - - 1221 1.9 0.18 
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Concrete mixes were produced in the laboratory mixer of 50 litre capacity. Standard 
specimens were manufactured for determination of: 
 compressive strength according to PN-EN 12390-3 [22] – 100 mm cubes,  
 air void characteristics – 150 mm cubes, 
 water absorption, CR and PAW – cylinders Ø=100 mm, h=200 mm. 

Specimens were maintained for 28 days in saturated curing conditions before testing or 
conditioning. 
 
 

METHODOLOGY AND TESTS PERFORMED 
 
Water absorption test was carried out in accordance with ASTM C 1585. Three concrete 
discs (thickness 50 mm and diameter 100 mm) were cut out from cylinder specimens of each 
concrete mixture and then placed in an environmental chamber at temperature of 50°C and 
RH of 80% for 3 days. After that, each specimen was stored in an individually sealed 
container for 15 days to achieve equilibration of internal humidity. The specimens were then 
covered with plastic water-proof sheets, completely sealed on their sides and bottom, leaving 
only the top surface exposed. The exposed surface of the specimen was placed face down on 
the support device (plastic rods) inside the container filled with water up to 3 ± 1 mm above 
the top of the device. The mass of the specimens were measured at regular intervals – more 
frequently for the first 6 h and less frequently afterwards – for 8 days. The initial sorptivity 
(Si) was calculated based on mass intake during the first 6 h, and secondary sorptivity (Ss) 
based on the mass intake in the 24 h to 8 day exposure period. Both Si and Ss were obtained 
for all concrete mixtures that were initially cured for 28 days in saturated curing conditions. 
The point of intersection of linear functions of initial and secondary sorptivity (the nick point) 
was recorded. Time of nick point (tn) and water absorption value for tn (In) was indicated. 
Additionally, the first measurement of water absorption after 60 seconds of capillary suction 
(I60) was indicated. Average values of sorptivities for two specimens of each mixture are 
reported. 

The air void characteristic in hardened concrete was determined using a computer-
driven system of automatic image analysis. Tests were performed using polished surface of 
concrete specimens 100x100x25 mm cut out from cube specimens (150 mm). The automatic 
measurement procedure was designed to comply with the requirements imposed by PN-EN 
480-11:2008 [23]. Results of measurements were available as a set of parameters for air void 
microstructure characterization: spacing factor – L [mm]; specific surface – α [1/mm]; air 
content in hardened concrete – A [%]; content of air voids with diameter less than 0.3 mm - 
A300 [%]. 

Concrete resistivity (CR) measurements, for specimens cured in water, were carried 
out using the Giatec RCON2 device. A cylindrical specimen of hardened concrete was placed 
between two parallel plates of the device (electrodes) connected to an alternate current source. 
The device calculates the bulk electrical resistivity of concrete based on the measured 
potential drop between the electrodes and predefined dimensions of the specimen. According 
to [24], resistivity is well correlated with porosity of cement matrix and water absorption rate. 
Average values of resistivities for the three specimens of each mixture are reported. 

Porosity accessible to water (PAW) was measured according to French standard NF 
P18-459 [25]. Three cylindrical specimens (Ø=100 mm, h=50 mm) cut out from cast cylinder 
(Ø=100 mm, h=200 mm) have been vacuum saturated with water. Specimens were weighted 
in three states: full saturated on the hydrostatic weight,  full saturated and dried to constant 
mass on laboratory weight. Based on the measurements (average of three specimens) the 
volume fraction of PAW was calculated. 
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Many authors [4;19;7] presented an influence of the capillary porosity on the rate of water 
absorption in cement matrix. According to Wong et al. [27] the air voids in cement matrix 
have no impact on transport of a liquid. Only capillary pores are associated with capillary 
suction. The same cement paste content for series G of concrete ensured the repeatable 
capillary pores distribution and consequently the same volume of open porosity. The PAW 
measurement confirmed repeatable capillary porosity distribution.  
The CR measurement results were unexpected. Full saturated concrete with increased content 
of air should provide a decrease of concrete resistivity. Air voids of specimens cured in water 
probably were only partially saturated with water and the CR measurements did not account 
for presence of air entrained porosity without water. 
The research showed opposite conclusion to Wong et al. [27]. Occurrence of more than 6% of 
air voids significantly affected the initial and secondary rate of water absorption. Such large 
differences of air content in common used concrete do not occur at building sites and can only 
be considered theoretically. Probable dominant mechanism is a result of intersection of 
capillary pores in cement matrix by air voids and decrease of capillary suction force at the 
beginning of water absorption. This is manifested by decrease of initial rate of water 
absorption and increase of secondary rate of water absorption and is consistent with the 
observations of other authors, e.g. [2;28]. 
 
 

CONCLUSIONS 
 

The study focused on investigation of the influence of air voids content on the rate of water 
absorption. Concrete mixtures were designed to obtain the similar distribution of air voids in 
cement matrix, which was proved by image analysis of polished sections. On the basis of 
results obtained in this investigation the following concluding remarks are derived: 
 Linear correlation of the initial and secondary water absorption and the air content in 

concrete was found. Increase of the air content in concrete decreases the initial rate of 
water absorption and increases the secondary rate of water absorption. 

 The increase in air content by less than 6% has no significant influence on the rate of 
concrete water absorption. 

 Correlation between of the air content and the coordinates of nick point is not observed. 
 The water absorption after 60 seconds of measurements is linearly correlated with the air 

content of concrete.  
 The change of air content up to 16% has no significant impact on porosity accessible to 

water and on the resistivity of concrete. 
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PREFACE 
 
The 12th International Symposium on Brittle Matrix Composites (BMC-12) took place from 
September 23-24, 2019 on the campus of the Institute of Fundamental Technological Research 
(IFTR) of the Polish Academy of Sciences in Warsaw, Poland. This conference built on the 
legacy of the eleven previous meetings, starting with the 1st symposium in 1985 and continuing 
on the three-year cycle until 2015, the date of the 11th symposium (BMC-11). With the 
exceptions of the BMC-1, which was held in Jablonna, and the BMC-2 held in Cedzyna near 
Kielce, Poland, all subsequent symposia were held in Warsaw.  In each case, the IFTR served as 
the host and the main organizer of the meeting. 
 
The conference focused on key subjects in contemporary brittle (or quasi-brittle) materials that 
are of relevance to both academic and practitioners communities. As was the case with the 
previous eleven volumes in this series, the 25 papers included in the current proceedings cover a 
wide range of topics that reflect latest developments in the areas related to science and 
technology of cement, concrete and composite materials. The main topics represented in this 
volume include: 

 characterization techniques and test methods 
 durability 
 use of recycled materials 
 modeling and prediction of properties 
 mechanical behavior of fiber composites 
 geopolymers and other composite materials 

 
The BMC-12 brought together leading experts in the field of brittle composite materials from 18 
different countries and offered the opportunity to discuss recent progress, share insights on 
research priorities, identify and discuss the approaches toward further developments and facilitate 
exchange of information across disciplines and institutions. 
 
The organizing committee would like to thank all authors who provided their original papers and 
shared their expertise during the presentations and discussions.  
 
A very special thanks is extended to Prof. Andrzej M. Brandt who has led the BMC organizing 
committee for all these years. His extensive knowledge of the topic, and his numerous contacts 
within the international community, were essential to organization of the first Symposium in 
1985 and contributed greatly to successful continuation of this series over the last 34 years. His 
attention to details while editing the papers was indeed legendary, and the Symposium itself is 
inseparable from the name A.M. Brandt. As he shifts his focus toward retirement, it is our hope 
that he will continue to serve as a “spiritual guardian” of this Symposium for a long time.  
 
Finally, the support of the IFTR leadership toward organization of this meeting (and all previous 
symposia) is also acknowledged with thanks. 

M.A. Glinicki 
D. Jóźwiak-Niedźwiedzka 

C.K.Y. Leung 
J. Olek 
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